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Abstract
We are engaged in a research project to create a tutorial
dialogue system that helps students to explain the reasons
behind their problem-solving actions, in order to help them
learn with greater understanding. Currently, we are pilot-
testing a prototype system that is able to analyze student
explanations, stated in their own words, recognize the types
of omissions that we typically see in these explanations, and
provide feedback. The system takes a knowledge-based
approach to natural language understanding and uses a
statistical text classifier as a backup. The main features are:
robust parsing, logic-based representation of semantic
content, representation of pedagogical content knowledge in
the form of a hierarchy of partial and complete explanations,
and reactive dialogue management. A preliminary
evaluation study indicates that the knowledge-based natural
language component correctly classifies 80% of
explanations and produces a reasonable classification for all
but 6% of explanations.

1 Introduction
The use of intelligent instructional software is a very
promising avenue for improving education. One type of
such software, Cognitive Tutors, have been shown to yield
a standard deviation improvement in student learning
outcomes over traditional instruction (Anderson, et al,
1995; Koedinger, et al., 1997). In spite of this success,
Cognitive Tutors and other types of intelligent tutoring
systems leave room for improvement relative to human
(one-on-one) tutors, who yield a two standard deviation
improvement over traditional classroom instruction on
average (Bloom, 1984).

A limitation of many current systems is that they
teach “at the problem-solving level”, meaning that they
provide assistance in the context of problem solving, but
engage students only indirectly in thinking about the
reasons behind the solution steps. They do not ask students
to explain their reasoning, for instance, “why did you do
this step?” or “what rule can you apply next and why?” or
“what does this rule really say?”  Students’ understanding
may improve significantly if the software engaged them in
dialogue about such questions.

The cognitive science literature provides some
indirect evidence that such dialogues will be instructionally
effective. For example, students who study worked-out

examples or expository text learn with greater
understanding to the extent that they explain the materials
to themselves (“self-explanation”) (Chi, et al., 1989; 1994).
Similarly, students are more likely to discover good
solution methods when they explain their problem-solving
steps to themselves (Berardi-Coletta, et al., 1985; Gagne &
Smith, 1962).

Recently, a number of interesting tutorial dialogue
systems have been developed (Rose and Freedman, 2000).
A recent evaluation study showed that “knowledge
construction dialogues” implemented in a computer tutor
can enhance student learning (Rose, at al, in press). Yet
few if any dialogue systems focus on having students
explain. So far, this has been done only in systems with
more traditional user interfaces (Aleven et al., 1999; Conati
& VanLehn, 2000).

In developing a dialogue system that helps students to
state and improve explanations, major open questions are:
What type of tutoring strategies and dialogue phenomena
need to be modeled in order to help students state good
explanations? What kind of architecture is needed to
support these tutorial strategies? Do students indeed learn
with greater understanding as a result? In the current
project we explore the viewpoint that a system that tutors at
the explanation level needs to have a very sophisticated
understanding of students' explanations but a less
sophisticated dialogue management module. We have
developed a prototype dialogue system that helps students
state general explanations of their problem-solving steps.
Our development effort so far has focused on (a) the
system's natural language understanding (NLU) component
and (b) identifying and representing the “pedagogical
content knowledge” needed to respond to the types of
omissions we frequently see in students' explanations.

In this paper, we present the architecture our system.
We present results from a preliminary evaluation of the
NLU component and our plans for further development of
the system's dialogue management component. Finally, we
discuss opportunities for extending our system with multi-
modal interaction.

2 Analysis of Student Explanations
The design of the Geometry Explanation Tutor, our tutorial
dialogue system, has been influenced by our analysis of



several small corpora of written explanations of geometry
theorems and definitions, most of them by high-school
students (Aleven & Koedinger, 2000; Popescu &
Koedinger, 2000). The main findings are as follows: First,
there are many ways of correctly stating the same geometry
theorem in English—the range of lexical and structural
variety is even greater than we expected. For example,
explanations 1-3 in Table 1 all are valid explanations of the
linear pair theorem. Second, students' failed attempts at
stating geometry rules are far more often incomplete than
they are incorrect. Examples 4-7 in Table 1 illustrate
incomplete ways of stating various geometry rules. These
statements are overgeneralizations, because they omit one
or more conditions of a general rule. Third, students
sometimes state the arithmetic operations by which they
found the result (example 8). This of course does little to
justify why these operations were the correct thing to do.
Fourth, students' abbreviate in ways that violates semantic
constraints (examples 1, 3, 5, 7, 9). In these examples, the
students talk about angles (or even triangles) when strictly
speaking they mean angle measures. Finally, students
sometimes use language that is rather sloppy—or
semantically ill-formed (example 10).

It follows from this analysis that a tutoring system
that tutors at the explanation level must have a robust NLU
component that can deal with ill-formed explanations and
must be able to respond intelligently to the types of
incomplete explanations that students produce.

3 The Geometry Explanation Tutor
The success of many recent NLU systems has shown that a
good level of natural language understanding is feasible in
a limited semantic domain, even with disfluent input.
Several natural language systems for limited domains such
as weather services, travel reservations, or the scheduling
of meetings have achieved over 80% accuracy in
understanding spontaneously produced utterances (Gates et
al., 1996; Polifroni, et al., 1997; Ward, 1990). However,
geometry tutoring poses challenges beyond those tackled
by the applications mentioned above. First, wrong,
irrelevant, or hedging responses to the student can be
confusing. Therefore, the system must produce analyses

that are highly accurate. Further, the system must not only
determine what the user intended to say, but also whether
she said that with sufficient precision. Finally, when
dealing with novices in a domain, one can expect a high
proportion of semantically ill-formed utterances.

There are many standard NLU techniques available
for tackling limited domains.  These techniques include a
variety of knowledge-based techniques, like syntactic and
semantic analysis or semantic concept spotting using a
parser that can skip unrecognized input (Ward, 1990;
Gavalda, 1998). There are also a variety of statistical
techniques (latent semantic analysis, hidden markov
models, statistical language models, mutual information
(Jurafsky et al, 1997; Manning & Schütze, 1999). We
opted for a knowledge-based approach to NLU, rather than
a purely statistical approach, primarily because we
expected it to be better at producing detailed and accurate
analyses of student input (Popescu & Koedinger 2000).
However, in a limited sense, we do try to take advantage of
the complementary strengths of statistical and knowledge-
based approaches: We use a statistical text classifier as a
backup.

Our prototype dialogue system is based on an existing
Cognitive Tutor for geometry problem solving, the PACT
Geometry Tutor (Aleven, et al., 1999). This tutor was
developed, by our research group, as an integrated part of a
full-year high-school geometry course. Like all other
Cognitive Tutors, this tutor assigns problems to students on
an individual basis. It monitors students as they work
through these problems, giving guidance on intermediate
steps and solutions. The tutor provides just-in-time
feedback in response to common difficulties that students
have. Upon students' request, it provides context-sensitive
hint messages. This is made possible by having a cognitive
model that represent the skills of an ideal student in the
given domain, represented in the form of production rules.
The model enables the tutor to analyze the student's
problem-solving activities in terms of underlying skills,

Table 1: Examples of Explanations

1. two adjacent angles that form a line add to 180
2. the sum of the measures of a linear pair of angles is  180

degrees
3. linear pairs sum to 180
4. angles formed by 2 lines are congruent
5. adjacent angles add to 180
6. base angles in a triangle are equal
7. the angles in a triangle are 180
8. 180 minus two other angles
9. triangle has 180 degrees

10. angle addition of adjacent angles is sum

Figure 1: The Geometry Explanation Tutor



and to estimate how well each individual student masters
these skills (Anderson, et al, 1995). The PACT Geometry
Tutor is in regular use in about five schools, most of them
in the Pittsburgh area, and is being marketed nationwide.

The Geometry Explanation Tutor was created by
adding dialogue capabilities to the PACT Geometry tutor
(see Figure 1). The current prototype tutor engages
students in a restricted form of dialogue in order to help
them state general explanations that justify their problem
solving steps (Popescu & Koedinger, 2000; Aleven, et al.,
in press). The system has been pilot-tested with our
colleagues and staff as well as with 2 high-school students.
Below is an example of an actual dialogue with the system,
in which a hypothetical student explains the isosceles
triangle theorem. This theorem (stated somewhat
informally) says that the base angles in an isosceles
triangle are congruent. The tutor feedback helps the student
in refining an explanation that initially is imprecise. The
annotations shown in italics are explained below.

1. Student: angles are equal
Classified as: CONGRUENT-ANGLES

2. Tutor:  Are any two angles congruent? What tells you that
there are two congruent angles here?

3. Student: angles in a triangle are equal
Classified as: CONGRUENT-ANGLES-IN-TRIANGLE

4. Tutor:  That is a bit imprecise. Are ALL angles in ALL
triangles congruent?

5. Student: angles in an isosceles triangle are equal
Classified as: CONGRUENT-ANGLES-IN-ISOSCELES-

TRIANGLE

6. Tutor:  Correct, except for one thing: are all three angles in
an isosceles triangle congruent?

7. Student: base angles in an isosceles triangle are equal
Classified as: ISOSCELES-TRIANGLE-BASE-ANGLES

8. Tutor:  CORRECT.

3.1 System Architecture
The Geometry Explanation Tutor is based on the

standard Cognitive Tutor architecture (Anderson et al.,
1995), augmented with a NLU component (see Figure 2).
The task of the NLU component is to build a semantic
representation of the student's input sentence and to
classify that representation with respect to a hierarchy of
explanation categories, discussed below. The task of the
Cognitive Tutor module is to decide how to respond to the
student, based on the classification of the explanation.

The knowledge base of the system's NLU component
contains an ontology of the domain as well as the hierarchy
of explanation categories mentioned above. The knowledge
base is implemented using the Loom term description
system (MacGregor, 1991). The ontology covers the
material of the Angles unit of the tutor curriculum, which
deals with the geometric properties of angles. The ontology
contains concepts representing geometry objects such as
angles and lines, as well as relations such as congruency,

adjacency, etc. Currently, the knowledge base contains
definitions for about 310 concepts and 90 relations.

The explanation categories in the knowledge base
represent ways of stating each geometry rule correctly, as
well as frequently occurring ways of stating rules
incorrectly. The categories are based to a large degree on
the analysis of our corpora of student explanations. We
have identified about 140 explanation categories related to
the 25 geometry rules that make up the tutor's Angles unit.
An excerpt of this hierarchy is shown in Figure 3. Each
node represents a class of explanations that have the same
meaning, but may have vastly different surface forms. A
canonical example of a sentence that falls in each category
is shown in each node. Explanation categories at the
bottom of the hierarchy represent correct and complete
ways of stating the isosceles triangle rule. Explanations
categories higher up in the hierarchy represent
progressively more incomplete ways of stating this rule.
Each node in the hierarchy has attached to it a feedback
message that would be appropriate to present to the student
when an explanation is classified under the given category.

Student input is parsed using a unification-based
approach. We employ the LCFLEX parser, an active chart
parser (Rose & Lavie, 1999) in combination with a feature
structure unifier. We have developed a grammar of about
200 rules. The Loom classifier is used to test the coherence
of candidate semantic representations with respect to the
semantic constraints expressed in the system's domain
ontology. When a semantic representation has been
constructed, the Loom classifier automatically classifies it
with respect to the explanation categories.

The Cognitive Tutor module determines the tutor's
response to the student, based on the classification of the
explanation. For explanation steps, the tutor runs its
cognitive model to determine which geometry rule needs to
be explained. It then selects an appropriate feedback
message, taking into account whether the student's
explanation is a (a) full statement of the relevant geometry

Figure 2: Architecture of the Geometry Explanation Tutor



rule, (b) a partial statement, (c) only the name of a
geometry rule, or (d) focuses on the wrong geometry rule.

For example, category ISOSCELES-TRIANGLE-
BASE-ANGLES (shown at the bottom left in Figure 3)
represents one way of correctly and completely stating the
isosceles triangle theorem. The student's explanation in
step 7 of the dialogue shown above is classified as an
instance of this category. Explanations in this category get
the thumbs up from the tutor (step 8), provided of course
that the isosceles triangle theorem indeed justifies the step
being explained. The tutor determines this using its
cognitive model. As an example of a category of partially
correct explanations, category CONGRUENT-ANGLES-
IN-TRIANGLE represents statements saying that the
angles in triangles are equal (see Figure 3, middle). In
response to explanations in this category, the tutor suggests
that the statement by the student is an overgeneralization
(steps 3 and 4 in the dialogue shown above). It does so
simply by printing the feedback message attached to the
category under which the student explanation was
classified, CONGRUENT-ANGLES-IN-TRIANGLE.

We have begun to experiment with the integration of
a statistical Naïve Bayes text classifier (Mitchell, 1997, Ch.
6). When the knowledge-based NLU component fails to
produce an analysis, the statistical classifier is used to
determine whether the student's explanation is in the
ballpark (i.e., focuses on the correct geometry rule). If so,
the tutor will print a feedback message saying that the
student appears to be on the right track. This helps in
dealing with unexpected input. We are looking for further
ways to leverage the statistical text classifier.

3.2 Knowledge-Based NLU
Two specific problems that were addressed in developing
the knowledge-based NLU component are the resolution of
anaphora and the resolution of metonymy. The system
currently resolves references within sentences. It does so as
it builds the semantic representation of a sentence, using

knowledge attached to the grammar rules. This enables the
system to resolve most of the anaphoric references we
observed in our corpora. The system currently does not
deal with referents following a pronoun, choice among
multiple possible referents (at least not when syntactic and
semantic constraints do not uniquely identify the referent),
references across sentences or dialogue turns, and
references to particular elements in the geometry problem
under consideration (such as “the previous angle”).
However, in the current system, none of these problems are
particularly acute, since students are asked only to provide
general statements of geometry rules. They are not
supposed to refer to specific objects in the problem or refer
back to entities previously mentioned in the dialogue. The
experience so far indicates that students have little trouble
following these directions.

Metonymy is the phenomenon where one refers to an
entity using a closely related entity (Jurafsky & Martin,
2000). In the geometry domain, students frequently use
abbreviations like “the angles in a triangle sum to 180”,
where they mean that the measures, not the angles
themselves, sum to 180 degrees. The challenge in dealing
with metonymy is to build semantic representations that
conform to semantic constraints, when the input sentence
does not. The NLU component takes care of this during the
semantic processing of sentences. When the NLU
component detects that the input violates semantic
constraints, it tries to recover missing structure by
searching for a conceptual link in the “semantic vicinity”
of the concepts that are involved (e.g., angles and sum).
This enables it to deal with cases of metonymy that involve
sets and measures, which together cover the vast majority
of the instances of metonymy we have seen in the corpora.
For example, the following examples can be handled: “the
angles sum to 180”, “vertical angles are equal” and “a
linear pair sums to 180” (double metonymy).

3.3 Classification of Student Explanations
As mentioned, Loom's classifier is used to classify the
semantic representation of explanations with respect to the
system's hierarchy of explanation categories. For example,
the sentence “It's a triangle, so the sum of its angles is 180”
is a complete and correct statement of the triangle sum
rule. The semantic representation of this sentence should
therefore be classified under the category ANGLES-SUM-
OF-TRIANGLE-180-REASON. Let us see how the system
takes care of this.

The NLU component builds the semantic
representation shown in Figure 4. This representation
consists of a number of instances of concepts defined in the
knowledge base. These concepts (ANGLE, TRIANGLE,
etc.) form part of the system's geometry ontology. The two
instances of concept BEING&HAVING shown in Figure 4
correspond to the two clauses in the sentence. The verb “to
be” is represented using an instance of BEING&HAVING
whose attribute and attribuend are the same. One of these
instances is also an instance of the REASON concept.
Since the sentence was given as an explanation of an

Figure 3: Excerpts from the explanation hierarchy, represented
in the system's knowledge base



answer, the NLU component has asserted that it is an
instance of the REASON concept. The other individuals in
Figure 4 correspond in obvious ways to the entities
mentioned in the sentence. The belongs-to link from angle-
1 to triangle-1 reflects the fact that the system has resolved
the pronoun “its”. In order for the Loom classifier to
recognize that an individual is an instance of a concept, this
individual has to satisfy the conditions expressed in the
definition of this concept. The definition, for concept
ANGLES-SUM-OF-TRIANGLE-180-REASON, in
Loom's terminological language, is as follows:

 (defconcept angles-sum-of-triangle-180-reason
 :is (:and reason
            (:some topic
                (:and sum
                       (:the value value-180)
                       (:some term
                           (:and measure
                              (:some measure-of
                                         (:and angle
                                                 (:some vertex-of triangle)))))))))

Translated somewhat loosely into English, the
definition says that an ANGLES-SUM-OF-TRIANGLE-
180-REASON is a reason that says that the sum of some
measure(s) of some angle(s) of some triangle is 180
degrees. This definition relies on a number of other
definitions, such as those of the concept sum and the
relation vertex-of, which in turn rely on other definitions:

 (defconcept sum
  :is-primitive (:and measure

      (:at-least 1 term)
      (:all term measure)))

 (defrelation vertex-of
  :is (:and belongs-to
            (:domain angle)
            (:range polygon)))

Now we are in a position to understand why Loom
classifies instance being&having-2 under concept

ANGLES-SUM-OF-TRIANGLE-180-REASON. As
required by the concept definition, being&having-2 is an
instance of concept REASON. Further, the definition
requires a topic relation. Figure 4 does not show any topic
relations, but attribute and attribuend relations are in fact
defined as topic relations. Finally, individual quantity-1 is
an instance of SUM and satisfies all other restrictions
placed on the value and term relations stated in the
definition of ANGLES-SUM-OF-TRIANGLE-180-
REASON: some term of quantity-1 is a measure of an
angle that belongs to a triangle. Interestingly, that inference
depends on the presence of the belongs-to link from angle-
1 to triangle-1. Without anaphora resolution, this example
would not have been classified correctly.

3.4 Dialogue Management
Currently, the system's response in each dialogue turn is
based only on the classification of the student's last
explanation attempt. No further context is taken into
account. This way, the tutor can respond to the types of
omissions we often see in students’ explanations, and
under the right circumstances can even produce a sense of
coherent dialogue, as illustrated in the example dialogue.
However, because of its simple dialogue management
scheme, the system's range of dialogue strategies is
currently very limited. For example, the system has no
memory of what went on before in the dialogue. If in
successive attempts at explaining a geometry rule, a
student regresses (e.g., types an explanation that was worse
than the previous attempt), the system currently blithely
gives a locally-appropriate feedback message without any
knowledge of the global lack of progress. Similarly, when
the student stagnates (i.e., when consecutive unsuccessful
attempts at explaining a geometry rule are classified under
the same category), the system will simply repeat its
previous feedback message, in spite of the fact that this
message apparently did not help the student. It would be
better if the system would try an alternative approach to
help the student. Finally, the tutor is not able to engage in
multi-turn strategies or to lead students through a directed
line of reasoning, as human tutors often do. This makes it
difficult to have the system engage in such venerable
mathematical strategies as showing counterexamples, when
students (as they tend to do) state overly general rules.

We plan to address these limitations insofar as this
turns out to be necessary in order to help students learn
with greater understanding. It will be necessary to extend
the system so that it maintains a dialogue history. Further,
the system probably needs a dialogue planning mechanism.
We are currently investigating several alternatives
(Freedman, 2000; Heffernan & Koedinger, 2000; Larsson,
et al, 1999). In extending the system, we plan to be guided
by results of frequent preliminary evaluation studies,
adding more sophisticated facilities only when the data
suggest that they are needed. Exactly how far we will have
to push the system's dialogue management is an interesting
open question. Ultimately, our goal is to find out how best
to help students learn through self-explanation.

Figure 4: Semantic structure built by the NLU component
for the input sentence: “It's a triangle, so the sum of its angles
is 180” Ovals denote concepts, rectangles denote individuals,
and underlined text denotes a constant.



4 Preliminary Evaluation
We conducted a preliminary evaluation of the classification
accuracy of the knowledge-based NLU component. As test
data we used a corpus of 648 explanations collected during
a session in which about 20 of our colleagues and staff
worked on the system. All explanations gathered during
this session were labeled by hand by two authors of the
paper, who assigned each explanation to the most specific
category in the explanation hierarchy to which it belongs.
New categories were invented as needed. A total of 92
categories were represented in the data set. The system's
knowledge base was then extended to include definitions
for many of the new categories. The system was run to
classify the 648 explanations.

As shown in Table 2, the system classified 80% of the
explanations correctly. Of the correctly classified
explanations, 80% (420 out of 520) fall under categories of
full or partial explanations. The rest were references,
meaning that the student stated only the name of a
geometry rule. The system classified a further 14% of the
explanations under categories that were too general,
although not strictly wrong. The remaining 6% of
explanations were either not classified or under categories
that were unrelated to the correct category.

An accuracy score of 80% is very encouraging,
especially given the fact that we are dealing with a very
fine-grained classification task, where small differences
between categories are the rule rather than the exception.
There are two caveats. First, the accuracy results were
obtained with a data set that was used during the
development of the system. Second, the data set used was
obtained with subjects who are more advanced than the
students in the target population (high-school students).
More work is needed before we expect to see the same
accuracy score with students from the target population.

5 Opportunities for Multimodal Interaction
Geometry involves both verbal and visual modes of
learning. Geometry tutoring is therefore a very interesting
domain to explore the advantages of multimodal
interaction in an intelligent tutoring system. Multimodal
interaction opens up the opportunity to have the system
alternate between visual and verbal tutoring strategies,
which is likely enhance the system's pedagogical
effectiveness. For example, when students state overly
general explanations (as they tend to do) a multimodal
system could communicate this fact using purely verbal
strategies (such as those illustrated for example in steps 4

and 6 of the example dialogue shown above). But it could
also show diagrams of counterexamples. (“You are saying
that the base angles in a triangle are congruent. But here is
a triangle none of whose angles are congruent.”)

In addition, in a multimodal system students could
alternate between verbal and visual ways of expressing
explanations. While it is plausible that students will learn
with greater understanding as they explain their problem-
solving steps in their own words—the hypothesis that is the
focus of our current research—sometimes it may be more
effective if students explain geometry knowledge with a
picture. For example, instead of saying “the measure of an
angle formed by two adjacent angles is equal to the sum of
the measures of those angles” it may be easier for students
to draw a diagram of two adjacent angles (using a drawing
tool integrated in the tutoring environment) and say:
“whenever you have two angles next to each other like this,
you can sum the two to get the third one”. In deciding how
to follow up on that explanation, the tutor could then
choose between visual and verbal strategies.

Further, it is quite likely that multimodal interaction
will streamline the interaction between tutor and students
and possibly make it more robust (Oviatt, 1999). We plan
to extend our dialogue system to handle dialogue about
problem solving and to handle explanations about how
geometry rules apply to a given problem. We foresee that
much of the student-system interaction will take place in a
diagram window and a dialogue window, rather than in the
worksheet window shown in Figure 1. Both student and
system will freely mix references to geometry objects
expressed in the traditional mathematical way (“angle
ABC”), referring expressions in English (“the segment
perpendicular to the highlighted part”), references
expressed by clicking on the relevant object in the diagram.
It is an interesting question how this kind of multimodal
interaction will influence learning and in particular,
whether students will come away with qualitatively
different knowledge as a result of such interaction.

From an educational/cognitive science point of view,
little work has been done to understand the nature of the
interactions between perceptual and verbal learning
systems. Geometry is an interesting domain to investigate
these interactions. Critical research questions include the
following: To what extent and in what way does an
integrated system of visual and verbal representations
develop and contribute to understanding? Do these
representations provide mutual support in the learning
process? A multimodal system seems an excellent vehicle
to explore such questions.

6 Conclusion
We are working to investigate how an intelligent tutoring
system can best help students learn through self-
explanation. We have developed a prototype tutorial
dialogue system, the Geometry Explanation Tutor, that
helps students state explanations of geometry rules in their
own words and help them improve their explanation
through dialogue.

Table 2: Classification accuracy (number of explanations
classified) of the knowledge-based NLU component

Correct 520 80%
Overly General 91 14%
Incorrect 37 6%

Total 648 100%



Architecturally, we explore the viewpoint that a
system that helps students learn through self-explanation
must have a sophisticated NLU component and can get by
with a less sophisticated dialogue management component.
Thus, we opted for a knowledge-based approach to NLU.
The results of a preliminary evaluation study are very
encouraging. The NLU component produced accurate
classifications for 80% of explanations and produced
somewhat reasonable classifications for all but 6% of
explanations. These results suggest that adopting a
knowledge-based approach to NLU was a good choice.
The system's dialogue management component takes a
simple “classify and react” approach. In each dialogue
cycle, it produces a response based primarily on the
classification of the student's explanation. At times, this
produces reasonable dialogue. However, it is likely that
more will be needed in order to help all  students state
accurate and complete explanations.

We plan to improve both the NLU component and the
dialogue management component. In doing so, we will let
ourselves be guided by the results from further pilot
studies, so as to focus our efforts on adding functionality
that is most likely to make a difference in student learning.
We will conduct an empirical study to evaluate whether
explaining in one's own words is the best way to learn
through self-explanation.
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