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Abstract. We conducted an experiment to test the hypothesis that self-explanation
can be supported more effectively by means of natural language dialog than by
means of menu selection of explanations. The study was carried out in a school in
the Pittsburgh area and involved 78 students, 42 of whom satisfied all requirements.
There was some evidence that students whose self-explanations were supported by
dialog acquired better problem-solving skills than students who selected
explanations from a menu. The evidence however was not sufficient to decisively
confirm the hypothesis. Lessons learned include: it is more difficult for students to
produce accurate free-form explanations than we expected and it may be better to
delay strict requirements on explanation quality for students early in learning. It
might be valuable to increase explanation strictness gradually. Also, knowledge-
based natural language understanding capabilities push on hardware capabilities and
have potentially negative consequences for software useability.

A number of cognitive science studies have shown that self-explanation leads to better leaming
(Aleven & Koedinger, 2002; Bielaczyc, Pirolli, & Brown, 1995; Chi, 2000; Renkl, 1999).
Students who explain worked-out examples, expository text, or their own problem solving
steps to themselves come away with deeper understanding. However, many studies have also
highlighted the fact that it is hard for many students to generate good explanations (Renkl,
1999). Therefore, research is needed to find out how to support self-explanation most
effectively in practical educational settings.

Prompting students to self-explain and to clarify vague explanations helps but may not
be practical in actual classrooms. Further, even when prompted, many students do not
produce good explanations (Renkl, 1999; Wong Lawson, & Keeves, 2002). Explicit instruction
in self-explanation strategies (e.g, Bielaczyc, Pirolli, & Brown, 1995) is likely to have some
effect, but more continued guidance may be needed than can be offered by such an instructional
program. Interactive leaming environments (ILEs) may offer such guidance and scaffolding
Aleven and Koedinger (2002) showed that adding a simple form of support for self
exp lanation to an existing Cognitive Tutor for geometry problem solving helps students leam
with greater understanding. Conati and VanLehn (2000) investigated the effectiveness of more
extensive support for self-exp lanation in the context of example studying,

The role of natural langnage in leaming with ILEs is an area of active research. Some
researchers commenting on the remarkable effectiveness of human one-on-one tutors have
hypothesized that natural langrage dialog is thekey to this effectiveness. A few systems have
been built that interact with students in natural langiage or to some degree mimic the discourse



of human tutors. Although some attempts are being made to compare these systems to ITSs
without natural langiage capabilities, no one to our knowledge has yet shown a clear
instructional benefit for such capabilities.

It seems likely that students will leam more effectively if they self-explain in ther own
words, rather than by means of a structured user interface with menus and templates, such as
those employed in the systems described above. First, natural langiage is natural. There is no
need to leam a new user interface. Second, when students explain in therr own words, this
makes it easier to build on their partial knowledge. Students can express what they know and
the tutor may help them fill in what they do not know, thus providing more targeted
scaffolding Third, articulation may force attention to relevant features to a greater degree than
explaining by means of a structured interface. Finally, when students explain in ther own
words, they are less likely to have problems with jargon or unfamiliar terminology.

However, a number studies with ILEs that prompt for self-explanations in natural
langnage without providing students with feedback on ther explanations have yielded mixed
results on the key variable of increased leaming. Aleven and Koedinger (2000) found that
prompts for self-explanations are not very effective in the absence of feedback on explanations.
Students often ignored the prompts and produced very few good explanations. Hausmann and
Chi (2002) found that a simple prompting system that does not provide feedback can help
increase the number of self-exp lanations generated by students, as compared to the number of
self-explanations typed spontaneously into a text editor, but they found also that students
produce considerably fewer self explanations when they type than when they explain orally.
Trafton and Trickett (2001) found that adding an on-line notepad to an interface for on-line
problem solving helps performance and leaming in an abstracted scientific reasoning task,
relative to a system without a notepad, even in the absence of feedback,. The studies by Renkl
(2002) and Schworm and Renkl (2002) showed that providing either instructional exp lanations
or prompts is useful in the context of example studying (although providing both is
detrimental), again in the absence of feedback. But Renkl also reported that there were
significant individual differences and that many students were not effective exp lainers. We are
not aware of any studies that have contrasted self-explanations in menus with self-explanations
in natural langiage.

In the current research, we explore the hypothesis that self-explanation with an ILE is
most effective when students explain in their own words, rather than through menu selections,
and the system guides them in constructing good explanations by means of dialog. We have
developed a tutorial dialog systems that supports self-explanation, by means of a restricted
form of tutorial dialog, in the context of geometry problem solving. The paper reports on an
evaluation study of the system.

The Geometry Explanation Tutor

The Geometry Explanation Tutor was built on top of an existing Cognitive Tutor (Anderson,
Corbett, Koedinger, & Pelletier, 1995) for geometry problem solving, the Geometry Cognitive
Tutor™, This tutor is an integrated part of a fulkyear high-school curriculum for geometry.
The combination of the Geometry Cognitive Tutor and curriculum has been shown to be better
than traditional geometry classroom instruction (Koedinger, Corbett, Ritter, & Shapiro, 2000).
The tutor and the curriculum are being marketed commercially and are in use in about 100
schools in the United States (see http://www carnegelearning.com).

Like all Cognitive Tutors, the Geometry Explanation Tutor assists students in solving
problems: it follows students in their own individual approaches to problems, providing hints



and feedback on students’ solution steps and selecting problems on an individual basis
(Anderson, et al., 1995). In addition, the Geometry Explanation Tutor provides support for
self-explanation. It requires that students provide general explanations, in ther own words,
entered via the keyboard, for theirr problem-solving steps. The tutor helps them, through a
restricted form of dialog, to improve ther explanations and to arrive at explanations that are
(close to) being mathematically precise. For example, when a student types “anges in a triangle
are 180", the tutor replies with “is each angle in a triangle 1807 The student might reply
“anges in a triangle sum fo 180,” which would be accepted by the system as a correct
explanation (Aleven, Popescu, & Koedinger, 2001; 2002). Dialog capabilities have been
imp lemented for one of the six units that make up the curriculum of the Geometry Cognitive
Tutor, namely, the Angles unit, which deals with the geometric properties of angles.

The architecture of the Geometry Explanation Tutor has been described elsewhere
(Aleven, Popescu, & Koedinger, 2001), so here we provide only a brief overview. The
architecture has two main components, a Cognitive Tutor component, which is largly the
same as the existing Geometry Cognitive Tutor on which the Explanation Tutor was built, and
a knowledge-based natural langrage understanding (NLU) component. The NLU component
evaluates students’ explanations and provides feedback on their quality. Each student utterance
1s assumed to be an attempt to state a geometry ruleand is processed in three steps: First, the
system’s natural langiage understanding (NLU) component parses the utterance and builds a
representation of its semantic content, using the LCFLEX left-corner chart parser (Ros¢ &
Lavie, 1999) and the Loom description logic system (MacGregor, 1991). The semantic
representation is then classified, by Loom’s classifier, with respect to a fine-grained set of
categories of student explanations, including correct, incorrect, and incomplete exp lanations.
For example, category ANGLES-OF-TRIANGLE-180 represents all statements that mean
“theangles in a triangle are 180,” which is an incomplete statement of the triangle sum theorem.
Each category is defined by a statement in Loom’s terminological langiage. Finally, the system
provides detailed feedback, based on the set of categories under which the explanation is
classified. Each category is associated with a number of increasingly more directed feedback
messages. The system selects the category that is closest to being a correct explanation and
gives the next message associated with the selected category.

An Evaluation S tudy

We conducted a study to evaluate how natural langiage self-explanation supported by dialog
compares to a simpler form of computer-supported self-explanation, namely, self-explanation
“by reference”. In this approach, students explain ther problem-solving steps by giving the
name of a geometry rule (theorem or definition) that justifies the step. They can type the name
or select it from an on-line Glossary of geometry knowledge. Although simple, this control
condition is no strawman: it was shown to be better than problem solving with a Cognitive
Tutor that does not support self explanation (Aleven & Koedinger, 2002), which in turn had
been shown to be better than classroom instruction (Koedinger, et al., 2000).

The study took place in the context of a regular Cognitive Tutor Geometry course in an
urban school. The participants came from among 88 students taking this course, three class
periods of two different teachers. The students in one of these class periods were honors
students, meaning that they were among the best of therr year in the given school in terms of
academic merit and diligence. At the start of the experiment, 10 students had already started to
work on the Angles unit as part of their regular instruction and were therefore excluded from
the experiment. The remaining students were assigned to two conditions, “Dialog” and “Rule



Reference”. We wanted to make sure that about equal numbers of students of each teacher
were assigned to each condition. Further, to the extent possible, we wanted to avoid assigning
students in the same class period to different conditions, in order to avoid complaints from
students that they had to do more work than ther peers (which in fact was not the case).
Thus, for the teacher who taught two of the three participating class periods, each period was
assigned to one condition. The students in the remaining class period, which was taught by the
other teacher and involved the honors students, were assigned randomly to the conditions.

All students took an in-class pre-test. They then worked on the Angles unit, the
students in the Dialog condition using a tutor version with the dialog capabilities described
above, the students in the Rule Reference condition a version that supports Explanation by
Reference. These tutor versions were the same in almost all other respects. Both tutor versions
employed a time limit of 7 hours for the Angles unit, with idle time factored out. Since the
work on the tutor was self-paced, each student started and finished ther work on the
Explanation Tutor at a different time. A considerable number of students in both conditions
worked on the Angles unit a second time, prior to the post-test. They did so using the regular
Geometry Cognitive Tutor, which was used throughout the year as part of the regular
geometry instruction. This tutor is practically identical to the Explanation by Reference
version used by Rule Reference condition. This extra work on the Angles unit was not planned
and may have been due to a miscommunication between the teachers and the experimenter, or
other reasons. Finally, the students completed a post-test, again administered in class.

The pre-test and post-test included a number of different types of items. The “Answer”
and “Reason” items were similar to the items students encountered during their work with the
tutor: They were asked to compute unknown angle measures in a diaglam and to explain their
answers by giving a statement of an app licable geometry theorem or definition. In addition, the
tests included transfer items of different types, intended to measure students’ level of
understanding as well as ther skill in dealing with mathematical text. In some test problems,
the students were asked to judge whether there was enough information to find unknown angle
measures. At the post-test, if the measure could not be determined, the students were asked
also to indicate what additional information would have enabled them to find it. These items
test students’ understanding, since superficial strategies such as “if angles look the same, their
measures are the same,” which may achieve some level of success on Answer items, are likely
to lead students to wrong answers when insufficient information is available. Items for which
there was not enough information, as well as the explanations of such items, we call “Not
Enough Info” items. Items for which there was sufficient information were grouped with the
Answer and Reason items. Finally, as a test of students’ ability to interpret mathematical text,
the post-test included “Verbal” items in which students were presented with a general
statement about geometry and were asked to indicate if the statement was true or false and, if
false, either to correct the statement or to draw a diagram exp lainingwhy it was false.

Given the hypothesis that tutored self-explanation in students’ own words leads to
greater understanding and to greater proficiency in expressing mathematical ideas, one expects
to see better performance of students in the Dialog condition on the transfer items (i.e., the Not
Enough Info and the Verbal items) as well as the Reason items. The effect on Answer items is
more difficult to predict. Greater understanding due to self-explanation in one’s own words is
likely to manifest itself in better performance on these items. But explaining items in one’s
own words takes more time than selecting references from a menu, resulting in less practice on
Answer items. We predict (without a complete theoretical basis) that “less is more” and that
students who explain in theirr own words will do better on Answer items.



Table 1: Ondine measures of the interactions that students had with the Geometry Explanation Tutor

Condition Time #. of # of # of Answer Reason Answer Reason
(mins) Pro- Answer Reason Time Time %Cor- %Cor-
blems Steps Steps (mins) (mins) rect rect
Dialog 398 34 77 76 130 220 59 75
Rule Reference 396 54 174 174 206 120 57 65
Results

Of the 78 students who participated in the experiment, 51 completed both the pre-test and the
post-test. Of these students, 42 worked on the experimental tutor for at least two-thirds of the
required 7 hours (i.e,, 280 minutes), 21 in each condition. In the remainder of the paper, we
present theresults of these 42 students. As shown in Table 1, the students in both conditions
worked on the exp erimental tutor for about 400 minutes (idle time factored out). The students
in the Dialog condition worked an additional 107 minutes on the Angles unit the second time
around, the students in the Rule Reference condition 122 minutes. As expected, the students
in the Dialog condition spent more time exp laining steps (Reason Time) and less time finding
unknown angle measures (Answer Time) than their peers in the Rule Reference group. They
completed fewer problems and fewer Answer and Reason steps, yet in spite of the lesser
amount of practice, they performed slightly better on the Answer steps and considerably
better on the Reason steps than the students in the Rule Reference condition. (In the Rule
Reference tutor, many problems had multiple questions and therefore had more steps.
Therefore, there were more steps per problem in the Rule Reference condition.)

To compare the leaming gains between the two conditions, we ran an ANOVA on the
test scores, shown in Figure 1, with two levels of repeated measures, Test Time (pre v. post),
and Item Type (Answer, Not Enough Info, and Reason), and with Condition as independent
factor. The Verbal items are not included in the current analysis, since we do not have repeated
measures for these items. There was a significant main effect of test time (F(140) = 27.3, p <
.0001), with students’ test scores increasing from pre-test to post-test. There was a significant
main effect of Item Type (F(2,80) = 22.7, p <.0001) and a significant interaction between Item
Typeand Test Time (F(2,80) = 26.9, p <.0001). At the post-test, the students did best on the
Answer items, while at the pre-test the students did best on the Not Enough Info items. There
was a significant interaction between Condition and Test Time F(2,80) = 6.9, p =.012), with
students in the Rule Reference condition having higher pre-test scores, and students in the
Dialog condition doing better at the post-test. There was also a significant interaction between
Condition and Item Type (F(2,80) = 11.3, p < .0001), with the Dialog condition doing better
on Answer and Reason items and the Rule Reference Condition doing better on Not Enough
Information items. The Rule Reference condition also did better on the Verbal items.

Discussion

It is tempting to interpret the significant Condition by Test Time interaction as strong evidence
that students who self-explained in their own words leamed more than students who explained
by selecting references from a menu. However, there is reason to be cautious in interpreting
these test results. First, the interaction was observed with a subset of the test items. The
Verbal items were not included, since we did not have repeated measures for these items. If we
consider all items, including the Verbal items, the advantage of the Dialog condition may be
smaller than suggested by the 2x2x3 ANOVA, since the Rule Reference group did better on the
Verbal items than the Dialog group. Second, the pattern of results
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Figure 1: Test scores by Item Type for the 42 students in the sample

related to the different types of test items is different fromthat which we expected to see. It is
difficult to explain this pattern in terms of the underly ingknowledge components that students
may have acquired. The greatest advantage of the Dialog condition was observed on the items
for which we expected to see the smallest advantage, namely, the Answer items. Possibly, this
advantage indicates that the students in the Dialog condition acquired better problem-solving
knowledge, for example, stronger declarative knowledge whose visual and verbal components
were better integrated (see also Aleven and Koedinger, 2002). However, that same knowledge
would also give an advantage on the other types of test items, which was not observed in the
data. In particular, contrary to our expectations, the Dialog condition did not have a clear
advantage with respect to the Reason items and Verbal items. Possibly this lack of advantage is
dueto that the students in the Dialog condition may have tried, but only partially successfully,
to provide correct and complete statements of geometry rules, as they had done during their
training. The students in the Rule Reference condition, on the other hand, may have ignored the
instructions given on the test form and, also following what they did during traming, provided
only the name of the geometry rule. This strategy may well be an easier way to get partial
credit. The data provide some support for this interpretation: At the post-test, there were
more references to rules in the Rule Reference condition (2.9 v. 1.4 per student), whereas in the
Dialog condition there were more attempts at stating a geometry rule (0.67 v. 0.33), although
the number of attempts was low in both conditions. Further, there were very few complete
and correct exp lanations at the post-test (Dialog: 6.2%, Rule Reference: 4.3%), confirming that
explainingis hard and perhaps reflecting the limitations of the copying strategy employed by
students during ther work with the tutor. A third way in which the pattern of test scores
deviates from the expectations is that the students in the Rule Reference condition did better
on the Not Enough Info items and that ther pre-test scores for these items were unusually
high—higher for examp le than the corresponding post-test scores. It is difficult to explin why
this might be so, except perhaps if students consistently wrote “No” for all items of which
they were asked to judge whether there is enough information. The data provide some evidence
to support this exp lanation: Students in the Rule Reference condition were 3 times more likely
to write “No” on items where there actually was enough information. Be that as it may, if the
high pre-test scores in the Rule Reference condition on the Not Enough Info items are
somewhat of an anomaly, this means that the difference between the conditions may appear
larger than it should have. Thus, we feel compelled to conclude that the data do not fully
confirm the hypothesis that natural langiage self-explanation is superior to explanation by
reference, although they certainly do not disconfirmit either.



Although it is rather remarkable that the sy stem was used in an actual classroom over an
extended period of time, there was a sense that the students were struggling somewhat as they
were using the Geometry Explanation Tutor, perhaps not always in productive ways.
Providing mathematical exp lanations is hard—we are begmnning to appreciate exactly how hard.
The students very frequently did not try to provide an explanation in ther own words, but
rather, looked up therelevant rule in the system’s on-line Glossary of geometry knowledge and
copied the text found there. This strategy no doubt explains the high correctness rate on the
Reason steps in the tutor, shown in Table 1. We had not observed this strategy in a previous
pilot study in a different school, perhaps dueto better-prepared students (Aleven, Popescu, &
Koedinger, 2002), or perhaps to the teachers’ encouragingstudents to use the Glossary to look
up geometry rules in the context of Answer steps. It is likely however that copying is not as
conducive to leaming as trying to state a rule in one’s own words. Further, the system
sometimes appeared overly picky to the students and teachers. Its feedback, aimed at
communicating gaps in students’ geometry knowledge, was not always helpful in getting
students to fix typos in explanations that they copied from the Glossary. Further, the
system’s response times were sometimes rather long which was frustrating to some students.
The long response times may have had the positive side effect of forcing students to be
deliberate when typing explanations, which may be an addiional reason for the high
correctness rate on exp lanations.

Some of these difficulties relate to aspects of human-computer interaction (HCI). At
least some of the explanations currently required by the system are difficult and may not be
within the students’ zone of proximal development, or if they are, may require too much
cognitive effort. For example, it is difficult for many people to state the angle addition theorem
in words: “the measure of an angle formed by adjacent angles is equal to the sum of the
measures.” One of the teachers commented that the explanations expected from the students
are too far removed from the way in which they usually talk about geometry, although
somewhat ironically, the langnage that the system requires is the same langiage that the
students are supposed to understand, such as that found in textbooks. The system requires
explanations that are fairly close to being mathematically precise, because precision of
expression is an instructional objective in mathematics. However, perhaps one should not
expect too much too soon from students. Perhaps the system should initially accept
exp lanations that identify critical features of the problem, even if they are not mathematically
precise and then gradually tighten its criteria for correctness. For example, initially the system
might accept explanations of the angle addition theorem such as: “you can sum angles that lie
next to each other” or even “sum the smaller angles to get the bigger angle”. It might help
students improve these explanations (e.g, “What is the term for angles that lie next to each
other?”) without insisting that students immediately go all the way to the statement of the
angle addition shown above. We plan to work with teachers to explore this possibility further.

Other difficulties seemrelated to the system’s dialog and natural langiage understanding
capabilities. The system’s feedback was not always helpful in fixing copying errors, as it was
designed to give feedback at the level of geometry understanding. The system corrects spelling
errors and is quite robust in the face of sloppy grammatical langiage, but it is not able to
provide feedback when its analysis fails due to grammar errors or typos that it cannot
correct/ignore (e.g, duplicated words, wrong propositions such as “on” instead of “of”, etc.).
Further, the system did not always respond quickly to explanations by entered by students.
We are working to address these problems, by changing the parser somewhat and by adding a
“semantic repair mechanism.”



In sum, our evaluation study produced limited evidence to support the hypothesis that
natural langiage self-explanation is superior to explanation by reference, but does not
conclusively confirm the hypothesis. The hypothesis however remains plausible and we plan
to test it in further experiments. As we are improving the system, we find ourselves more and
more involved in the HCI aspects of self-explanation, such as making sure that the exp lanation
quality required by the system is appropriate for the leamer’s level of competence.
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