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This article explores

handwriting

recognition-based

interfaces in

intelligent tutoring

systems for students

learning algebra

equations.

M
athematic skills are essential

not only for those wanting

successful careers in sciences

or engineering but also for

nonscientists using equations in daily life. For

example, a stay-at-home dad might need to

use simple algebra skills to figure out his

monthly budget. Despite this clear need,

algebra is typically one of the subjects where

students struggle the most. Our project aims to

improve student performance and engage-

ment in algebra via intelligent tutoring sys-

tems (ITSs) that accept natural handwriting

input (see Figure 1).

Many schools throughout the US now

incorporate computers, including PDAs or

tablet PCs, and ITSs as a regular part of

classroom instruction.1 An ITS is educational

software that can monitor the student as he or

she works at his or her own pace, and tailor

feedback, step-by-step hints, and even the

curriculum to address a student’s particular

needs. This self-pacing provides an opportuni-

ty for teachers to give more individual atten-

tion to students who need it most. One

particular type of ITS, Cognitive Tutors, is

quite successful in the classroom. When

compared to traditional classroom instruction,

Cognitive Tutors raise student achievement

one standard deviation,2 turning C students

into B students. Our goal is to improve

mathematics learning in Cognitive Tutors

even further via multimodal- and multime-

dia-interface technologies, turning those B

students into A students.

A user interface bridges information ex-

changes between a student and an ITS.

Different modalities in interface input and

output can significantly affect ITS efficiency.

Input modality here refers to the modality of

generation by the student, while the output

modality is the modality presented to the

student by the system. Although output

modality has been studied with respect to

learning, including the use of animations,

diagrams, and talking heads,3 little attention

has been paid to the effect of input modality

on learning. Most ITSs rely on standard menu-

based GUIs. We believe that the input modal-

ity is extraneous to the problem-solving

process, as it is not relevant to the math

concept being practiced. However, the input

modality can interfere with learning by im-

posing an extraneous cognitive load on the

student—that is, mental effort not directly

related to the learning process. Text- and

menu-based interfaces are especially guilty of

putting an additional burden on the student

because they provide only cumbersome sup-

port for representing and manipulating math.

An interface that can more directly support

the standard notations for mathematics that

the student is learning could reduce extrane-

ous cognitive load and increase learning.

We have developed and tested a prototype

ITS that uses handwriting input for teaching

algebra equations. Our latest results show that

handwriting input has benefits both for gen-

eral usability and for learning. Although this

work is in the domain of high school algebra

learning, it’s likely to generalize to other types

of math and to other levels of students.

Motivation and approach

In many courses, teachers supplement

traditional education strategies with software

tutors. Math is one domain in which tutoring

systems can help; a recent survey found that

high school students in the US have a poor
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mastery of basic math concepts compared to

their counterparts in other industrialized na-

tions.4

There is evidence that using handwriting

interfaces could offer benefits in math learning

environments.5,6 One benefit might come from

more direct manipulations of pen-based input.

Another factor is the improved support for

meaningful 2D spatial information in math. For

example, the placement of the x in 2x versus 2x

significantly changes the meaning of the expres-

sion. Handwriting is more flexible and robust

than typing or pointing for representing and

manipulating such spatial relationships.5

Because handwriting recognition is not per-

fectly accurate, there is a trade-off between

improving recognition accuracy and the need

for detailed instructional feedback. One strategy

is to modify the instruction paradigm. For

example, during worked-examples-based instruc-

tion, a common instructional method, students

study example problems with the solutions

provided before solving their own problems.7

Advance studying gives the student a low-risk

opportunity to practice the problem-solving

concepts he or she is about to solve on his or

her own. Such a feed-forward approach perhaps

would reduce the need for detailed instructional

feedback at each step, allowing the system to

delay providing a recognition hypothesis until

more information is available. Figure 1 shows the

type of annotated worked examples we use in our

tutor.

A second strategy is to improve handwrit-

ing recognition accuracy. Our current proto-

type achieves a representative best a priori

recognition accuracy by training the recogniz-

er on a large corpus of handwriting samples

from different users from the target population

(middle and high school math learners). In

addition, due to the special nature of a

learning task and the needs of a learner,

students might not require the system to

immediately output a recognition hypothesis.

Students are not so much interested in what

the tutor thinks they wrote as in whether what

they wrote was the correct answer. If the

students must spend significant time correct-

ing the system’s recognition, we have merely

exchanged one type of cognitive load for

another, and might not see any differences in

learning. The tutoring system can provide the

student with other forms of information (such

as worked examples) to alleviate reliance on

this type of recognition feedback and provide

the recognition engine with more informa-

tion—such as the problem’s context or knowl-

edge about the student’s skills—prior to the

end of the problem.

A fundamental goal of this project is to

determine how the use of handwriting input

will help student learning. As part of our

affiliation with the Pittsburgh Science of Learn-

ing Center (PSLC), we began to emphasize in

vivo studies after some preliminary laboratory

explorations. In vivo studies take place in a real-

world classroom setting in which the experi-

mental system is compared to an authentic

control condition. The participating class-

rooms use the Cognitive Tutor curriculum for

algebra all year; only some classes or students

switch to the experimental system during the

study. This approach represents an emerging

trend in educational research.8,9 Being part of

the PSLC provides us with the unique opportu-

nity of conducting real-world, applied studies

and seeing the experimental software and

technology used in the field.

Current prototype
We have developed a prototype system that

uses a foundation of state-of-the-art ITS and

handwriting recognition components. Cogni-

tive Tutors are a class of ITS that pose

authentic problems to students and emphasize

learning-by-doing.10 In Cognitive Tutor Alge-

bra, students represent a given scenario alge-

braically in a spreadsheet or with graph

functions and solve equations with a symbol-
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Figure 1. A screenshot

of our current

prototype system

illustrating the use of

worked-examples-

based instruction and

handwriting input.
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manipulation tool. The tutor can provide step-

by-step feedback and help. Our prototype adds

a handwriting interface to already-existing

Cognitive Tutoring Algebra lessons that have

been field-tested extensively.

Figure 1 shows a screenshot of our system

in which the student is solving the problem

22.02 + (24.11x) 5 211.99 by referring to the

worked example on the left side of the screen.

The student enters his or her solution process

in handwriting and types his or her final

answer in the text field at the bottom of the

screen. The Cognitive Tutor Algebra curricu-

lum has several equation-solving units. We

can deploy our prototype for any of these

units. Some problem types we use include ax +
b 5 c, x/a + b 5 c, a/x 5 c, ax + bx 5 c, ax + b 5

cx + d, and so on.

The recognizer we use is the Freehand Formula

Entry System (FFES).11 Rather than developing a

robust recognizer from scratch, our approach can

blaze a trail for using handwriting engines in

more real-world applications without requiring

expert skill in recognition algorithms. We chose

FFES because it was open source and had the

highest accuracy rates in training experiments on

our corpus when compared with several other

state-of-the-art recognizers, such as JMathNotes12

and Microsoft’s tablet PC software developer’s

kit (see http://msdn2.microsoft.com/en-us/

developercenters/default.aspx). FFES uses the

California Interface Tools character recognizer, a

nearest-neighbor classifier based on a 48-dimen-

sional feature space. FFES also uses a mathemat-

ical expression parser (Draculae).13 The main

advantage of this handwriting system over other

engines is that this parser is designed to be

effective for the spatial relationships between

mathematical symbols and numbers.

In recognition terminology, writer-inde-

pendent means that the system or engine has

been trained on samples from several different

users, in contrast to writer-dependent, which

means the training samples come from the

same person who will be using or testing the

system. In general, writer-dependent accuracy

rates are higher than writer-independent rates

because differences in handwriting (or speech)

vary more widely across users. But a writer-

dependent system requires more training

samples from each individual user. In learning

environments, it’s a hard sell to teachers to

take class time for students to train the system

with no learning objectives. On the other

hand, it’s difficult to embed the handwriting-

training task into learning-oriented tasks be-

cause the system cannot provide adequate

feedback on the learning aspects without good

a priori recognition accuracy. Therefore, we

attempt to improve recognition without up-

front training for each user.

To train the recognizer and achieve the best

a priori accuracy before incorporating it into

the tutoring system, we collected a corpus of

data from over 40 high school and middle

school algebra students. The corpus contains

16,191 characters grouped into 1,738 equa-

tions. The symbol set includes 21 symbols: the

digits, common variable letters, and simple

algebraic operators. We have, on average, 404

samples per user (an average of 17 samples per

symbol, per user). In addition to collecting this

corpus, we studied strategies for training the

recognizer. Although the best accuracies ob-

tained, about 91 percent, were writer-depen-

dent, when working in a classroom, we must

bring in the best system possible out of the

box, which means training in advance on

other students’ handwriting samples. Our

experiment results indicate that ensuring an

equal representation of each training user’s

handwriting will prevent the system from

having a bias toward a particular style of

writing when a new student uses the system.

Each of 40 users had to write just two samples

per symbol to converge to best a priori

accuracy, averaging 83 percent on individual

symbols or 71 percent on full equations

(accuracy on full equations was determined

via Levenshtein’s string distance formula).14

Very few samples per symbol, per user, are

needed in this training method to achieve

reasonable out-of-the-box performance.

User evaluations

Our first study explored what advantages, if

any, handwriting-based input offered for math

input on the computer.5 Forty-eight college-

level students entered given algebra and

calculus equations on the computer over the

course of 45 minutes in several modalities,

including typing via Microsoft Equation Editor

and handwriting. In this study, we used no

handwriting recognition; our aim was to

determine what the raw usability of each

modality would be in this task without the

interference of individual system nuances. The

study showed that students who entered math

66

IE
E
E

M
u

lt
iM

e
d

ia

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 13,2010 at 15:27:24 UTC from IEEE Xplore.  Restrictions apply. 



equations via handwriting input were three

times faster, were less prone to errors in input,

and enjoyed their experience more than those

who typed.5 In the classroom, this can trans-

late to increased depth or breadth of coverage

by virtue of the extra time afforded, and to

improved student motivation by virtue of

their increased engagement.

Next, we applied handwriting-based input

to a learning situation.6 In this study, we

compared a simple type-in interface with a

handwriting input space. Both the typing and

the handwriting interfaces were simple, un-

structured, and unconstrained input spaces.

We provided no special-purpose math menus

or widgets in either case. The 48 participants

each came to our lab for a two-hour session.

Results from this study showed that students

using handwriting finished the learning ses-

sion in half the time of their typing counter-

parts, yet we found no difference in their

learning. In a classroom situation, this method

would allow teachers to give students more

practice or move on to more advanced mate-

rial in the curriculum more quickly.

The speed benefits of handwriting only

increased as the problems got more complex,

as in problems with fractions, for example. In

their own words, students commented that

handwriting ‘‘made it easier’’ and ‘‘took a

shorter time’’—statements that lend support to

the hypothesis that handwriting involves less

cognitive load. Handwriting also emerged as the

winning modality in terms of user preference.

All students were exposed to both modalities in

a second phase of the study. As the pie chart in

Figure 2 shows, students showed a strong

preference for handwriting. Out of 46 total

students, over 80 percent preferred handwriting.

Conclusions and future work

Our work in adapting, deploying, and testing

handwriting-based interfaces in ITS for algebra

equation solving is ongoing, and so far has

provided positive evidence in favor of hand-

writing interfaces for learning applications.

(Some further technical details can be found

elsewhere.15) Students can learn the same

amount in half the time using handwriting

input versus typing-based interfaces. In addi-

tion, the decrease in extraneous cognitive load

allows students to focus more directly on the

mathematics and finish their work with a

deeper understanding of the material.

We will continue to evaluate new versions

of our prototype in classroom studies. Our

next steps involve exploring other strategies

for enhancing recognition accuracy. Once

these enhancements are in place, we will

compare the handwriting-based tutor to the

standard Cognitive Tutor classroom practice,

focusing on differences in learning and cogni-

tive load. This work should help shed light on

how to design instructional paradigms that

can take advantage of the benefits of hand-

writing input for learning.

In addition to studying handwriting

input, we are considering using speech

input for error correction. Systems perform

more effectively when the modality of repair

is different from the modality of entry, in

part because users tend to over-enunciate (in

speech) or trace heavily (in writing).16 Speech

seems to be a logical option because it can be

highly accurate when the symbol vocabulary is

minimal, and because it doesn’t require that

students return to the keyboard. Furthermore,

it could be pedagogically effective to allow

students to self-explain their problem-solving

process in speech as they write. We are also

considering using multimedia output for our

ITS. Our system can present to students

animated diagrams helping to explain the

problem-solving process when the student

needs a hint. Mayer’s work exploring the

principles of multimedia learning serves as

design guidelines for including multimedia

output.3

As we mentioned, while this project focuses

on high school algebra, it’s likely to generalize

to other types of math and to other levels of

students. Our future efforts in this line of work

will explore other domains, such as calculus,

geometry, and physics, which rely even more

heavily on spatial information in annota-

tions. MM
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Figure 2. Pie chart

distribution of

students’ preferences

for each input

modality tested in the

study. The majority of

students chose one of

the two conditions in

which handwriting

was offered.
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