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Abstract: Students often fail to learn crucial distinctions between different representations of
data. For instance, many students learning about scatterplots consistently create representations
which have the surface features of scatterplots but with informational content more appropriate
for discrete bar graphs. Schwartz and Bransford (1998) have found that combining feature-
based conceptual instruction with contrasting cases is an effective way to help students make
conceptual distinctions. We adapt their approach to the domain of data representation and
incorporate it into a cognitive tutoring curriculum. We show that this new curriculum improves
learning more than a curriculum where the contrasts are not present.

Introduction
How can we design curricula in which students learn to make appropriate distinctions between different

ways of representing data? In recent years, educational standards have placed increasing emphasis on learning to
analyze and work with data, as early as in middle school (NCTM 2000). A major part of learning to work with
data is learning how to represent it in a number of different forms. Some representations are particularly useful to
learn, both because they support certain types of inference particularly well (Tufte, 1983; Tabachneck-Schijf,
Leonardo, and Simon, 1997) and because they facilitate communication with other individuals who also
understand those representations. Participation in activities that involve external representations, wherever and
with whomever they occur, requires having a rich understanding of those representations and their affordances.

Unfortunately, students often fail to learn the informational and functional distinctions between
different representations, hampering their ability to use them effectively. In this paper, we present an approach
for helping students develop an understanding of such distinctions, focusing specifically on student
understanding of scatterplots and bar graphs. Our approach, adapted from Schwartz and Bransford’s (1998)
contrasting cases method, combines conceptual instruction on the informational differences between
representations with a scaffold that helps students explicitly link the type of information available to appropriate
types of representations.  We present two studies: in study 1, we compare a contrasting cases approach to an
approach where students are taught scatterplots without reference to their differences from other representations,
in a homeschool setting; in study 2, we test whether the contrasting cases approach is also effective in a
classroom setting, and investigate whether an intervention to focus students’ time on more difficult parts of each
problem results in even more successful learning.

Student difficulties with scatterplots
One of the major challenges to developing a rich understanding of representations is learning to

distinguish between different representations. Students often fail to learn what situations a newly learned
representation is appropriate for, preferring to use the first and simplest representations of data they learn, even
in situations where those representations are not useful (Hancock, Kaput, and Goldsmith, 1992). Students also
develop schemas of different representations that are focused solely on their surface features rather than their
structural or informational properties (McGatha, Cobb, and McClain, in press). When attempting to draw
scatterplots, for instance, students tend to draw a representation with the surface features of a scatterplot but
which is the informational equivalent of another representation, a discrete bar graph. The graph created has a
quantitative variable on one axis and a nominal or categorical variable (1) on the other axis, instead of a
quantitative variable on each axis. This behavior manifests itself in two ways, termed the variable choice error
(Baker, Corbett, and Koedinger, 2001) and the nominalization error (Baker, Corbett, and Koedinger 2002; cf.
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Lehrer and Schauble, 2001). When a student makes the variable choice error, she or he places a nominal or
categorical variable rather than a quantitative variable along one axis. An

Figure 1: The variable choice (L) and nominalization (R) errors.

example of this is shown in Figure 1L, where the student has placed the names of different brands of peanut
butter rather than their quality ratings along the X axis. Students making the related nominalization error treat a
quantitative variable already chosen for one axis as if it were a nominal variable For instance, in Figure 1R, the
student should have plotted the values on the X axis as an interval scale in numerical order: 19, 20, 21, 22, 23,
24, 25. Instead, that student plotted the individual values of the variable in the same order as they appeared in the
original data set, with one value (23) appearing twice: 22, 20, 23, 25, 24, 19, 23. In both cases, the student’s
actions would be correct if the student was attempting to create a bar graph with a nominal X axis and a
quantitative Y axis, but are inappropriate when generalized to scatterplots.

Research has shown that students’ difficulty at distinguishing between scatterplots and bar graphs is
resilient both to simple supports such as labeling axes with the variables students should use (Baker et al, 2002),
and to direct feedback.  Baker, Corbett, Koedinger, and Schneider (2003) developed a cognitive tutor lesson
which detected and attempted to remediate the variable choice error using model-tracing (Anderson, Corbett,
Koedinger, and Pelletier, 1995). As a student worked through exercises, their actions were matched to models
both of correct performance and “buggy” performance. If the buggy performance model was a better match to
the student’s actions than the model of correct performance, then the system gave the student feedback telling the
student why his/her action was incorrect. For instance, if a student chose a categorical variable for the X axis, the
tutor immediately informed the student: “You have chosen a categorical variable as your X axis. This would be
appropriate for a BAR GRAPH rather than the type of graph you’ve been asked to draw. Ask for help if you’re
not sure what kind of variable you need.” Using this model-tracing tutor for one and a half class sessions
moderately improved performance at generating correct scatterplots, but did not significantly reduce the number
of students who made the variable choice error on the post-test. In order to develop a tutor that responds
effectively to the variable choice and nominalization errors, we must understand why the errors occur. Given the
errors’ resilience to scaffolding and instruction, two possible accounts are that the errors are procedural
misconceptions (“bugs”) (Brown and Burton, 1978; vanLehn, 1990), or that they are manifestations of a
schematic, “conceptual” misconception (Clement,1982; Minstrell, 1989). A student with a bug might use the
right procedure, but make a characteristic error during one step of it; a student with a conceptual misconception
might use the wrong schema and procedures flawlessly.

The comparison of computational models, written in ACT-R (Anderson and Lebiere, 1998), provides
insight into which account better explains these phenomena (a preliminary discussion of this comparison can be
found in Baker, Corbett, and Koedinger, 2003). In this comparison, the variable choice and nominalization errors
were modeled by one negative transfer account similar in character to those in Singley and Anderson (1989), and
by two accounts derived from the impasse account for bugs given in vanLehn (1990). In the negative transfer
model, the correct association between the goal of drawing a bar graph and placing a nominal variable on the X
axis is overgeneralized such that an association is instead made between the goal of drawing any graph and
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placing a nominal variable on the X axis. This model was compared to two impasse models: one where the
students did not know the difference between nominal and quantitative variables, and one where the students did
not have any idea what kind of variables would go on the two axes for any type of graphs.  In both of these
models, the simulated student reached an impasse when choosing variables or how to represent them, and used
the information in the question, selected a variable/variable type randomly, or gave up. Although the impasse
models both achieved reasonable fits to the data (r2=0.90, Mean Absolute Deviation (MAD)=0.26; r2=0.916,
MAD=0.11), the model which accounted for the pattern of student behavior as stemming from
overgeneralization of knowledge of bar graphs achieved a better fit to the data (r2=0.972, MAD=0.06) without
introducing more flexibility of fit. In other words, our modeling suggests that it is more likely that the variable
choice and nominalization errors stem from applying steps from a correct procedure in an incorrect situation
rather than from the generation of an ad-hoc solution to solve an impasse during the execution of a procedure.
The errors stem from the failure to distinguish between concepts, and need to be remediated in a fashion that
takes this into account. In the next section, we will discuss a new cognitive tutor for scatterplots that incorporates
a method successfully used in other curricular settings to remediate this sort of conceptual misconception.

Study 1: Will Contrasting To Bar Graphs Help Students Learn Scatterplots?
Curricular Design

In study 1, we compare the effectiveness of a cognitive tutor which focuses on the contrasts between
scatterplots and bar graphs (condition CONTRASTING-CASES), to a cognitive tutor which teaches about
scatterplots, but does not explicitly focus on the differences between scatterplots and bar graphs (condition
SCATTERPLOT-ONLY).

An approach which has been successful at remediating conceptual misconceptions is the contrasting cases
method (Schwartz and Bransford, 1998). In the contrasting cases method, students learn by comparing between
cases which have been selected because they differ on specific important features. This assists students in
learning which characteristics are important to attend to in distinguishing between categories. Contrasting cases
are most effective when combined with direct instruction on why the features that differentiate the cases are
relevant. In Schwartz and Bransford (1998), contrasting cases were given first, with conceptual instruction
drawing on the distinctions students learned during the contrasting cases. Schwartz and Bransford suggested that
this ordering is especially effective for promoting understanding of conceptual instruction. We hypothesized that
conceptual instruction might also assist students in understanding a set of contrasting cases. Reversing Schwartz
and Bransford’s ordering offered several additional advantages for our instructional context: First, this ordering
enabled us to combine the conceptual instruction on the features differentiating scatterplots from bar graphs with
conceptual instruction on how to generate a scatterplot. Additionally, this ordering enabled us to integrate the
contrasting cases into the process of creating a scatterplot used to answer specific questions, with every exercise
implicitly demonstrating the practical utility of the distinction between the informational content of bar graphs
and scatterplots. Hence, in our study 1, we gave students conceptual instruction (which included instruction on
how to generate a scatterplot) before the contrasting cases.

Conceptual instruction was given via a PowerPoint presentation with voiceover and some simple
animations. Students went through the PowerPoint presentation at their own pace, although the presence of
voiceover tended to keep the students to approximately the same total time. The instruction given differed based
on whether the student was in the CONTRASTING-CASES or SCATTEPRLOT-ONLY condition; see Table 1
for a detailed comparison of the conceptual instruction in each condition.

Next the student used the cognitive tutor. In each tutor exercise, the student was given a set of variables
(including the variables to use in drawing the graph, and distractor variables of both data types), and a set of
questions to answer. Students then generated and interpreted a scatterplot using the interfaces in Figure 2 and 3;
see Table 2 for the details of this process. Errors made during tutor use were remediated by the same model-
tracing feedback used in Baker, Corbett, Koedinger, and Schneider (2003), with the exception that the feedback
for choosing the wrong variable in the SCATTERPLOT-ONLY condition no longer mentioned bar graphs.
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TABLE 1: The conceptual instruction in the two conditions of Study 1

Condition CONTRASTING-CASES Condition SCATTERPLOT-ONLY
1 Introduction to data analysis Same
2 Definition and examples of categorical and quantitative data Definition and examples of quantitative data
3 Definition of bar graphs

The types of information bar graphs contain
The kinds of questions bar graphs can be used to answer
The kinds of questions bar graphs cannot be used to answer

Nothing

4 Definition of scatterplots
The types of information scatterplots contain
The kinds of questions scatterplots can be used to answer

Same

5 How to generate scatterplots
(included choosing scale and plotting points)

Same

6 How to use scatterplots to answer questions Same
7 Review of the differences between scatterplots and bar graphs Review of scatterplots
8 Introduction to cognitive tutor interface Same (except for lack of c.c. scaffold)
Min Time 27 minutes, 11 seconds 23 minutes, 6 seconds

Figure 2: The Cognitive Tutor User Interface

 The contrasting cases scaffold was inspired in part by a data format scaffold in Lovett’s Statistics Tutor
(2001), adapting that scaffold to our different educational context.  In the Statistics Tutor, the student is guided to
identify each variable’s type and to select a representation for those variables. In order to remediate the variable
choice error, we add an explicit contrast of the suitability of each variable for each representation, based on the
type of information contained in that variable and the type of information used in the representation. Our
contrasting cases scaffold is shown in Figure 3. In this scaffold, each variable in the data set is listed, and for
each variable the student must first identify whether it is a quantitative (“numerical”) variable or a categorical
variable. After doing so, the student must identify whether that variable is appropriate or inappropriate for a
scatterplot (quantitative variables are appropriate, categorical variables are not), and whether that variable is
appropriate or inappropriate for a bar graph (a bar graph uses one variable of each type, so taken individually, a
variable of either type is appropriate for use in a bar graph). By having the student decide whether each variable
would be appropriate for a scatterplot and/or a bar graph, the scaffold assists the student in understanding the
distinction between these two representations of data. Moreover, the student makes this distinction immediately
after considering the feature (variable type) that distinguishes the cases, reinforcing the connection between the
contrasting cases and the feature that contrasts them.  This connects to and reinforces the distinction that was
introduced during the conceptual instruction. Since the contrasting cases scaffold can be quite lengthy when the
student has a large data set to work with, we introduced an additional new feature to the tutor, termed problem-
step fading. In the version of mastery learning used in past cognitive tutors (Anderson et al, 1995), an assessment
of which skills the student has mastered drives the selection of new problems. With problem-step fading, the
same assessments of student mastery are used to fade a specific step of a process when the student has reached
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mastery, transforming that step from student-completed exercise to worked-example. Hence, the learner is
required to complete fewer and fewer steps as they demonstrate increased mastery. The goal of this approach is
to maintain the overall structure of the problem for the student while focusing their time and attention on the
more difficult parts of the problem. Other approaches have successfully blended worked-examples and problem-
solving within a single exercise (Renkl, Atkinson, Maier, and Staley, 2002), but without using assessments of an
individual student’s skills to select which steps are worked-examples and problem-solving. We will discuss the
effects of problem-step fading in study 2.

TABLE 2: The process of generating and interpreting a scatterplot in each condition of Study 1
Step Condition CONTRASTING-CASES Condition SCATTERPLOT-ONLY See
1 Use the contrasting cases scaffold Nothing Fig. 3
2 Choose variables for the X and Y axes Same Fig. 2,  Labels A&B
3 Choose bounds and scale for each axis Same Not shown
4 Label axes with bounds and scale Same Fig. 2, Label C
5 Plot points on the graph, by clicking the

point tool and then clicking on the graph
Same Fig. 2, Label D

6 Answer interpretation questions Same Not shown

FIGURE 3: The contrasting cases scaffold

Study Design
In study 1, we gave students conceptually different instruction in different conditions. In order to avoid

a situation where students in different conditions knew each other and told each other what they had learned,
while still working within an authentic learning setting, we conducted this study with homeschool students. The
students used the software on their own computers, at home; we requested that the students’ parents and siblings
not interact with them as they used the software. If two children from the family used the software, they were
placed in the same condition, and families with multiple children were distributed randomly between the
conditions. We recruited homeschool families by posting ads on homeschooling newsgroups and internet mailing
lists for homeschooling families in Pennsylvania. Although the newsgroups and lists were targeted to parents in
Pennsylvania, parents from other states read these newsgroups as well, and 44% of the eventual respondents
were from other states. After reading our ads, parents went to a webpage and signed up to receive the software
through the mail.  Participating students took the pre-test (administered by their parents), viewed the PowerPoint
presentation, used the cognitive tutor, took the post-test, and finally returned the tests and tutor log files to us by
self-addressed stamped envelope. We controlled the amount of time each student spent on the tutor. The tutor
allowed students to work for 75 minutes, and at that point, let them complete the problem they were working on,
and then quit, telling them they had completed their work with the tutor. A sufficient number of problems were
included in the tutor that no student ran out of problems to work on. The pre-test and the post-test each consisted
of one of two nearly isomorphic problems, counterbalanced between the pre-test and post-test. In each problem,
students were given a data table with three quantitative variables and one nominal variable, and were asked to
generate a scatterplot to show the relationship between two of the quantitative variables. The pre-test and post-
test were graded in terms of what percentage of the steps of the process of creating a scatterplot were correct –
students were given two points for choosing the correct variables (one point for choosing variables of the correct
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type), two points for correctly labeling each axis with an appropriate axis (one point for only one axis), and two
points for making at most one error while plotting points.  The pre-test and post-test were similar to the pre-test
and post-test in Baker, Corbett, Koedinger, and Schneider (2003), but had a quantitative distractor as well as the
nominal distractor found in that study.

Results
Of the 203 students who received the software in 2 mail-outs, 39 eventually returned their pre-test and

post-test to us. Response rates were fairly low, but not significantly different between conditions: 22% in
CONTRASTING-CASES versus 16% in SCATTERPLOT-ONLY, c2(1, N=203)=1.31, p~0.25. After
completing the conceptual instruction, students in the two conditions spent the same time using the tutor (87
minutes in the SCATTERPLOT-ONLY condition, 88 minutes in the CONTRASTING-CASES condition).
Students in the CONTRASTING-CASES condition spent 13% of their time using the contrasting cases scaffold,
and 20% of their time choosing variables; students in the SCATTERPLOT-ONLY condition spent 22% of their
time choosing variables. Average performance improved substantially from pre-test to post-test in both
conditions. In the SCATTERPLOT-ONLY condition, average performance improved significantly, from 44% to
88%, t(15)=3.34, p<0.01. Performance also improved significantly in the CONTRASTING-CASES condition,
from 43% to 99%, t(22)=7.53, p<0.001. There was significantly greater improvement in the CONTRASTING-
CASES condition, F(36,1)=6.41,p=0.02, controlling for pre-test score; hence, the time spent studying the
differences between bar graphs and scatterplots seems to have been beneficial.

A similar effect was seen with the number of students who chose correct variables for the X and Y axis
in both conditions. In the SCATTERPLOT-ONLY condition, performance improved from 47% to 88%,  c2(1,
N=32)=6.78, p=0.01. In the CONTRASTING-CASES condition, performance improved from 48% to 100%,
c2(1, N=46)=16.24, p<0.001. For this measure, there was marginally significantly greater improvement in the
CONTRASTING-CASES condition, F(36,1) = 3.20, p=0.08, controlling for pre-test score. The number of
students who committed the variable choice error was significantly different between conditions at pre-test,c2(1,
N=39)=3.99, p=0.05, and there was a similar trend for the nominalization error, c2(1, N=39)=2.26, p=0.13, so
we cannot compare the two conditions directly in terms of these errors (both errors were substantially less
common at pre-test in the SCATTERPLOT-ONLY condition). However, considered by itself, the
CONTRASTING-CASES condition was effective at remediating these specific errors. The variable choice error
occurred 22% of the time at pre-test in the CONTRASTING-CASES condition, and 0% of the time at post-test,
c2(1, N=46)=5.61, p=0.02. Similarly, the nominalization error occurred 13% of the time at pre-test in the
CONTRASTING-CASES condition, and 0% of the time at post-test, c2(1, N=46)=3.21, p=0.07. We will re-
consider the difference between the CONTRASTING-CASES and SCATTERPLOT-ONLY conditions in
remediating these errors in our discussion of Study 2.

Study 2: Problem-Step Fading
Study Design

Study 2 was designed to determine what role problem-step fading had played in the success of the tutor
in study 1, and specifically to see if it had had helped reduce the cost of adding a lengthy scaffold to the tutor.
Study 2 also allowed us to see if the contrasting cases-based tutor would be as effective in a classroom setting as
it was in a homeschool setting. To investigate these questions, we compared the effectiveness of a cognitive tutor
which used problem-step fading (FADING) to the effectiveness of a cognitive tutor where the student had to
complete the entire problem on his/her own (NO-FADING).  Since the conditions varied only in how each
student’s time was focused as they used the tutor, the two conditions could be (and were) presented to students in
the same class without risk of contamination between conditions. Both conditions were drawn from the
CONTRASTING-CASES condition in the previous study; that is, students viewed PowerPoint-based declarative
instruction discussing scatterplots in relation to bar graphs, and used the contrasting cases scaffold. Seventy
students at two middle schools in suburban Pittsburgh participated in the entirety of this study. All of the
participating students were enrolled in a year-long cognitive tutor mathematics course. Each student was given a
pre-test, a post-test, viewed the conceptual instruction, and completed at least four exercises in the tutor; students
absent during any day of the study were eliminated from analysis.  Every student used the tutor for
approximately the same amount of time, so some students were able to complete more problems than others.
Problems were given in the same order for each student. The pre-test and post-test were the same as in study 1;
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which meant that they were identical to the pre-test and post-test in Baker, Corbett, Koedinger, and Schneider
(2003), except for different cover stories and the presence of one new quantitative distractor variable.

Results
In this study, students had different experiences in the two tutor conditions (FADING and NO-

FADING), but learned about the same amount from pre-test to post-test.  In both conditions, students showed
significant gains in average performance and made the variable choice error significantly less frequently.
Students spent approximately the same time (49.6 minutes in FADING, 46.4 minutes in NO-FADING) actively
using the tutor in the two conditions, t(68)=1.39, p=0.17, but students in the FADING condition completed 61%
more problems on average (5.4 versus 3.4), which was significant, t(68)=4.07,p<0.0001. Students in the
FADING condition spent 48% more time on the difficult skill of choosing axis variables, t(68)=4.04,p<0.0001,
but 32% less time labeling values along the axis after choosing bounds and scale, t(68) =2.88, p<0.01. The
amount of time spent plotting points, using a scaffold to choose bounds and scale, and using the contrasting cases
scaffold were not significantly different between conditions, respectively a 20% difference, t(68)=1.17, p=0.24, a
5% difference, and a 1% difference. The absence of any difference between conditions in the time spent using
the contrasting cases scaffold suggests that the addition of problem-step fading did not reduce the contrasting
case scaffold’s time cost. In both conditions, there was a significant improvement in the average percentage of
each problem correct from pre-test to post-test. In the NO-FADING condition, performance improved from 40%
to 69%, t(37)=-4.36, p<0.001, for a paired t-test. In the FADING condition, performance improved from 41% to
74%, t(32)=-4.01, p<0.001, for a paired t-test. There was not a significant difference in learning gain between the
two conditions, F(67,1)=0.42, p=0.52, controlling for pre-test. In both conditions, there was a significant increase
in the number of students who chose variables of the correct type for both the X and Y axes. In the NO-FADING
condition, performance improved from 53% to 87%,  c2(1, N=76)=10.53, p=0.001, and in the FADING
condition, performance improved from 56% to 91%,  c2(1, N=64)=9.69, p=0.002; there was not a significant
difference in learning gain between the two conditions, F(67,1)=0.17, p=0.68, controlling for pre-test.
Finally, across the two conditions, the prevalence of the variable choice error decreased from 19% to 6%, which
was significant, c2(1, N=140)=5.42, p=0.02. The nominalization error, on the other hand, did not change in
frequency from pre-test to post-test (going from 0% to 1%) (2).

Study 2 replicates our results regarding the effectiveness of the CONTRASTING-CASES condition of
study 1. In a different educational setting, with a different population, students showed substantial gains between
pre-test and post-test, both in terms of overall learning and reduction in the frequency of the variable choice
error. Furthermore, as in study 1 but quite unlike the curriculum in Baker, Corbett, Koedinger, and Schneider
(2003), the contrasting cases curriculum used in this study significantly reduced the frequency of the variable
choice error. Nonetheless, problem-step fading did not seem to substantially help or hinder students.  It shifted
time between skills, and allowed students to complete more problems, but did not result in significantly higher
post-test performance. It is somewhat surprising that students did not perform significantly different at post-test
between conditions, given the difference in their experiences with the tutor; however, given that students in both
conditions experienced the same conceptual instruction, and spent a rather short time using the tutor, one
possibility is that the difference between the two conditions would have become more articulated given more
time.

Conclusion
Overall, the studies presented here suggest that cognitive tutoring curricula can be augmented by the

inclusion of contrasting cases, where appropriate.  In these studies, we developed a cognitive tutoring curriculum
which combined instruction on the salient features differentiating scatterplots and bar graphs with a series of
comparisons of variables appropriate and inappropriate for use in these representations. This curriculum
succeeded both in substantially improving understanding of scatterplots and in greatly reducing the frequency of
errors where students incorporated bar-graph features into scatterplots. This curriculum was effective both in
homeschool and classroom settings. Students in 4% of public U.S. secondary schools now use one or more years
of mathematics instruction based upon cognitive tutors with model-tracing remediation. These tutors have been
quite successful (Koedinger et al 1997), producing over 1 SD improvements over traditional classroom
instruction, but some specific lessons have been less successful at remediating errors than others. Remediating
such resilient errors will be a focus of future work at improving existing cognitive tutoring curricula. The
comparison of computational models is a powerful way to determine which student errors stem from conceptual
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misconceptions, and to develop a precise and well-founded account of what distinctions the students are failing
to make. Once we have done this, we may be able to substantially improve our existing cognitive tutoring
curricula by extending the contrasting cases/conceptual instruction approach to these situations.

In the long-term, determining what types of pedagogies are most effective for different types of
educational challenges will enable the development of tutoring systems which can adapt not just to the fact that a
student is having difficulty, but to why the specific student is most likely to be having that difficulty. Then the
systems can more effectively aid the student in mastering that difficulty. More broadly, the studies presented here
show that the combined contrasting cases/salient features approach advanced in Schwartz and Bransford (1998)
can be effectively incorporated into existing curricula which are designed for a very different educational
domain, student population, and overall instructional approach. In addition, we show that the specific ordering of
contrasting cases and conceptual instruction used by Schwartz and Bransford is not essential to this approach’s
success. In Schwartz and Bransford’s approach, contrasting cases were given first; in our studies, conceptual
instruction was given first. In both sets of studies, the combined approach was successful. This demonstrates that
the contrasting cases/salient features approach is a powerful technique for remediating conceptual
misconceptions, and one that can be applied in a wide variety of curricular settings.

Endnotes
(1) In discrete bar graphs and most other graphical representations, categorical and nominal variables are represented in the same fashion.
(2) Unlike the variable choice error, the nominalization error’s frequency has been fairly unstable across studies – determining why this is the

case will be an interesting question for future research.
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