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Abstract. Building a generalizable detector of student behavior within 
intelligent tutoring systems presents two challenges: transferring between 
different cohorts of students (who may develop idiosyncratic strategies of use), 
and transferring between different tutor lessons (which may have considerable 
variation in their interfaces, making cognitively equivalent behaviors appear 
quite different within log files). In this paper, we present a machine-learned 
detector which identifies students who are “gaming the system”, attempting to 
complete problems with minimal cognitive effort, and determine that the 
detector transfers successfully across student cohorts but less successfully 
across tutor lessons.  

1   Introduction and Prior Work 

In the last couple of decades, there has been considerable work in creating educational 
systems that adapt to their users – offering help and feedback targeted to a student’s 
specific cognitive or motivational needs. However, just as educational systems can 
adapt to their users, users can adapt to their educational systems, sometimes in ways 
that lead to poorer learning [2,5]. For instance, students who game the system, 
attempting to perform well in an educational task by systematically exploiting 
properties and regularities in the system used to complete that task, rather than by 
thinking about the material, learn less than other students [2]. Examples of gaming 
include systematic guessing, and repeatedly requesting help until the system gives the 
answer. It may be possible to substantially improve learning environments’ 
educational effectiveness by adapting to how students choose to use the learning 
environment. In order to do this, we need to be able to detect when a student is 
selecting strategies that lead to poorer learning.  

In [1], we presented a Latent-Response Model [4] that accurately detected if a 
student was gaming the system, within a specific tutor lesson, cross-validated across 
students in 4 classes. This model distinguished “GAMED-HURT” students who 
gamed the system in a fashion associated with poor learning both from students who 
were never observed gaming, and from “GAMED-NOT-HURT” students who gamed 
in a different fashion not associated with poor learning. The model did so by first 
predicting whether each individual student action was an instance of gaming (using 
tutor log files), and then aggregated these predictions to predict what proportion of 
time each student was gaming (comparing the predicted proportions to data from 
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classroom observations). The classifier’s ability to distinguish gaming was assessed 
with A' values, which give the probability that if the model is given one gaming 
student and one non-gaming student, it will accurately identify which is which [3].  

A model in this framework consists of features selected from linear, quadratic, and 
interaction effects on a set of 26 base features describing a student action (for 
instance, what interface widget it involved and how long it took), and its historical 
context (for instance, how many errors this student made on this skill in past 
problems). The model presented here improves on the model reported in [1] in three 
fashions: First, by adding two features to the set used in [1], in order to represent 
asymptotic skills (which students on the whole either knew before starting the tutor, 
or failed to learn while using the tutor). Second, by switching from using forward 
selection to select model features to testing a set of search paths constrained by fast 
correlation-based filtering [6] (in both cases, Leave One Out Cross Validation was 
used to prevent over-fitting). Third, by switching from treating both types of gaming 
as identical during training to training to detect just GAMED-HURT students, 
considerably improving our model’s ability to distinguish between types of gaming, 
∆Z=6.57, p<0.01. After these changes, our model was significantly better than chance 
at distinguishing GAMED-HURT students from non-gaming students (within the 
original classroom cohort and lesson), A' =0.85, p<0.01, and at distinguishing 
GAMED-HURT students from GAMED-NOT-HURT students, A' =0.96, p<0.01. 

Though this detector is effective within a single population and tutor lesson, it will 
be more useful if it can generalize across student populations and cognitive tutor 
lessons (or even across types of interactive learning environments).  There appear to 
be multiple ways to game a given system, and we have observed students teaching 
each other new strategies for gaming – therefore, different cohorts of students may 
game differently. Similarly, different tutor lessons often have different patterns of 
interaction, because of differences in subject matter. In this paper, we present work 
towards detecting gaming in a fashion robust to differences between tutor lessons and 
classroom cohorts, through analyzing how well a model trained on one population or 
lesson transfers to other populations and lessons, and how the features that correlate 
to gaming differ across data sets.  

2   Detecting Gaming Across Classroom Cohorts 

In this section, we discuss how well our detector transfers between our original 
student cohort (termed the 2003 cohort) and a newly recruited cohort of students 
(termed the 2004 cohort). At a surface level, the two cohorts were similar: both were 
drawn from students in 8th and 9th grade non-gifted/non special-needs cognitive tutor 
classrooms in the same middle schools in the suburban Pittsburgh area. However, our 
observations suggested that the two cohorts behaved differently. The 2004 cohort 
gamed 88% more frequently than the 2003 cohort, t(175)=2.34, p=0.02, but a lower 
proportion of the gaming students had poor learning, χ2(1, N=64)=6.01, p=0.01. This 
data does not directly tell us whether gaming was  different  in  kind  between  the two 
populations – however, if gaming differs substantially in kind between populations, 
two populations as different as these are likely to manifest such differences, and thus 
these populations provide us with an opportunity to test whether our gaming detector 
is robust to differences between distinct cohorts of students. 
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Table 1. Our model’s ability to transfer between student cohorts. Boldface signifies both that a 
model is statistically significantly better within training cohort than within transfer cohort, and 
that the model is significantly better than the model trained on both cohorts 1

Training 
Cohort 

G-H vs no game, 
2003 cohort 

G-H vs no game, 
2004 cohort 

G-H vs G-N-
H, 
2003 cohort 

G-H vs G-N-H, 
2004 cohort 

2003 0.85 0.76 0.96 0.69* 

2004 0.77 0.92 0.75 0.94
Both 0.8 0.86 0.85 0.85

The most direct way to evaluate transfer across populations is to see how 
successfully the best-fit model for each cohort of students fits to the other cohort. As 
shown in Table 1, a model trained on either cohort could be transferred as-is to the 
other cohort, without any re-fitting, and perform significantly better than chance at 
detecting GAMED-HURT students (marginally significantly better at distinguishing 
them from GAMED-NOT-HURT students in the 2004 cohort; significantly better in 
all other comparisons). However, in 3 of the 4 comparisons, the models were 
statistically significantly better in the student population within which they were 
trained than when they were transferred to the other population of students. 

It was also possible to train a model, using the data from both student cohorts, 
which achieved a good fit to both data sets, shown in Table 1. This model was 
significantly better than chance in all 4 comparisons conducted. However, models 
trained in single cohorts did better than the unified model, in 3 of the 4 comparisons. 

3   Detecting Gaming Across Tutor Lessons  

In this section, we discuss how well our detector transfers between two tutor lessons, 
within a single student population. One lesson (the “scatterplot” lesson) involved 
creating and interpreting scatterplots of data; the other lesson (the “geometry” lesson) 
involved computing the surface area of 3D solids. Both lessons were drawn from the 
same middle-school mathematics curriculum and were designed using the same 
general pedagogical principles, although the scatterplot lesson had a greater variety of 
widgets and a more linear solution path. Our observers did not notice substantial 
differences between the types of gaming they observed in these two lessons. Overall, 
the same students gamed between lessons – a student’s frequency of gaming was also 
correlated across lessons, r=0.22, p=0.02. 

The most direct way to evaluate transfer across lessons is to see how successfully 
the best-fit model for each tutor lesson fits to the other tutor lesson. As shown in 
Table 2, the results were poor.  Though both models were significantly better than 

1  All numbers are A' values. Italics denote a model which is statistically significantly better 
than chance (p<0.05); asterisks (*) denote marginal significance (p<0.10).   
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Table 2. Models trained on the scatterplot lesson, the geometry lesson, and both lessons 
together. All models trained using only the 2004 students.1 Boldface denotes the model(s) 
which are statistically significantly best in a given category 

Training 
Lesson 

G-H vs no game, 
SCATTERPLOT

G-H vs no game, 
GEOMETRY 

G-H vs G-N-H, 
SCATTERPLOT

G-H vs G-N-H,
GEOMETRY 

SCATTERPLOT 0.92 0.55 0.94 0.63 
GEOMETRY  0.53 0.80 0.41 0.90
BOTH 0.82 0.77 0.70* 0.82 

chance within the training lesson, neither model was significantly better than chance 
when transferred to the other lesson. It was possible to train a model, using both data 
sets, which achieved a good fit to both data sets, as shown in Table 2. This model was 
significantly better than chance on 3 of 4 measures (and was marginally significant on 
the fourth); however, on 2 of 4 measures it was statistically significantly worse than a 
model trained on one lesson alone. But while this unified model performed well in the 
units it was trained in, it transferred very poorly to the 2003 cohort of students using 
the scatterplot tutor, only reaching A'=0.54,p=0.77 (G-H versus non-gaming) and 
A'=0.54,p=0.78 (G-H versus G-N-H). This result is surprising, considering that a 
model trained just on the 2004 cohort using the scatterplot tutor was quite effective at 
detecting gaming within the 2003 cohort (see Table 1). Hence, although we can 
develop a unified model at this point, our modeling approach has not yet delivered a 
unified model which transfers across lessons in a generalizable fashion. 

But why not? The difference in gaming between these lessons is small enough that 
our observers did not notice a qualitative difference in gaming between them. 
Additionally, the top candidate features considered for each lesson (which are highly 
correlated to gaming but not to each other) appear conceptually similar (see Table 3). 
In both sets, gaming corresponds to errors and repeated quick actions. However, the 
top 6 features for scatterplots averaged an unimpressive correlation of 0.06 to gaming 
in the geometry data set, and the top 6 features for geometry averaged a correlation of 
0.09 to gaming in the scatterplot data set, suggesting that the difficulty in transferring 
between models is not just an artifact of the specific features chosen during model 
selection. It is possible that the overall strategic choice underlying gaming is 
consistent across the two lessons, but that the interface and pedagogical differences 
between the two lessons may be causing our models to differ considerably at the 
detailed grain size our approach relies upon to make predictions. 

Table 3. Top 3 non-intercorrelated GAMED-HURT features in each lesson (2004 data) 

SCATTERPLOT GEOMETRY 

1)   Several quick actions in a row 
2) A high percentage of errors on skills that 
      involve popup menus (ie multiple choice) 

1)  Requesting help several actions in a row on  
     skills the student has a history of getting 
     wrong 

3)  Quick actions on problem steps that need a 
      numerical answer 

2) Several very brief help requests in quick 
      succession 

  3)  Several very quick errors in succession 
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4   Discussion and Conclusions 

In this paper, we have presented a system that detects when a student is gaming the 
system. This system transfers successfully across cohorts of students. However, the 
same detector can not, at this point, transfer without re-training to different tutor 
lessons. Furthermore, training data from two lessons together does not produce a 
model which can transfer across student cohorts. Despite this, detectors for different 
lessons are detecting qualitatively similar behavior. One approach would be use our 
knowledge of what actions are gaming in different lessons to develop a system that 
maps from a tutor interface to gaming actions. However, given that our approach can 
train successful models for fairly different tutor lessons, it may not actually be 
necessary to make individual models that can generalize across lessons. For example, 
if the detector is deployed in a year-long curriculum, it may be possible to develop 
interventions which guide students to stop gaming, where the effect s maintained even 
after the intervention is no longer present. In this event, we would only need to detect 
gaming in a few lessons during the course of a curriculum, and could train a detector 
for each of those lessons. This approach would not afford rapidly extending our 
detector to new curricula, but may still be quite effective in improving student 
learning. Regardless, a gaming detector such as ours will only be useful if combined 
with an intervention that persuades students to change how they use the tutor. If the 
tutor responds to gaming in a fashion that gives students an incentive to learn how to 
game the gaming detector, the gaming detector will quickly become ineffective. 
Systems that detect intentional mis-use must adapt in a fashion that makes it in the 
student’s interest to use the software appropriately.  
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