
L. Ardissono, P. Brna, and A. Mitrovic (Eds.): UM 2005, LNAI 3538, pp. 220 – 224, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Detecting When Students Game the System, Across
Tutor Subjects and Classroom Cohorts

Ryan Shaun Baker, Albert T. Corbett, Kenneth R. Koedinger, and Ido Roll

Human-Computer Interaction Institute, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA, 15217, USA

{rsbaker, corbett, koedinger, idoroll}@cmu.edu

Abstract. Building a generalizable detector of student behavior within
intelligent tutoring systems presents two challenges: transferring between
different cohorts of students (who may develop idiosyncratic strategies of use),
and transferring between different tutor lessons (which may have considerable
variation in their interfaces, making cognitively equivalent behaviors appear
quite different within log files). In this paper, we present a machine-learned
detector which identifies students who are “gaming the system”, attempting to
complete problems with minimal cognitive effort, and determine that the
detector transfers successfully across student cohorts but less successfully
across tutor lessons.

1 Introduction and Prior Work

In the last couple of decades, there has been considerable work in creating educational
systems that adapt to their users – offering help and feedback targeted to a student’s
specific cognitive or motivational needs. However, just as educational systems can
adapt to their users, users can adapt to their educational systems, sometimes in ways
that lead to poorer learning [2,5]. For instance, students who game the system,
attempting to perform well in an educational task by systematically exploiting
properties and regularities in the system used to complete that task, rather than by
thinking about the material, learn less than other students [2]. Examples of gaming
include systematic guessing, and repeatedly requesting help until the system gives the
answer. It may be possible to substantially improve learning environments’
educational effectiveness by adapting to how students choose to use the learning
environment. In order to do this, we need to be able to detect when a student is
selecting strategies that lead to poorer learning.

In [1], we presented a Latent-Response Model [4] that accurately detected if a
student was gaming the system, within a specific tutor lesson, cross-validated across
students in 4 classes. This model distinguished “GAMED-HURT” students who
gamed the system in a fashion associated with poor learning both from students who
were never observed gaming, and from “GAMED-NOT-HURT” students who gamed
in a different fashion not associated with poor learning. The model did so by first
predicting whether each individual student action was an instance of gaming (using
tutor log files), and then aggregated these predictions to predict what proportion of
time each student was gaming (comparing the predicted proportions to data from

Detecting When Students Game the System 221

classroom observations). The classifier’s ability to distinguish gaming was assessed
with A' values, which give the probability that if the model is given one gaming
student and one non-gaming student, it will accurately identify which is which [3].

A model in this framework consists of features selected from linear, quadratic, and
interaction effects on a set of 26 base features describing a student action (for
instance, what interface widget it involved and how long it took), and its historical
context (for instance, how many errors this student made on this skill in past
problems). The model presented here improves on the model reported in [1] in three
fashions: First, by adding two features to the set used in [1], in order to represent
asymptotic skills (which students on the whole either knew before starting the tutor,
or failed to learn while using the tutor). Second, by switching from using forward
selection to select model features to testing a set of search paths constrained by fast
correlation-based filtering [6] (in both cases, Leave One Out Cross Validation was
used to prevent over-fitting). Third, by switching from treating both types of gaming
as identical during training to training to detect just GAMED-HURT students,
considerably improving our model’s ability to distinguish between types of gaming,
∆Z=6.57, p<0.01. After these changes, our model was significantly better than chance
at distinguishing GAMED-HURT students from non-gaming students (within the
original classroom cohort and lesson), A' =0.85, p<0.01, and at distinguishing
GAMED-HURT students from GAMED-NOT-HURT students, A' =0.96, p<0.01.

Though this detector is effective within a single population and tutor lesson, it will
be more useful if it can generalize across student populations and cognitive tutor
lessons (or even across types of interactive learning environments). There appear to
be multiple ways to game a given system, and we have observed students teaching
each other new strategies for gaming – therefore, different cohorts of students may
game differently. Similarly, different tutor lessons often have different patterns of
interaction, because of differences in subject matter. In this paper, we present work
towards detecting gaming in a fashion robust to differences between tutor lessons and
classroom cohorts, through analyzing how well a model trained on one population or
lesson transfers to other populations and lessons, and how the features that correlate
to gaming differ across data sets.

2 Detecting Gaming Across Classroom Cohorts

In this section, we discuss how well our detector transfers between our original
student cohort (termed the 2003 cohort) and a newly recruited cohort of students
(termed the 2004 cohort). At a surface level, the two cohorts were similar: both were
drawn from students in 8th and 9th grade non-gifted/non special-needs cognitive tutor
classrooms in the same middle schools in the suburban Pittsburgh area. However, our
observations suggested that the two cohorts behaved differently. The 2004 cohort
gamed 88% more frequently than the 2003 cohort, t(175)=2.34, p=0.02, but a lower
proportion of the gaming students had poor learning, χ2(1, N=64)=6.01, p=0.01. This
data does not directly tell us whether gaming was different in kind between the two
populations – however, if gaming differs substantially in kind between populations,
two populations as different as these are likely to manifest such differences, and thus
these populations provide us with an opportunity to test whether our gaming detector
is robust to differences between distinct cohorts of students.

222 R.S. Baker et al.

Table 1. Our model’s ability to transfer between student cohorts. Boldface signifies both that a
model is statistically significantly better within training cohort than within transfer cohort, and
that the model is significantly better than the model trained on both cohorts 1

Training
Cohort

G-H vs no game,
2003 cohort

G-H vs no game,
2004 cohort

G-H vs G-N-
H,
2003 cohort

G-H vs G-N-H,
2004 cohort

2003 0.85 0.76 0.96 0.69*

2004 0.77 0.92 0.75 0.94
Both 0.8 0.86 0.85 0.85

The most direct way to evaluate transfer across populations is to see how
successfully the best-fit model for each cohort of students fits to the other cohort. As
shown in Table 1, a model trained on either cohort could be transferred as-is to the
other cohort, without any re-fitting, and perform significantly better than chance at
detecting GAMED-HURT students (marginally significantly better at distinguishing
them from GAMED-NOT-HURT students in the 2004 cohort; significantly better in
all other comparisons). However, in 3 of the 4 comparisons, the models were
statistically significantly better in the student population within which they were
trained than when they were transferred to the other population of students.

It was also possible to train a model, using the data from both student cohorts,
which achieved a good fit to both data sets, shown in Table 1. This model was
significantly better than chance in all 4 comparisons conducted. However, models
trained in single cohorts did better than the unified model, in 3 of the 4 comparisons.

3 Detecting Gaming Across Tutor Lessons

In this section, we discuss how well our detector transfers between two tutor lessons,
within a single student population. One lesson (the “scatterplot” lesson) involved
creating and interpreting scatterplots of data; the other lesson (the “geometry” lesson)
involved computing the surface area of 3D solids. Both lessons were drawn from the
same middle-school mathematics curriculum and were designed using the same
general pedagogical principles, although the scatterplot lesson had a greater variety of
widgets and a more linear solution path. Our observers did not notice substantial
differences between the types of gaming they observed in these two lessons. Overall,
the same students gamed between lessons – a student’s frequency of gaming was also
correlated across lessons, r=0.22, p=0.02.

The most direct way to evaluate transfer across lessons is to see how successfully
the best-fit model for each tutor lesson fits to the other tutor lesson. As shown in
Table 2, the results were poor. Though both models were significantly better than

1 All numbers are A' values. Italics denote a model which is statistically significantly better
than chance (p<0.05); asterisks (*) denote marginal significance (p<0.10).

Detecting When Students Game the System 223

Table 2. Models trained on the scatterplot lesson, the geometry lesson, and both lessons
together. All models trained using only the 2004 students.1 Boldface denotes the model(s)
which are statistically significantly best in a given category

Training
Lesson

G-H vs no game,
SCATTERPLOT

G-H vs no game,
GEOMETRY

G-H vs G-N-H,
SCATTERPLOT

G-H vs G-N-H,
GEOMETRY

SCATTERPLOT 0.92 0.55 0.94 0.63
GEOMETRY 0.53 0.80 0.41 0.90
BOTH 0.82 0.77 0.70* 0.82

chance within the training lesson, neither model was significantly better than chance
when transferred to the other lesson. It was possible to train a model, using both data
sets, which achieved a good fit to both data sets, as shown in Table 2. This model was
significantly better than chance on 3 of 4 measures (and was marginally significant on
the fourth); however, on 2 of 4 measures it was statistically significantly worse than a
model trained on one lesson alone. But while this unified model performed well in the
units it was trained in, it transferred very poorly to the 2003 cohort of students using
the scatterplot tutor, only reaching A'=0.54,p=0.77 (G-H versus non-gaming) and
A'=0.54,p=0.78 (G-H versus G-N-H). This result is surprising, considering that a
model trained just on the 2004 cohort using the scatterplot tutor was quite effective at
detecting gaming within the 2003 cohort (see Table 1). Hence, although we can
develop a unified model at this point, our modeling approach has not yet delivered a
unified model which transfers across lessons in a generalizable fashion.

But why not? The difference in gaming between these lessons is small enough that
our observers did not notice a qualitative difference in gaming between them.
Additionally, the top candidate features considered for each lesson (which are highly
correlated to gaming but not to each other) appear conceptually similar (see Table 3).
In both sets, gaming corresponds to errors and repeated quick actions. However, the
top 6 features for scatterplots averaged an unimpressive correlation of 0.06 to gaming
in the geometry data set, and the top 6 features for geometry averaged a correlation of
0.09 to gaming in the scatterplot data set, suggesting that the difficulty in transferring
between models is not just an artifact of the specific features chosen during model
selection. It is possible that the overall strategic choice underlying gaming is
consistent across the two lessons, but that the interface and pedagogical differences
between the two lessons may be causing our models to differ considerably at the
detailed grain size our approach relies upon to make predictions.

Table 3. Top 3 non-intercorrelated GAMED-HURT features in each lesson (2004 data)

SCATTERPLOT GEOMETRY

1) Several quick actions in a row
2) A high percentage of errors on skills that
 involve popup menus (ie multiple choice)

1) Requesting help several actions in a row on
 skills the student has a history of getting
 wrong

3) Quick actions on problem steps that need a
 numerical answer

2) Several very brief help requests in quick
 succession

 3) Several very quick errors in succession

224 R.S. Baker et al.

4 Discussion and Conclusions

In this paper, we have presented a system that detects when a student is gaming the
system. This system transfers successfully across cohorts of students. However, the
same detector can not, at this point, transfer without re-training to different tutor
lessons. Furthermore, training data from two lessons together does not produce a
model which can transfer across student cohorts. Despite this, detectors for different
lessons are detecting qualitatively similar behavior. One approach would be use our
knowledge of what actions are gaming in different lessons to develop a system that
maps from a tutor interface to gaming actions. However, given that our approach can
train successful models for fairly different tutor lessons, it may not actually be
necessary to make individual models that can generalize across lessons. For example,
if the detector is deployed in a year-long curriculum, it may be possible to develop
interventions which guide students to stop gaming, where the effect s maintained even
after the intervention is no longer present. In this event, we would only need to detect
gaming in a few lessons during the course of a curriculum, and could train a detector
for each of those lessons. This approach would not afford rapidly extending our
detector to new curricula, but may still be quite effective in improving student
learning. Regardless, a gaming detector such as ours will only be useful if combined
with an intervention that persuades students to change how they use the tutor. If the
tutor responds to gaming in a fashion that gives students an incentive to learn how to
game the gaming detector, the gaming detector will quickly become ineffective.
Systems that detect intentional mis-use must adapt in a fashion that makes it in the
student’s interest to use the software appropriately.

Acknowledgements. We would like to thank James Fogarty, Vincent Aleven, Angela
Wagner, Tom Mitchell, Brian Junker, Amy Hurst, Cristen Torrey, and Amy Ogan for
helpful suggestions and assistance. This work was funded by an NDSEG Fellowship.

References

1. Baker, R.S., Corbett, A.T., Koedinger, K.R. Detecting Student Misuse of Intelligent
Tutoring Systems. Proceedings of the 7th International Conference on Intelligent Tutoring
Systems (2004), 531-540.

2. Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z. Off-Task Behavior in the
Cognitive Tutor Classroom: When Students “Game the System”. Proceedings of ACM CHI
2004: Computer-Human Interaction (2004) 383-390

3. Donaldson, W. Accuracy of d’ and A’ as Estimates of Sensitivity. Bulletin of the
Psychonomic Society Vol. 31(4) (1993) 271-274.

4. Maris, E. Psychometric Latent Response Models. Psychometrika vol.60(4) (1995) 523-547.
5. Stevens, R., Soller, A., Cooper, M, Sprang, M. Modeling the Development of Problem-

Solving Skills in Chemistry with a Web-Based Tutor. Proceedings of the 7th International
Conference on Intelligent Tutoring Systems (ITS 2004), 580-591.

6. Yu, L., Liu, H. Feature Selection for High-Dimensional Data: A Fast Correlation-Based
Filter Solution. Proc. of the Intl. Conference on Machine Learning (ICML-03), 856-863.

	Introduction and Prior Work
	Detecting Gaming Across Classroom Cohorts
	Detecting Gaming Across Tutor Lessons
	Discussion and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

