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Abstract. Self-explanation is an effective metacognitive strategy, as a number of cognitive
science studies have shown. In a previous study we showed that self-explanation can be
supported effectively in a cognitive tutor for geometry problem solving. In that study,
students explained their own problem-solving steps by selecting from a menu the name of a
problem-solving principle that justifies the step. They learned with greater understanding, as
compared to students who did not explain their reasoning. Currently, we are working toward
testing the hypothesis that students will learn even better when they provide explanations in
their own words rather than selecting them from a menu. We have implemented a prototype
of a cognitive tutor that understands students’ explanations and provides feedback. The tutor
uses a knowledge-based approach to natural language understanding. We are entering a phase
of pilot testing, both for the purpose of assessing the coverage of the natural language
understanding component and for gaining insight into the kinds of dialog strategies that are
needed.

1. Introduction

How can we take intelligent tutoring systems (ITSs) to the next level? ITSs are not yet as
effective as human tutors, even in the domains where ITSs have been most successful. Quite
possibly, the difference has something to do with the power of tutorial dialog. A growing
number of researchers therefore are working on finding out whether adding dialog
capabilities to ITSs will result in more effective systems [Rose and Freedman, 2000].

In designing tutorial dialog systems, it is important to focus on areas where dialog is
likely to have the highest pay-off. The dialog must support learning activities that are most
likely to improve students’ understanding. A number of cognitive science studies have
shown that self-explanation is an effective learning strategy. Students studying examples or
textbook text learn with greater understanding when they explain the study materials to
themselves [Chi, et al, 1989; Bielaczyc, et al, 1995]. We present a research project that
focuses on developing a tutorial system that supports self-explanation by engaging students
in dialog.

In previous research we showed that a cognitive tutor for geometry problem solving is
more effective when it supports students’ self-explanation, even without natural language
understanding (NLU) or dialog [Aleven, et al., 1999]. In that study we compared two tutor
versions. One group of students used a tutor version that required them to provide correct
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explanations for their steps, by referencing problem-solving principles. A second group of
students used a tutor version that required them only to solve problems but not to explain
their steps. We found that students who explained their steps learned with greater
understanding. They were less inclined to rely on shallow guessing heuristics, were better
able to explain their steps, and could better solve transfer problems.

The support for self-explanation in that study had a number of potential limitations:
Students did not explain in their own words, selected explanations from menus, and
provided very abbreviated explanations. We are preparing to test the hypothesis that a better
way to support self-explanation is to have students explain in their own words, require that
they provide complete explanations, and give them feedback and assistance in constructing
explanations.

It may not be obvious that feedback is needed. In a number of cognitive science studies,
self-explanation helped learning even when students did not receive feedback on their
explanations. However, studies of students’ self-explanations also found substantial
individual differences in students’ ability to self-explain and found that even when prompted,
many students do not provide good self-explanations [Chi et al., 1989; Renkl, et al, 1998].
Feedback is likely to help students to generate better explanations, a point made also by
[Conati and VanLehn, 2000]. Further, when students receive feedback on explanations, this
makes it more likely that they will actually provide explanations when prompted to do so.
Ensuring that students comply with prompts for explanations is important especially when
dealing with instructional technology. A recent study of ours underscored both concerns
[Aleven and Koedinger, 2000]. In this study, students worked with a tutor version that
prompted them to explain their answers in their own words, but did not analyze the
explanations or provide feedback. We found that without feedback, very few students were
able to provide good explanations. Furthermore, students left the majority (64%) of
explanation boxes blank or entered irrelevant comments.

In this paper, we present a prototype system that helps student improve explanations
through dialog. We describe the system’s knowledge-based NLU component, show
examples of dialogs with the system, and discuss how we plan to develop the system
further.

2. The Geometry Explanation Tutor

In developing a system that provides support for constructing self-explanations, our focus
has been on getting the student to explain precisely—on helping students to improve
explanations that seem to get at the right idea, but are not sufficiently precise. This goal
followed from our analysis of several small corpora of student explanations. Those corpora
indicated, besides the fact that it is difficult for students to state geometry rules in their own
words, that there are many ways of stating geometry rules correctly, and even more ways of
stating them incorrectly. Some examples are shown in Table 1. Students’ attempts at stating
geometry rules are often incomplete, for example because they omit part of the conditions

Table 1: Examples of correct and incorrect explanations of the triangle sum theorem

Correct and Complete Explanations Incomplete Explanations (ctnd)
The angles of a triangle sum to 180 degrees 180 degrees in a triangle
sum of all angles in a triangle is 180 the total sum of the angles need to be 180
angles must add up to 180 degrees in a triangle. adding all the angles is 180

a triangle's sum adds up to 180
Incomplete Explanations because they all equal 180
A triangle is comprised of 180 degrees they add to 180
triangle equals 180 it equals out to be 180 degrees



under which the rule applies. Further, students use language that is ill-formed both
syntactically and semantically.

What was needed, therefore, is a robust NLU component that can perform a fine-
grained analysis of students’ explanations, so that the tutor can respond to the types of
omissions we often see in students’ explanations. We are adding such facilities to an existing
cognitive tutor, the PACT Geometry Tutor [Aleven, et al., 1999]. This tutor has been
developed by our research group, together with a new high-school geometry course of which
the tutor is an integrated part. Following guidelines developed by the National Council of
Teachers of Mathematics [NCTM, 1989], the curriculum emphasizes the application of
geometry to “real world” problems. In courses based on the curriculum, students spend 40%
of total classroom time working on the tutor, in the school's computer lab. During these
sessions, the teacher is present to assist students who need help beyond what the tutor can
offer. The curriculum and tutor are in regular use in about five schools, mostly in the
Pittsburgh area.

We have built a prototype tutorial dialog system, based on the PACT Geometry Tutor,
which we call the Geometry Explanation Tutor. This system covers one of the six units that
make up the curriculum of the original PACT Geometry Tutor, namely, the unit that deals
with the geometric properties of angles. Like all cognitive tutors, the Geometry Explanation
Tutor selects suitable problems on an individual basis and provides feedback, as students
enter solutions or intermediate steps. The tutor provides context-sensitive hints on students'
request. It decides, also on an individual basis, when to advance a student to the next
curriculum section. Unlike other cognitive tutors, the Geometry Explanation Tutor requires
that students explain their answers to geometry problems, by stating—in their own words—a
geometry definition or theorem that justifies the step. The tutor checks that the explanation is
an accurate and complete statement of an appropriate geometry rule. If the explanation is
incomplete, or if the student is focusing on the wrong rule, the tutor provides feedback, as is
illustrated in Figure 1.

Figure 1: The Geometry Explanation Tutor



A sense of dialog emerges as the student incrementally improves an explanation, helped
by the tutor’s detailed feedback. This is illustrated in Table 2, which shows two dialogs with
the system about two different geometry theorems. In each step, the hypothetical student
adds to her explanation-under-construction and then resubmits it to the tutor. (On the right
are listed the system’s internal classification of the student’s explanations, as is explained
below.) The tutor’s responses often take the form of a question, meant to make the student
see that the rule she stated is overly general. After several iterations, the student has refined
an explanation that initially was imprecise and overly general into an accurate statement of the
geometry rule.

3. The Architecture of the Geometry Explanation Tutor

The Geometry Explanation Tutor is based on the standard cognitive tutor architecture
[Anderson, et al., 1995], augmented with facilities for natural language understanding (see
Figure 2). The task of the NLU component is to classify students’ explanations with respect
to a set of categories of correct and partially correct explanations, as explained below. The
task of the cognitive tutor component is to check whether the student's explanations are
correct, based on the classification determined by the NLU component and to present
appropriate feedback to the student.

We opted for a hybrid approach to natural language understanding.  The tutor relies
primarily on a knowledge-based approach to recognize sentences as correct or partially
correct explanations.  It uses a statistical text classifier when the knowledge-based method
fails, to determine whether the explanation is in the ballpark (i.e., focuses on the right
geometry rule), not whether it is complete. The reasons why we prefer a knowledge-based

Table 2:  Two examples of constructing an explanation with the Geometry Explanation Tutor. Shown on
the left are a student's successive attempts at explaining the given geometry rule (what was added since the
previous attempt is underlined) and the tutor's responses. Shown on the right is the tutor's classification of
the student's explanation.

Explanation of the isosceles triangle theorem (step 2 in Figure 1, m∠O W A )
Student:   angles are equal  
Tutor: Are any two angles congruent? What tells you that there are two
congruent angles here?

CONGRUENT-ANGLES

Student: angles   in a triangle   are equal
Tutor: That is a bit imprecise. Are ALL angles in ALL triangles congruent?

CONGRUENT-ANGLES-IN-
TRIANGLE

Student: angles in an   isosceles   triangle are equal
Tutor: Correct, except for one thing: are all three angles in an isosceles
triangle congruent?

CONGRUENT-ANGLES-IN-
ISOSCELES-TRIANGLE

Student:   base   angles in an isosceles triangle are equal
Tutor: CORRECT.

ISOSCELES-TRIANGLE-
BASE-ANGLES

Explanation of the triangle sum theorem (step 3 in Figure 1, m∠W A R )
Student:   they are 180  EQUAL-180

Tutor: Could you be more specific? Who are “they”? And what tells you that
they are 180?
Student:   the angles   are 180 ANGLES-180

Tutor: You are heading in the right direction, but you need to state this rule
more precisely. First, where does the 180 come from?  Are all angles 180?
Student: the angles   in a triangle   are 180
Tutor: You are awfully close. But is each angle measure equal to 180?
Precisely what is 180?

ANGLES-OF-TRIANGLE-
180

Student: the   sum of   angles in a triangle are 180 TRIANGLE-SUM

Tutor: CORRECT



approach over a purely statistical approach, as was used for example in AutoTutor [Wiemer-
Hastings et al, 1998], are explained in [Popescu and Koedinger, 2000].

The knowledge-based NLU component parses the student explanation, creates a
semantic representation, and classifies that representation. We use the term “NLU
component” to refer to the knowledge-based part. The main knowledge source used by the
NLU component is a geometry knowledge base, implemented in the Loom term description
logic. The knowledge base covers the topics addressed in the Angles unit of the tutor
curriculum. It contains a basic ontology of the domain, which includes geometry objects
such as angles and lines, as well as relations such as congruency, adjacency, etc. We use a
portion of the Generalized Upper Model [Bateman, et al, 1995] to anchor our geometry
ontology. Further, the knowledge base contains a hierarchy of explanation categories,
representing correct and partially-correct ways of stating the geometry rules. A small part of
this hierarchy is shown in Figure 3. Each category in the hierarchy represents a class of
explanations that have the same meaning but may have widely different surface forms. The
hierarchical ordering of the categories reflects the degree of completeness of the explanations.
More complete explanations are represented by more specific concepts in the hierarchy (i.e.,
concepts lower down in Figure 3). Conversely, incomplete explanations, or overly general
statements of geometry rules, are represented by concepts higher up in the hierarchy. The
hierarchy is based in part on our analysis of the corpora of student explanations mentioned
earlier. Currently, the knowledge base contains definitions for about 250 concepts and 100
relations. Among those are definitions for about 70 explanation categories, corresponding to
correct and incorrect ways of stating 30 geometry rules.

The NLU component combines the LCFLEX active-chart parser [Rose and Lavie, 1999]
and a feature structure unifier to construct a semantic representation of the student's sentence.
We have developed a grammar that has about 200 rules. The semantic representation of

Figure 2: Architecture of the Geometry Explanation Tutor
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sentences is logic-based and is represented in the Loom term description logic system
[MacGregor, 1991]. Once this representation has been constructed, it is classified
automatically, by Loom’s classifier, with respect to the explanation categories in the
knowledge base.

The cognitive tutor component determines what feedback to give to the student, based
on the classification of the explanation. In order to be considered correct, the student's
explanation must be a complete and correct statement of an appropriate geometry rule, that 
is, a theorem or definition that can justify the problem-solving step being explained.
Therefore, the tutor first determines which geometry rule or rules can justify the current step.
It does so using its cognitive model of geometry problem solving, which represents the skills
of an ideal student, modeled as a set of production rules. After determining the geometry
rule(s) to be explained, the tutor selects a feedback message, taking into account whether the
student's explanation was (a) a complete explanation of one of these rules, (b) a partial
explanation of one of these rules, (c) a reference to one of these rules, meaning that the
student entered the name of a rule rather than a statement of the rule itself or (d) whether the
student focused on the wrong rule.

If the student explanation is classified as a complete statement of an appropriate
geometry rule, the tutor accepts the explanation. For example, in the last step of the first
dialog shown in Table 2, the NLU component classifies the student's explanation under
category ISOSCELES-TRIANGLE-BASE-ANGLES, shown on the bottom left in Figure 3.
This category represents full explanations of the isosceles triangle theorem, which indeed
justifies the step being explained. The tutor therefore accepts the explanation.

When the student's explanation is classified as being a partial explanation of an
appropriate geometry rule, the tutor selects a feedback message that points out how to

Figure 3:  Excerpt from the Geometry Explanation Tutor's hierarchy of explanation categories. Each
category represents a class of explanations which can be paraphrased as shown. The system's knowledge base
contains a defintion for each category, expressed in Loom's term descriptoin language. The two categories at
the bottom represent complete explanations, all other categories represent partial explanations.

UNKNOWN

ANGLES-OPPOSITE-SIDES
“Angles in a triangle opposite

the sides are congruent.”

ANGLES-OPPOSITE-
CONGRUENT-SIDES

“Angles opposite congruent sides
of a triangle are congruent.”

ISOSCELES-TRIANGLE
“Angles opposite congruent sides

of a triangle are congruent.”

CONGRUENT-ANGLES-IN-
TRIANGLE

“Angles in a triangle are
congruent.”

ISOSCELES-TRIANGLE-
BASE-ANGLES

“Base angles in an isosceles
triangle are congruent.”

CONGRUENT-ANGLES-IN-
ISOSCELES-TRIANGLE
“Angles in an isosceles
triangle are congruent.”

TRIANGLE-BASE-
ANGLES

“Base angles in a triangle
are congruent.”

BASE-ANGLES-
CONGRUENT

“Base angles are congruent.”

BASE-ANGLES
 “These are base angles.”

CONGRUENT-ANGLES
“The angles are congruent.”



improve the explanation. Most of the time, the tutor will simply select the feedback message
that is attached to the category under which the explanation was classified—each category of
partial explanations has its own feedback message. For example, the student's statement
shown in Table 2 that “angles in a triangle are equal”, is classified under category
CONGRUENT-ANGLES-IN-TRIANGLE, shown in the middle of Figure 3. The feedback
message shown is the one associated with this category.

If the student's explanation classifies as a reference (e.g., if the student says “triangle
sum” instead of stating the triangle sum rule), the tutor selects a feedback message saying
that the student should explain the rule more fully. Finally, if the student's explanation is
classified under a category not associated with any of the geometry rules that could justify the
current step, the tutor selects a message pointing out that the student is focusing on the
wrong rule. Technically, the feedback messages are implemented by means of bug rules in
the tutor's cognitive model.

Efficiency is an important concern in developing interactive NLU systems. We took the
following steps to enhance the efficiency of our NLU system. First, syntactic parsing and the
construction of a semantic representation are interleaved so that semantic constraints can be
employed to prune the search, that is, to eliminate from consideration partial paths that are
grammatically correct but for which no coherent semantic interpretation can be found.
Further, the NLU component works concurrently with the student: It receives each word as
soon as the student types it, and thus is able to construct a significant portion of the semantic
representation while the student is still typing. The NLU component is described in greater
detail in [Popescu and Koedinger, 2000].

As mentioned, the NLU component uses a statistical text classifier as a backup. This
classifier is based on the Naïve Bayes classification method [Mitchell, 1997, Ch. 6]. When
the NLU component fails to build a semantic representation for a sentence, or builds a
semantic representation that does not classify under any of the explanation categories,  the
system falls back on the statistical classifier to determine whether the student’s explanation is
focusing on the right geometry rule. If so, the tutor will indicate in its response that the
student is on the right track, although the current version does not consider the explanation to
be correct. The tutor will say “You appear to be focusing on the right geometry rule.
However, the tutor does not understand your explanation, could you please state it in a
different way.” Without the statistical classifier, the tutor feedback could include only the
second of these two sentences. Thus, the statistical text classifier enables the tutor to provide
more informative feedback in response to (some) unexpected input, sentences that express
geometry rules in an unusual way. The Naïve Bayes text classifier performs a more coarse-
grained classification task than the NLU component. It classifies students’ explanations with
respect to a subset of the categories that the NLU component uses. It has one category per
geometry rule, representing explanations that focus on that rule, whether they are complete or
incomplete explanations. The statistical classifier computes the probability of each category
by multiplying the conditional probabilities of each category, given each word.

4. Discussion and Conclusion

We present a preliminary architecture for a tutorial dialog system that supports self-
explanation. One might characterize the basic approach of the system as “classify-and-react”
—in each dialog cycle, the system classifies the student's explanation and then responds
based on that classification. This process is rather similar to the model-tracing strategy of
cognitive tutors [Anderson, et al., 1995], except that the system’s classification process is
more sophisticated than that of the standard model-tracing tutors.

So far, we have focused on developing the NLU component of the Geometry
Explanation Tutor. The dialog management component is currently not very sophisticated. It
does not maintain a dialog history and does not do dialog planning. In spite of this, users can



have a sense of dialog when interacting with this system—as the examples hopefully
illustrate, and as a few people who have used the system have remarked. However, one does
not have to look far to find tutorial strategies and dialog phenomena that are not covered and
that do not fit easily in the classify-and-react framework. Here, we consider three categories
of limitations.

Dialogs with the Geometry Explanation Tutor are smooth as long as each student attempt
at explaining progresses toward a more complete explanation, or to put this more technically,
as long as each explanation attempt is classified under a more specific explanation category
than the previous attempt. (This assumption is met in the two examples given in this paper.)
The tutor however cannot detect when a student “regresses” or “stagnates”, that is, when a
subsequent attempt at explaining a step is worse or no better than a previous attempt on the
same step. In such cases, the tutor should point out that the student’s previous explanation
attempt was better and perhaps offer to undo the regressive step. Instead, it currently blithely
gives a locally-appropriate feedback message without any knowledge of the global lack of
progress. Similarly, the tutor currently cannot detect “lateral movement” with respect to the
classification hierarchy, that is, situations where a subsequent explanation attempt is better in
one respect than the previous attempt, but worse in another respect. The tutor is not in a
position to point out that the student deleted a part of her explanation that was essential. In
order to address these problems, the tutor would need to keep a history of how students'
explanation attempts were classified. Further, it would need to be able to display appropriate
feedback messages when it detects regression, stagnation, or lateral movement. It is an open
question to what extent these messages need to be context-sensitive and how such context-
sensitivity can best be achieved. Addressing these problems makes sense if students indeed
regress or stagnate with some frequency. We intend to analyze tutor data to see if they do.

A second way in which the system’s dialog capabilities are limited is that the system’s
on-request help messages are not sensitive to state of the student's explanation-under-
construction. When the student asks for help, the help message suggests that the student look
up the relevant geometry rule in the tutor’s on-line Glossary of geometry knowledge. (The
Glossary contains a short description in English of each geometry rule, illustrated with a
short example. Students can browse this Glossary freely as they work with the tutor.)
However, the dialog would be more smooth and the system more helpful if the help message
would focus specifically on what the student still needs to do in order to complete the
explanation that she is working on. For example, if only a single word were missing, the
tutor might simply give it. If the missing word was a technical term, the tutor might use the
opportunity to give an explanation of the term. A related limitation is that the system’s
feedback messages and on-request help messages are not well-coordinated. The hint
messages do not follow up on questions asked by the feedback messages. For example, if
the student asks for help after receiving a feedback message such as “how do you know that
the angles are congruent?” the help message should address the question asked in the
feedback message. (“You have an isosceles triangle here. What angles in an isosceles triangle
are congruent?”) Addressing this problem makes sense if tutor use data indicate that there is
room for improvement, for example if students underuse the tutor's help facilities or are
often not able to improve their explanations after receiving feedback.

A third limitation of classify-and-react is that it is based on the assumption that the
student’s goal in the dialog is fixed, namely, to provide a correct and complete statement of a
general geometry theorem, and therefore that each utterance by the student is an attempt at
achieving the same goal. This assumption does not hold in many tutorial dialogs. The
problem-solving goal that the student works on (and that the dialog focuses on) may change
for example due to scaffolding by the tutor [Heffernan and Koedinger, 2000]. Students or
the tutor may ask questions. They may elaborate on or retract previous statements. However,
the current Geometry Explanation Tutor does not have a representation of the dialog goal and



therefore it cannot deal with changing goals. This restricts its repertoire of dialog strategies.
For example, the tutor cannot branch into a subdialog on a more specific topic, such as a
particular condition of the theorem to be explained. As another example, when the student
states on overly general rule, it would be great if the tutor could show a counterexample, a
technique that is a mainstay of mathematical reasoning. Within the current architecture it
would be straightforward to have feedback messages that present counterexamples. But
without the ability to branch into a subdialog about why the counterexample is a
counterexample—as would be necessary if the student did not understand why—it does not
seem wise to have such feedback messages. Before we decide whether to add these
strategies, we plan to gather evidence related to their pedagogical effectiveness through the
time-honored method of Wizard of Oz studies. In these studies, some of the smarts of a
computer tutor are provided by a human tutor, who is communicating over the network,
usually unbeknownst to the student working with the computer tutor. This setup provides a
relatively straightforward way to pilot test new tutor features before incurring the cost of
actually implementing them.

It may well turn out to be necessary to augment the tutor architecture so that it maintains
a dialog history. It is probably a good idea to add facilities for dialog planning. We are
considering whether to adapt an existing approach [Core, et al, 2000; Freedman, 2000;
Heffernan and Koedinger, 2000] to our domain. In considering these extensions, our main
goal is to find out what really improves student learning. For the short term, we have a tutor
that is far enough along to start pilot-testing and to start exploring the questions raised above,
through a careful combination of pilot testing, Wizard of Oz studies, and studying human
tutors. Ultimately, our goal is to conduct a controlled experiment to test the hypothesis that
natural language dialog makes a difference in supporting self-explanation.
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