
Generalizing Detection of Gaming the System 

Across a Tutoring Curriculum 

Ryan S.J.d. Baker1, Albert T. Corbett2, Kenneth R. Koedinger2,  Ido Roll2  

 

1 Learning Sciences Research Institute, University of Nottingham, Nottingham, UK 

Ryan.Baker@nottingham.ac.uk 
2 Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA 

{corbett, koedinger, iroll}@cmu.edu 

Abstract. In recent years, a number of systems have been developed to detect 

differences in how students choose to use intelligent tutoring systems, and the 

attitudes and goals which underlie these decisions. These systems, when trained 

using data from human observations and questionnaires, can detect specific 

behaviors and attitudes with high accuracy. However, such data is time-

consuming to collect, especially across an entire tutor curriculum. Therefore, to 

deploy a detector of behaviors or attitudes across an entire tutor curriculum, the 

detector must be able to transfer to a new tutor lesson without being re-trained 

using data from that lesson. In this paper, we present evidence that detectors of 

gaming the system can transfer to new lessons without re-training, and that 

training detectors with data from multiple lessons improves generalization, 

beyond just the gains from training with additional data. 

1   Introduction 

Developing models that can reliably detect differences in how students choose to use 

intelligent tutoring systems, and the attitudes and goals which underlie these decisions, 

has received considerable attention in recent years [1,3,4,7,8]. A number of models 

have been developed which can reliably detect specific student behaviors – from 

avoiding help [cf. 1], to gaming the system [4], to competing with other students [7]. 

These models have supported the development of systems that influence students to 

learn to use intelligent tutoring systems more effectively [2]. 

However, to be widely useful, detectors of student behaviors and motivation need 

to be generalizable. Thus far, most such detectors have been developed using data 

from individual lessons from a tutoring curriculum, or from fairly small-scale 

intelligent tutors. However, intelligent tutors are increasingly being used as major 

components in year-long curricula. A model of help-seeking behavior developed using 

only log file data has been shown to generalize effectively across lessons [11], but 

many of the models developed to detect student behaviors and attitudes have been 

trained using additional data such as human observations [4,8], improving accuracy 

[11]. Unfortunately, human observations are time-consuming to collect for an entire 



year-long curriculum. Therefore, to be maximally useful – and used – detectors of 

behaviors and motivation need to be able to take advantage of observational data, 

while generalizing to new tutor lessons without the collection of additional data. 

In this paper, we will discuss our work to generalize a behavior detector which 

detects whether a student is “gaming the system”, attempting to succeed in an 

educational environment by exploiting properties of the system rather than by learning 

the material and trying to use that knowledge to answer correctly [6]. Within the set of 

intelligent tutor lessons that we will discuss in this paper, gaming behavior consists of 

systematic guessing and rapid-fire hint requests. Prior analyses have also found that 

gaming can be divided into two distinct categories of behavior: harmful gaming, 

which is associated with poor learning outcomes and appears to occur on the problem 

steps the student knows least well, and non-harmful gaming, which is not associated 

with poor learning outcomes and appears to occur on problem steps the student 

already knows [4].  

Additionally, we will consider the question of what data is most useful for 

developing generalizable detectors. A considerable amount of machine learning 

research treats generalizability largely as a function of the sheer amount of data 

trained on, and the degree to which the training technique over-fits to that data. In this 

paper, we examine whether additional advantage can be gained by collecting a 

broader, more heterogeneous data set – in specific, presenting analyses suggesting that 

training on data from multiple tutor lessons improves generalizability more than would 

occur simply from increasing the sample size.  

2   Methods 

2.1   Data Sources 

The first gaming detector [4] was developed using data from a tutor lesson on 

scatterplots, drawn from a middle-school Cognitive Tutor mathematics curriculum. In 

order to study issues of generalizability, we collected data from three additional 

lessons (on geometry, percents, and probability) from the same tutoring curriculum. 

All data came from classes in two school districts in suburban Pittsburgh. For the 

scatterplot lesson, we had data from classes in 2003, 2004, and 2005. For each of the 

Table 1. Quantity of data obtained for each tutor lesson 

Lesson Number of students Number of actions 

SCATTERPLOT  268 71,236 

PERCENTS 53 16,196 

GEOMETRY  111 30,696 

PROBABILITY 41 10,759 

 



other lessons, we had data from a single year (2004 for geometry and probability, 

2005 for percents). In total, we had data from 300 students (with 113 students 

represented in multiple lessons), with 128,887 actions across the 473 student/lesson 

pairs. Each student completed between 50 and 500 actions in the tutor.  

For each lesson, we collected quantitative field observations (using the method in 

[6]), to estimate what percentage of time each student gamed the system. Pre-tests and 

post-tests were given for each lesson – in all cases, test items were counterbalanced 

across the pre-test and post-test. Data on learning gains enabled us to distinguish 

between harmful gaming and non-harmful gaming [cf. 4], both during training and 

when evaluating goodness-of-fit. In our analyses, we will refer to students who 

engaged in harmful gaming as “GAMED-HURT”, and students who engaged in non-

harmful gaming as “GAMED-NOT-HURT”. 

 Finally, we obtained logs of each student’s actions within the tutor. For each 

student action recorded in the logs, we distilled a set of 26 features (listed in [4 and 

5]) describing that action, including information about the action itself (time taken, 

type of interface widget) and the action’s historical context (for instance, how many 

errors the student had made on the same skill in past problems).  

2.2   Modeling Framework  

Using this combination of data, we trained a set of detectors to predict how 

frequently an arbitrary student gamed the system. Each detector of gaming, within our 

framework, is a hierarchical Latent Response Model [10] with one observable level 

and two hidden (“latent”) levels. In a gaming detector’s outermost/observable layer, 

the detector predicts how frequently each student is gaming the system, labeling these 

predictions G'0…G'n . These predictions can then be compared to the  

 

 
 

Fig. 1. The Gaming Detector 



observed proportions of time each student spent gaming the system, G0…Gn (the 

metrics used will be discussed momentarily). The middle layer consists of a set of 

binary predictions as to whether each individual student action (denoted P'm) is an 

instance of gaming. The observable predictions G'0…G'n  are derived by taking the 

percentage of actions which are predicted to be instances of gaming, for each student. 

The innermost layer is a function on features drawn from each action’s characteristics, 

which are used to make the binary predictions in the middle layer. Each parameter in a 

model of gaming is either a linear effect on a feature (a parameter value αi multiplied 

by the corresponding feature value Xi – αi Xi), a quadratic effect (parameter value αi 

multiplied by feature value Xi, squared – αiXi
2
), or an interaction effect on two 

features (parameter value αi multiplied by feature value Xi, multiplied by feature value 

Xj – αiXiXj).  

A prediction Pm (in the innermost layer) as to whether action m is an instance of 

gaming is computed as Pm = α0 X0 + α1 X1 + α2 X2 + … + αn Xn, where αi is a 

parameter value and Xi is the data value for the corresponding feature, for this action, 

in the log files. Each prediction Pm is then thresholded using a step function to form 

the binary predictions that form the middle layer, such that if  Pm ≤ 0.5, P'm = 0, 

otherwise P'm = 1. This gives us a set of classifications P'm for each action within the 

tutor, which are then used to create the predictions of each student’s proportion of 

gaming,  G'0…G'n  which are compared to their observed frequency of gaming.  

2.3   Detector Selection  

Detectors are trained as follows: First, a set of single-parameter detectors are selected 

(using Fast Correlation-Based Filtering [13]) such that each single-parameter gaming 

detector is at least 60% as good as the best single-parameter detector found (in terms 

of linear correlation to the observed data). If two parameters have a closer correlation 

than 0.7 to each other, only the better-fitting single-parameter detector is used. Then, 

for each single-parameter detector, we repeatedly add the parameter that most 

improves the linear correlation between the detector’s predictions and the original 

data, using Iterative Gradient Descent to find the best value for each candidate 

parameter. Generally, when selecting detectors, we continue adding parameters until 

the most recent parameter worsens the model’s fit under Leave-One-Out-Cross-

Validation (LOOCV); however, for the analyses in this paper, we stopped when a 

detector had six parameters, for tractability in training a large number of detectors. 

Generally, the detectors had very little absolute improvement in fit after the first three 

or four parameters, regardless of the results of LOOCV. This process resulted in a set 

of detectors with comparable correlation, from which the model with the best A' 1 is 

selected (averaging A' across the model’s ability to distinguish GAMED-HURT 

students from non-gamers, and the model’s ability to distinguish GAMED-HURT 

students from GAMED-NOT-HURT students).  

                                                           
1 A' is both the area under the ROC curve, and the probability that the detector can successfully 

distinguish between an arbitrary student from each of the two groups being classified. 



3 Detector Comparisons 

3.1 Statistical Techniques for Detector Comparison 

In the remainder of this paper, we will investigate how well gaming detectors transfer 

across different tutor lessons, examining detectors trained on single lessons, detectors 

trained on multiple lessons (but not all lessons), and a detector trained on all available 

lessons. Conducting these comparisons in a statistically appropriate fashion requires 

meta-analytic techniques, which we discuss in this section. 

When comparing detectors to one another across multiple test lessons, the data 

from different test lessons cannot simply be collapsed into a single data set, since this 

will bias towards detectors that do best on the lesson with the most data; additionally, 

since gaming may occur with different frequency in different lessons, the A' value of a 

combined data set will be substantially lower than the A' values of the individual data 

sets, underestimating all detectors’ effectiveness. Hence, we will in all cases determine 

our measures of interest for each test lesson individually, compare the detectors to 

each other within each test lesson, and then use meta-analytic techniques to combine 

these comparisons into a single statistical comparison. 

In the analyses to follow, we will compare detectors to each other in terms of their 

A' and correlation. In order to use common meta-analytic techniques, we will convert 

these metrics to Z-scores. Two A' values can be compared to each other, giving a Z-

score as the result, by using the standard Z-score formula in combination with Hanley 

and McNeil’s technique for estimating the variance of an A' value [9]. Correlations 

can be compared to each other, giving a Z-score, by converting the correlations to Z-

scores via the Fisher Zr transformation [12], and then comparing those Z-scores to one 

another. 

Once all values are Z-scores, comparisons between results from different test 

lessons (for example, to estimate whether a detector performs significantly better than 

chance, across multiple test lessons) will be made using Stouffer’s method [12] and 

denoted Zs. Comparisons between results within the same test lesson (for example, to 

compare two detectors to each other) will be made using the mean Z-score method 

[12] and denoted Zm. Comparisons of multiple detectors (such as the set of detectors 

trained using data from three lessons) across multiple test sets will be denoted Zms. In 

these cases, all within-lesson comparisons will be made before any between-lesson 

comparisons, in order to avoid comparing Z-scores estimated with methods which 

have different assumptions to each other. Z-scores derived without meta-analytic 

aggregations or comparisons will be denoted Z.   

3.2   Transferring Models Trained on a Single Lesson   

We begin our analysis by investigating how well a detector trained on a single tutor 

lesson will transfer to other tutor lessons. We trained four detectors – one on each of 



the four lessons. We then tested how well each detector detected gaming within its 

training lesson, and within each of the 3 other lessons. 

The four detectors trained on a single lesson had an average A' of 0.86, in the 

training lessons, at distinguishing GAMED-HURT students from non-gamers, 

significantly better than chance, Zs=10.74, p<0.001. The detectors were significantly 

worse at making this same distinction in the transfer lessons (A' =0.71), Zms =3.63, 

p<0.001, though their performance in the transfer lessons was still better than chance, 

Zm = 2.12, p=0.03. The detectors had an average A' of 0.79, in the training lessons, at 

distinguishing GAMED-HURT students from GAMED-NOT-HURT students, 

significantly better than chance, Zs =5.07, p<0.001. The detectors were not 

significantly worse at making this distinction in the transfer lessons (A' =0.74), Zms 

=0.56, p=0.58, and were significantly better than chance, Zm =2.86, p<0.01. The 

detectors had an average correlation of 0.57 between the observed and predicted 

frequencies of harmful gaming, in the training lessons, significantly better than 

chance, Zs = 12.08, p<0.001. The detectors were significantly worse at making this 

same distinction in the transfer lessons (r=0.22), Zms =5.15, p<0.001, though their 

performance in the transfer lessons was still better than chance, Zm =2.40, p=0.02.  

Hence, a detector trained on one lesson performs significantly better than chance 

when transferred to other lessons. However, there is a significant and substantial drop 

in performance from training lessons to transfer lessons, on 2 of the 3 metrics of 

interest. The overall pattern of results from the comparisons is shown in Table 2.  

3.3  Training a Detector on All Four Lessons   

One potential explanation for the relatively poor transfer of detectors trained on single 

lessons is that it is simply not possible to develop a single gaming detector which is 

highly effective at detecting harmful gaming in multiple lessons, using our techniques. 

To investigate this possibility, we trained a detector on all four lessons together.  

The detector trained on all four lessons had an average A' of 0.85, across the four 

lessons, at distinguishing GAMED-HURT students from non-gaming students. This 

was not significantly lower than the average A' (0.86) of the models trained on single  

lessons, when tested on the training lessons, Zms = 0.38, p=0.70. The detector trained 

Table 2. Detectors trained on just one of the four lessons.  Italics denotes when detectors were, 

in aggregate, statistically significantly better than chance. Boldface denotes  

when detectors were significantly better for training lessons than transfer lessons 

Metric Training lesson  

average  

Transfer lesson  

average  

A' (GAMED-HURT versus NON-GAMING) 0.86 0.71 

A' (GAMED-HURT versus GAMED-NOT-HURT) 0.79 0.74 

Correlation 0.57 0.22 



Table 3. Comparing a detector trained on all four lessons to detectors trained on just  

one of the four lessons, within the training lessons. All detectors were  

statistically significantly better than chance, on each metric. There were no  

statistically significant differences between detectors, on any metric 

Metric Training on  

one lesson  

Training on  

all lessons 

A' (GAMED-HURT versus NON-GAMING) 0.86 0.85 

A' (GAMED-HURT versus GAMED-NOT-HURT) 0.79 0.80 

Correlation 0.57 0.60 

 

on all four lessons had an average A' of 0.80, across the four lessons, at distinguishing 

GAMED-HURT students from GAMED-NOT-HURT students. This was also not 

significantly lower than the average A' (0.79) of the models trained on single lessons, 

when tested on the training lessons, Zms = 0.12, p=0.90. Finally, the model trained on 

all four lessons had an average correlation of 0.60, across the four lessons, between 

the observed and predicted frequencies of harmful gaming, in the training lessons. 

This was again not significantly different than the average correlation (0.57) of the 

models trained on single lessons, when tested on the training lessons, Zms = 0.53, 

p=0.60. 

Hence, a model trained on all four lessons is equally as effective as four models 

trained on individual lessons, within the training lessons. This indicates that it is 

possible to develop a gaming detector which is effective in multiple lessons. The 

overall pattern of results from these comparisons is shown in Table 3. 

3.4  Training a Detector on Three of Four Lessons   

The next question to consider is whether we can develop a gaming detector which is 

not just effective across multiple lessons, but which can also transfer effectively to 

lessons it was not trained on. To this end, we trained a set of detectors on three of four 

of the lessons together, and then tested each of these detectors on the fourth, left-out, 

lesson.  

We will compare these detectors’ effectiveness at transferring to two other 

conditions. The first comparison condition is how well detectors perform when trained 

on a single lesson and then tested on the same lesson. We view this level of 

performance as a reasonable “gold standard” for how well a detector can do on any 

lesson. The second comparison condition is how well detectors perform when trained 

on a single lesson and then tested on the other lessons. Our goal is to obtain significant 

and substantial improvements on this level of performance.  

The detectors trained on three lessons had an average A' of 0.84 at distinguishing 

GAMED-HURT students from non-gamers, in the training lessons, and an average A' 

of 0.80 at making the same distinction in the test lessons. The test set performance of 

detectors trained on three lessons (A’=0.80) was not significantly lower than the 

training set performance of detectors trained on one lesson (A’=0.86), Zms = 1.36, 

p=0.17. However, the test set performance of detectors trained on three lessons 



(A’=0.80) was significantly higher than the test set performance of detectors trained 

on one lesson (A’=0.71), Zms = 1.98, p=0.05. 

The detectors trained on three lessons had an average A' of 0.78 at distinguishing 

GAMED-HURT students from GAMED-NOT-HURT students, in the training 

lessons, and an average A' of 0.80 at making the same distinction in the test lessons. 

The test set performance of the detectors trained on three lessons (A’=0.80) was not 

significantly lower than the training set performance of the detectors trained on one 

lesson (A’=0.79), Zms = 0.67, p=0.50. 

The detectors trained on three lessons had an average correlation of 0.55 between 

the observed and predicted frequencies of harmful gaming, in the training lessons, and 

an average correlation of 0.41 in the test lessons. In this case, the test set performance 

of the detectors trained on three lessons (r=0.41) was marginally significantly lower 

than the training set performance of the detectors trained on one lesson (r=0.57), Zms = 

1.74, p=0.08. However, the test set performance of detectors trained on three lessons 

(r=0.41) was still significantly higher than the test set performance of detectors trained 

on one lesson (r=0.22), Zms = 2.46, p=0.01.  

Overall, detectors trained on three lessons suffered considerably less degradation 

in performance when transferred to new lessons than detectors trained on a single 

lesson. Detectors trained on a single lesson had large and significant drops on 2 of 3 

metrics when transferred to new lessons; the detectors trained on three lessons had 

much smaller and less significant drops in performance when transferred to new 

lessons. The overall pattern of results is shown in Table 4. 

3.5 For a More Generalizable Detector, Should We Collect More Data or More 

Representative Data? 

In the previous section, we showed that detectors trained on multiple lessons 

transfer better than detectors trained on a single lesson. While it is tempting to 

conclude that training on multiple lessons led to the better performance, it is also 

possible that the better performance came simply from training using more data. We 

developed linear regression models to distinguish between these hypotheses, 

predicting each detector’s A’ (GAMED-HURT vs non-gaming) and correlation to 

observed harmful gaming, within each lesson it was not trained on. These models can 

distinguish the relative contribution of sample size and number of lessons, because 

each of the four lessons had a different sample size (see Table 1). In these analyses, 

we define sample size as the number of observed gaming frequencies in the training 

set (for which there is one per student, per lesson), since this was the value correlated 

to during training.  

A model which predicts A’ using only the sample size (A’ = α0*SampleSize) 

achieves an r
2
 of 0.02; a model which predicts A’ using both the sample size and the 

number of lessons used in training (A’ = α0*SampleSize + α1*Lessons) achieves an r
2
 

of 0.13. The model which includes the number of lessons is a significantly better 

predictor of A’, F(1,13)=8.61, p=0.01, for an extra-sum-of-squares F-test. A model 

which predicts correlation to observed harmful gaming using only the sample size  



Table 4. Comparing detectors trained on three of the four lessons to detectors trained on just 

one of the four lessons.  All detectors were statistically significantly better than chance, on  

each metric. Grey boxes denote indicate when a detector was worse than the best  

detector for that metric (light grey=marginal significance, dark grey = significance) 

Metric Training on  

one lesson 

(training-set 

performance)  

Training on  

3 of 4 lessons 

(test-set 

performance) 

Training on  

one lesson 

(test-set 

performance) 

A' (GAMED-HURT versus NON-GAMING) 0.86 0.80 0.71 

A' (GAMED-HURT versus GAMED-NOT-HURT) 0.79 0.80 0.74 

Correlation 0.57 0.41 0.22 

  

(r = α0*SampleSize) achieves an r
2
 of 0.22; a model which predicts correlation to 

observed harmful gaming using both sample size and the number of lessons used in 

training (r = α0*SampleSize + α1*Lessons) achieves an r
2
 of 0.26. The model which 

includes the number of lessons is a marginally significantly better predictor of a 

detector’s correlation to observed harmful gaming, F(1,13)=4.19, p=0.06, for an extra-

sum-of-squares F-test.  

These results indicate that training with more lessons improves a detector’s 

generalizability, even when we control for the size of the training set. This pattern is 

consistent, whether A’ or correlation is the measure of interest. 

4   Discussion and Conclusions   

Our results show that detectors of harmful gaming trained on single tutor lessons 

perform well in the lesson they were trained on, but considerably more poorly on other 

lessons. However, if a detector is trained using data from multiple lessons, the detector 

is effective both within the lessons it was trained for, and on a new lesson that it was 

not trained for. We have also presented analyses which suggest that the improvement 

in transferrability arises not just from training on more data, but from training on a 

broader cross-section of data. 

The general implication is that, for developing detectors of complex student 

behaviors, it is not optimal to use data from only one segment of a larger curriculum – 

even if it is possible to obtain a very large amount of student data from that curricular 

segment. Training on just one curricular section or tutor lesson risks over-fitting to the 

specific features of that tutor lesson. By training on a larger cross-section of data from 

a curriculum, a developer can develop a behavioral detector which will generalize 

better to the rest of the entire curriculum.  

Often, it is assumed that the best way to improve a machine-learned detector is to 

collect more data. We do not question that more data can lead to better detectors; 

however, the results of our investigation suggest that if there is a choice between 

collecting more data from a single tutor lesson (or curricular section) or collecting 

data from a variety of lessons, it is preferable to collect the broader data set.  
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