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Abstract. Recent research has indicated that misuse of intelligent tutoring 
software is correlated with substantially lower learning. Students who fre-
quently engage in behavior termed “gaming the system” (behavior aimed at ob-
taining correct answers and advancing within the tutoring curriculum by sys-
tematically taking advantage of regularities in the software’s feedback and 
help) learn only 2/3 as much as similar students who do not engage in such be-
haviors. We present a machine-learned Latent Response Model that can iden-
tify if a student is gaming the system in a way that leads to poor learning. We 
believe this model will be useful both for re-designing tutors to respond appro-
priately to gaming, and for understanding the phenomenon of gaming better.  

1   Introduction 

There has been growing interest in the motivation of students using intelligent tutor-
ing systems (ITSs), and in how a student’s motivation affects the way he or she inter-
acts with the software. Tutoring systems have become highly effective at assessing 
what skills a student possesses and tailoring the choice of exercises to a student’s 
skills [6,14], leading to curricula which are impressively effective in real-world class-
room settings [7]. However, intelligent tutors are not immune to the motivational 
problems that plague traditional classrooms. Although it has been observed that stu-
dents in intelligent tutoring classes are more motivated than students in traditional 
classes [17], students misuse intelligent tutoring software in a way that suggests less 
than ideal motivation [1,15]. In one recent study, students who frequently misused 
tutor software learned only 2/3 as much students who used the tutor properly, control-
ling for prior knowledge and general academic ability [5]. Hence, intelligent tutors 
which can respond to differences in student motivation as well as differences in stu-
dent cognition (as proposed in [9]) may be even more effective than current systems. 

Developing intelligent tutors that can adapt appropriately to unmotivated students 
depends upon the creation of effective tools for assessing a student’s motivation. Two 
different visions of motivation’s role in intelligent tutors have resulted in two distinct 
approaches to assessing motivation. In the first approach, increased student motiva-
tion is seen as an end in itself, and the goal is to create more empathetic, enjoyable, 



and motivating intelligent tutoring systems. In order to do this, it is desirable to have 
the richest possible picture of a student’s current motivational state – for instance, de 
Vicente and Pain have developed a model that classifies a student’s motivational state 
along 9 axes [8]. 

An alternate approach focuses on motivation as a factor which affects learning; 
improving motivation is viewed primarily as a means to improving learning. Investi-
gating motivation in this fashion hinges upon determining which motivation-related 
behaviors most strongly affect learning, and then understanding and assessing those 
specific behaviors and motivations. For instance, Mostow and his colleagues have 
identified that some students take advantage of learner-control features of a reading 
tutor to spend the majority of their time playing rather than working, or to repeatedly 
re-read stories they already know by heart [15]. Another motivation-related behavior 
is “help abuse”, where a student quickly and repeatedly asks for help until the tutor 
gives the student the correct answer, often before the student attempts the problem on 
his or her own [18]. Aleven and Koedinger have determined that seeking help before 
attempting a problem on one’s own is negatively correlated to learning, and have 
worked to develop a model of student help-seeking that can be used to give feedback 
to students on how to use help more effectively [1].  

In [5], we presented a study on a category of strategic behavior, termed “gaming 
the system”, which includes some of the motivation-related behaviors discussed 
above. Gaming the system is behavior aimed at performing well in an educational 
task by systematically taking advantage of properties and regularities in the system 
used to complete that task, rather than by thinking about the material. Students in our 
study engaged in two types of gaming the system: help abuse and systematic trial-
and-error. We investigated these phenomena by observing students for two class 
periods as the students used a tutor lesson on scatterplot generation, using methods 
adapted from past quantitative observational studies of student off-task behavior in 
traditional classrooms [cf. 12]. Each student’s behavior was observed a number of 
times during the course of each class period. The students were observed in a specific 
order determined before the class began in order to prevent bias towards more inter-
esting or dramatic events. In each observation, each student’s behavior was coded as 
being one of the following categories: working in the tutor, talking on-task, talking 
off-task, silently off-task (for instance, surfing the web), inactive (for instance, 
asleep), and gaming the system. 

We found that a student’s frequency of gaming was strongly negatively correlated 
with learning, but was not correlated with the frequency of other off-task behavior; 
nor was other off-task behavior significantly correlated with learning, suggesting that 
not all types of low motivation are equivalent in their effects on student learning with 
ITSs. The evidence from this study was neutral as to whether gaming was harmful in 
and of itself (by hampering the learning of the specific skills gamed) or whether it 
was merely symptomatic of non-learning goals [cf. 3].  

Understanding why students game the system will be essential to deciding how the 
system should respond. Ultimately, though, whatever remediation approach is chosen, 
it is likely to have costs as well as benefits. For instance, preventive approaches, such 
as changing interface widgets to make them more difficult to game or delaying suc-



cessive levels of help to prevent rapid-fire usage1, may reduce gaming, but at the cost 
of making the tutor more frustrating and less time-efficient for other students. Since 
many students use help effectively [18] and seldom or never game the system [5], the 
costs of using such an approach indiscriminately may be higher than the rewards. 
Whichever approach we take to remediating gaming the system, the success of that 
approach is likely to depend on accurately and automatically detecting which students 
are gaming the system and which are not.  

In this paper, we report progress towards this goal: we present and discuss a ma-
chine-learned Latent Response Model (LRM) [13] that is highly successful at discern-
ing which students frequently game the system in a way that is correlated with low 
learning. Cross-validation shows that this model should be effective for other students 
using the same tutor lesson. Additionally, this model corroborates the hypothesis in 
Baker et al 2004 that students who game the system (especially those who show the 
poorest learning) are more likely to do so on the most difficult steps.  

2   Methods 

2.1   Data Sources  

In order to develop an algorithm to detect that a student is gaming the system, we 
combined three sources of data on student performance and behavior in a cognitive 
tutor lesson teaching about scatterplot generation [4]. All data was drawn from a 
group of 70 students using that cognitive tutor lesson as part of their normal mathe-
matics curricula. 

The first source of data was a log of every action each student performed while us-
ing the tutor. Each student performed between 71 and 478 actions within the tutor. 
For each action, we distilled 24 features from the log files. The features were: 

 
• The tutoring software’s assessment of the action – was the action correct, incor-

rect and indicating a known bug (procedural misconception), incorrect but not 
indicating a known bug, or a help request2? (represented as 3 binary variables) 

• The type of interface widget involved in the action – was the student choosing 
from a pull-down menu, typing in a string, typing in a number, plotting a point, 
or selecting a checkbox? (represented as 4 binary variables) 

• The tutor’s assessment, post-action, of the probability that the student knew the 
skill involved in this action, called “pknow” (derived using the Bayesian knowl-
edge tracing algorithm in [6]). 

• Was this the student’s first attempt to answer (or get help) on this problem step? 

                                                           
1 A modification currently in place in the commercial version of Cognitive Tutor Algebra. 
2 Due to an error in tutor log collection, we only obtained data about entire help requests, not 

about the internal steps of a help request.  



• “Pknow-direct”, a feature drawn directly from the tutor log files (the previous 
two features were distilled from it). If the current action is the student’s first at-
tempt on this problem step, then pknow-direct is equal to pknow, but if the stu-
dent has already made an attempt on this problem step, then pknow-direct is -1. 
Pknow-direct allows a contrast between a student’s first attempt on a skill he/she 
knows very well and a student’s later attempts.  

• How many seconds the action took (both the actual number of seconds, and the 
standard deviations from the mean time taken by all students on this problem step 
across problems.) 

• How many seconds were spent in the last 3 actions, or 5 actions. (two variables) 
• How many seconds the student spent on each opportunity to practice this skill, 

averaged across problems. 
• The total number of times the student has gotten this specific problem step 

wrong, across all problems. (includes multiple attempts within one problem) 
• The number of times the student asked for help or made errors at this skill, in-

cluding previous problems. 
• How many of the last 5 actions involved this problem step. 
• How many times the student asked for help in the last 8 actions. 
• How many errors the student made in the last 5 actions. 

 
The second source of data was the set of human-coded observations of student be-

havior during the lesson. This gave us the approximate proportion of time each stu-
dent spent gaming the system, G0…G69.  

Since it is not clear that all students game the system for the same reasons or in ex-
actly the same fashion, we used student learning outcomes as a third source of data. 
We divided students into three sets: a set of 53 students never observed gaming the 
system, a set of 9 students observed gaming the system who were not obviously hurt 
by their gaming behavior, having either a high pretest score or a high pretest-posttest 
gain (this group will be referred to as GAMED-NOT-HURT), and a set of 8 students 
observed gaming the system who were apparently hurt by gaming, scoring low on the 
post-test (referred to as GAMED-HURT). It is important to distinguish GAMED-
HURT students from GAMED-NOT-HURT students, since these two groups may 
behave differently (even if an observer sees their actions as similar), and it is more 
important to target interventions to the GAMED-HURT group than the GAMED-
NOT-HURT group. This sort of distinction has been found effective for developing 
algorithms to differentiate cheating from other categories of behavior [11]. 

2.2 Data Modeling 

Using these three data sources, we trained a density estimator to predict how fre-
quently an arbitrary student gamed the system. The algorithm we chose was forward-
selection [16] on a set of Latent Response Models (LRM) [13]. LRMs provide two 
prominent advantages for modeling our data: First, they offer excellent support for 
integrating multiple sources of data, including both labeled and unlabeled data. Sec-



ondly, an LRM’s results can be interpreted much more easily by humans than the 
results of most neural network, support vector machine, or decision tree algorithms, 
facilitating thought about design implications.   

The set of possible parameters was drawn from linear effects on the 24 features 
discussed above (parameter*feature), quadratic effects on those 24 features (parame-
ter*feature2), and 23x24 interaction effects between features (parameter* fea-
tureA*featureB). During model selection, the potential parameter was added that most 
reduced the mean absolute deviation between our model predictions and the original 
data, using iterative gradient descent to find the best value for each candidate parame-
ter. Forward-selection continued until no parameter could be found which appreciably 
reduced the mean absolute deviation. The best-fitting model had 4 parameters, and no 
model considered had more than 6 parameters. 

Given a specific model, the algorithm first predicted whether each individual tutor 
action was an instance of gaming the system or not. Given a set of n parameters 
across all students and actions, with each parameter αi associated with feature Xi (or 
Xi

2, or Xi Yi.), a prediction Pm as to whether action m was an instance of gaming the 
system was computed as Pm = α0 X0 + α1 X1 + α2 X2 + … + αn Xn. Each prediction Pm 
was then thresholded using a step function, such that if  Pm ≤ 0.5, P'm = 0, otherwise 
P'm = 1.  This gave us a classification P'm for each action within the tutor. We then 
determined, for each student, what proportion of that student’s actions P'm  were classi-
fied as gaming, giving us a set of values G'0…G'69.  By comparing the values G'0…G'69 

to the observed proportions of time each student spent gaming the system, G0…G69, 
we computed each candidate model’s deviation from the original data. These devia-
tions were used during iterative gradient descent and model selection, in order to find 
the best model parameters.  

Along with finding the best model for the entire data set, we conducted Leave One 
Out Cross Validation (LOOCV) to get a measure of how effectively the model will 
generalize to students who were not in the original data set (the issue of how well the 
model will generalize to different tutor lessons will be discussed in the Future Work 
section). In doing a LOOCV, we fit to sets of 69 of the 70 students, and then investi-
gated how good the model was at making predictions about the 70th student.   

2.3   Classifier 

For the purpose of assigning interventions, we developed a classifier to identify 
which students are gaming and in need of an intervention. We did so by setting a 
threshold on how often the model perceives a student is gaming. Any student above 
this threshold is considered to be gaming, and all other students are considered not 
gaming. Given different possible thresholds, there is a tradeoff between correctly 
identifying gaming students (hits) and incorrectly identifying non-gaming students as  
gaming students (false positives), shown in the Receiver Operating Characteristic 
(ROC) curve in Figure 1. The classifier’s ability to distinguish gaming is assessed 
with an A' value, which gives the probability that if the model is given one gaming 
student and one non-gaming student, it will accurately identify which is which [10].  



3   Results 

3.1   Our Classifier’s Ability to Detect Gaming Students 

In this section, we discuss our classifier’s ability to detect which students game. All 
discussion is with reference to the cross-validated version of our model/classifier, in 
order to assess how well our approach will generalize to the population in general, 
rather than to just our sample of 70 students.   

Since most potential interventions will have side-effects and costs (in terms of 
time, if nothing else), it is important both that the classifier is good at correctly identi-
fying the GAMED-HURT students who are gaming and not learning, and that it 
rarely assigns an intervention to students who do not game. 

If we take a model trained to treat both GAMED-HURT and GAMED-NOT-
HURT students as gaming, it is significantly better than chance at classifying the 
GAMED-HURT students as gaming (A' =0.82, p<0.001). At the threshold value with 
the highest ratio between hits and false positives, this classifier correctly identifies 
88% of the GAMED-HURT students as gaming, while only classifying 15% of the 
non-gaming students as gaming. Hence, this model can be reliably used to assign 
interventions to the GAMED-HURT students. By contrast, the same model is not 
significantly better than chance at classifying the GAMED-NOT-HURT students as 
gaming (A' =0.57, p=0.58). 

Since it is more important to detect GAMED-HURT students than GAMED-NOT-
HURT students, it is conceivable that there may be extra leverage gained from  

 

 

Fig. 1. Empirical ROC Curves showing the trade-off between true positives and false positives, 
for the cross-validated model trained on both groups of gaming students.  

 



training a model only on GAMED-HURT students. In practice, however, a model 
trained only on GAMED-HURT students (A' =0.77) does no better at identifying the 
GAMED-HURT students than the model trained on both groups of students. Thus, in 
our further research, we will use the model trained on both groups of students to iden-
tify GAMED-HURT students.  

It is important to note that although gaming is negatively correlated to post-test 
score, our classifier is not just classifying which students fail to learn. Our model is 
not better than chance at classifying students with low post-test scores (A' =0.60, 
p=0.35) or students with low learning (low pre-test and low post-test) (A' =0.56, 
p=0.59). Thus, our model is not simply identifying all gaming students, nor is it iden-
tifying all students with low learning – it is identifying the students who game and 
have low learning: the GAMED-HURT students.  

3.2   Describing Our Model 

At this point, our primary goal for creating a model of student gaming has been 
achieved – we have developed a model that can accurately identify which students are 
gaming the system, in order to assign interventions. Our model does so by first pre-
dicting whether each of a student’s actions is an instance of gaming. Although the 
data from our original study does not allow us to directly validate that a specific step 
is an instance of gaming, we can investigate what our model’s predictions imply 
about gaming, and whether those predictions help us understand gaming better.  

The model predicts that a specific action is an instance of gaming when the expres-
sion shown in Table 1 is greater than 0.5.  

Feature F0,“ERROR-NOW, MANY-ERRORS-EACH-PROBLEM”,  identifies a 
student as more likely to be gaming if the student has already made at least one error 
on this problem step within this problem, and has also made a large number of errors 
on this problem step in previous problems. It identifies a student as less likely to be 
gaming if the student has made a lot of errors on this problem step in the past, but 
now probably understands it (and has not yet gotten the step wrong in this problem). 

Table 1. How the model predicts whether a specific action is an instance of gaming 

Name Coefficient Feature 
F0 :  “ERROR-NOW, 
MANY-ERRORS-EACH-
PROBLEM”

 

-0.0375 pknow-direct * 
   number of errors the student has  made on this 
   problem step (across all problems) 

F1 :  “QUICK-ACTIONS-
AFTER-ERROR”

 

+ 0.094 pknow-direct *  
   time taken, in SD above (+) or below (-) the mean    
   time for all students, on this problem step (across all  
   problems) 

F
2: 

:  “MANY--ERRORS-
EACH-PROBLEM-
POPUP”

 

+ 0.231 number wrong on this problem step (across all prob-
lems), 
  if the problem step uses a popup menu  

F3 : “SLIPS-ARE-NOT-
GAMING”

 

- 0.225 pknow * 
   how many errors the student made on last 5 actions 



Feature F1,“QUICK-ACTIONS-AFTER-ERROR”, identifies a student as more 
likely to be gaming if he or she has already made at least one error on this problem 
step within this problem, and is now making extremely quick actions. It identifies a 
student as less likely to be gaming if he or she has made at least one error on this 
problem step within this problem, but works slowly during subsequent actions, or if a 
student answers quickly on his or her first opportunity (in a given problem step) to 
use a well-known skill.   

Feature F2,“MANY-ERRORS-EACH-PROBLEM-POPUP”, indicates that making 
many errors across multiple problems is even more indicative of gaming if the prob-
lem-step involves a popup menu. In the tutor studied, popup menus are used for mul-
tiple choice questions where the responses are individually lengthy; but this enables a 
student to attempt each answer in quick succession.  

Feature F3,“SLIPS-ARE-NOT-GAMING”, identifies that if a student has a high 
probability of knowing a skill, the student is less likely to be gaming, even if he or 
she has made many errors recently. Feature F3 counteracts the fact that features F0 and 
F1 do not distinguish well-known skills from poorly-known skills, if the student has 
already made an error on the current problem step within the current problem. 

The model discussed above is trained on all students, but is highly similar to the 70 
models generated during cross-validation. Features F0, F2 and F3 appear in over 97% 
of the cross-validated models, and feature F1 appears in 71% of those models. No 
other feature was used in over 10% of the cross-validated models. 

One surprising aspect of this model is that none of the features involve student use 
of help. We believe that this is primarily an artifact of the tutor log files we obtained; 
current research in identifying help abuse relies upon considerable data about the 
timing of each internal step of a help request (cf. [2]). Despite this limitation, it is 
interesting that a model can accurately detect gaming without directly detecting help 
abuse. One possibility is that students who game the system in the ways predicted by 
our model also game the system in the other fashions observed in our original study. 

3.3   Further Investigations With Our Model 

One interesting aspect of our model is how it predicts gaming actions are distributed 
across a student’s actions. 49% of our model’s 21,520 gaming predictions occurred in 
clusters where at least 2 of the nearest 4 actions were also instances of gaming. To 
determine the chance frequency of such clusters, we ran a Monte Carlo simulation 
where each student’s instances of predicted gaming were randomly distributed across 
that student’s 71 to 478 actions. In this simulation, only 5% (SD=1%) of gaming 
predictions occurred such clusters. Hence, our model predicts that substantially more 
gaming actions occur in clusters than one could expect from chance.  

Our model also suggests that there is at least one substantial difference between 
when GAMED-HURT and GAMED-NOT-HURT students choose to game – and this 
difference may explain why the GAMED-HURT students learn less. Compare the 
model’s predicted frequency of gaming on “difficult skills”, which the tutor estimated 
the student had under a 20% chance of knowing (20% was the tutor’s estimated prob-



ability that a student knew a skill upon starting the lesson), to the frequency of gam-
ing on “easy skills”, which the tutor estimated the student had over a 90% chance of 
knowing. The model predicted that students in the GAMED-HURT group gamed 
significantly more on difficult skills (12%) than easy skills (2%), t(7)=2.99, p<0.05 
for a two-tailed paired t-test. By comparison, the model predicted that students in the 
GAMED-NOT-HURT group did not game a significantly different amount of the 
time on difficult skills (2%) than on easy skills (4%), t(8)=1.69, p=0.13. This pattern 
of results suggests that the difference between GAMED-HURT and GAMED-NOT-
HURT students may be that GAMED-HURT students chose to game exactly when it 
will hurt them most. 

4   Future Work and Conclusions 

At this point, we have a model which is successful at recognizing students who game 
the system and show poor learning. As it has good results under cross-validation, it is 
likely that it will generalize well to other students using the same tutor. 

We have three goals for our future work. The first goal is to study this phenomena 
in other middle school mathematics tutors, and to generalize our classifier to those 
tutors. In order to do so, we will collect observations of gaming in other tutors, and 
attempt to adapt our current classifier to recognize gaming in those tutors. Comparing 
our model’s predictions about student gaming to the recent predictions about help 
abuse in [2] is likely to provide additional insight and opportunities. The second goal 
is to determine more conclusively whether our model is actually able to identify ex-
actly when a student is gaming. Collecting labeled data, where we can link the precise 
time of each observation to the actions in a log file, will assist us in this goal. The 
third goal is to use this model to select which students receive interventions to reduce 
gaming. We have avoided discussing how to remediate gaming in this paper, in part 
because we have not completed our investigations into why students game. Designing 
appropriate responses to gaming will require understanding why students game. 

Our long-term goal is to develop intelligent tutors that can adapt not only to a stu-
dent’s knowledge and cognitive characteristics, but also to a student’s behavioral 
characteristics. By doing so, we may be able to make tutors more effective learning 
environments for all students. 
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