

Example-Tracing Tutors: A New Paradigm for Intelligent
Tutoring Systems

Vincent Aleven, Bruce M. McLaren, Jonathan Sewall, Kenneth R. Koedinger.

Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
aleven@cs.cmu.edu, bmclaren@cs.cmu.edu, sewall@cs.cmu.edu, koedinger@cmu.edu

Abstract. Key success criteria for an ITS authoring tool are that (1) the tool supports the creation of effective
tutoring systems, (2) the tool can be used to build tutors across a wide range of application domains, (3)
authoring with the tool is cost-effective, (4) the tool supports easy deployment and delivery of tutors in a variety
of technical contexts, (5) tutors created with the tool are maintainable, and (6) if tutors are used in a research
context, the tool must support research-related functionality. The Cognitive Tutor Authoring Tools (CTAT)
address all of these requirements to a substantial degree, fully meeting most of them.

CTAT supports the creation of both Cognitive Tutors (Koedinger & Corbett, 2006) and a newer type of
tutors called example-tracing tutors. This paper focuses on the latter. Example-tracing tutors evaluate student
behavior by flexibly comparing it against examples of correct and incorrect problem-solving behaviors.
Example-tracing tutors are capable of sophisticated tutoring behaviors: they provide step-by-step guidance on
complex problems while recognizing multiple student strategies and maintaining multiple interpretations of
student behavior. On that basis, they should be deemed intelligent tutoring systems. Example-tracing tutors can
be built without programming, through drag-and-drop techniques and programming by demonstration. Example-
tracing tutors have been built and used in real educational settings for a wide range of application areas.

Development time estimates from a large number of projects that have used CTAT suggest that CTAT
improves the cost-effectiveness of ITS development by a factor of 4-8, compared to “historical” estimates of
tutor development time. Although there is a lot of variability in these kinds of estimates, they nonetheless
support our hope that lowering the skill requirements for tutor creation is a key step toward widespread use of
ITS technology. The main contributions of the work are the example-tracing tutor technology and tools for
building these types of tutors without programming.

Keywords. authoring tools, example-tracing tutors, cognitive tutors, ITS architectures, behavior of tutoring
systems

INTRODUCTION

Intelligent tutoring systems (ITSs) have been shown to lead to impressive improvement in student
learning in a range of domains, using a variety of different approaches (Beal, Walles, Arroyo, &
Woolf, 2007; Graesser, Chipman, Haynes, & Olney, 2005; Koedinger, Anderson, Hadley, & Mark,
1997; Martin & Mitrovic, 2002; Mostow & Beck, 2007; Rickel & Johnson, 1999; VanLehn, Lynch,
Schultz, Shapiro, Shelby, et al., 2005; Mitrovic, McGuigan, Martin, Suraweera, Milik, & Holland,
2008). However, they have traditionally been difficult to build (e.g., Murray, 2003; Anderson, 1993).
Many ideas have been offered to make ITSs easier to build: ITS design patterns (Harrer, Pinkwart,
McLaren, & Scheuer, in press; Devedzic & Harrer, 2005), reusable components and learning objects
(Koedinger, Suthers, & Forbus, 1999; Ritter & Koedinger, 1997; Ritter, Blessing, & Wheeler, 2003),

community authoring (Aleahmad, Aleven, & Kraut, 2008), use of off-the-shelf tools as an integrated
part of the ITS development process (e.g., Aleven, Sewall, McLaren, & Koedinger, 2006), and
authoring tools (e.g., Murray, Blessing & Ainsworth, 2003). In our view, all of these developments
and approaches are likely to contribute to making ITS technology widespread in the years ahead. We
expect that authoring tools will turn out to be the centerpiece of that endeavor.

Many ITS authoring systems have been developed, over 25 by most counts, since the earliest days
of intelligent tutoring systems (Murray, 2003). Typically, each authoring tool focuses on a particular
kind of ITSs, such as constraint-based tutors (Mitrovic et al., 2006) and model-tracing tutors
(Blessing, Gilbert, Ourada, & Ritter, 2007). In addition to trying to make tutors easier to build, there
have been a variety of objectives behind ITS authoring systems, including helping authors transfer
knowledge more accurately into the resulting tutoring system, supporting good (and consistent) design
principles, and enabling rapid prototyping of ITSs. Different tools have focused on different aspects
of tutoring, for instance, support of different tutoring strategies (Ainsworth et al., 2003), tutoring
within a simulation context (Munro, 2003), supporting multiple knowledge types (Halff et al., 2003),
and use of hypermedia (Brusilovsky, 2003).

Our “holy grail” is to create cost-effective tools that non-programmers can use to create and
deliver, for real use, sophisticated tutors, a goal we have taken significant steps toward achieving. We
report on our 6-plus years of experience with a suite of authoring tools called the Cognitive Tutor
Authoring Tools (CTAT). Our experience is not just as tool developers, but also as users of our own
tools, as consultants to learning science researchers who build tutors as a vehicle for learning science
experiments, as consultants to developers of tutors for real-world use, as instructors of students
learning about intelligent tutoring systems through practice with these tools, and finally, as academic
advisors to graduate students using the tools for their research projects.

CTAT supports development of two types of ITSs, Cognitive Tutors (Anderson, Corbett,
Koedinger, & Pelletier, 1995; Koedinger & Aleven, 2007; Koedinger & Corbett, 2006) and a much
newer type of tutors called example-tracing tutors (Koedinger, Aleven, Heffernan, McLaren, &
Hockenberry, 2004). Cognitive Tutors rely on cognitive theory and cognitive modeling; they require
sophisticated AI programming skills to develop. They have a long history and are being used
extensively in US schools (in more than 2,600 of them, at the time of this writing). Cognitive Tutors
for high-school mathematics have proven in many studies to improve student learning (Koedinger &
Aleven, 2007)1. Example-tracing tutors are often (though not always) behaviorally indistinguishable
from Cognitive Tutors (Aleven, Sewall, McLaren, & Koedinger, 2006; Koedinger et al., 2004). As
discussed further below, example-tracing tutors implement many of the behaviors typical of ITSs
(VanLehn, 2006). In fact, they go well beyond VanLehn’s basic requirement that in order to be
considered an ITS, a system must provide step-by-step guidance within problem-solving activities.
Example-tracing tutors are much easier to build than Cognitive Tutors. They can be built entirely
without programming, namely, through drag-and-drop and programming by demonstration techniques
(Lieberman, 2001; Myers, McDaniel, & Kosbie, 1993). CTAT has been used to build a diverse set of
example-tracing tutors that have been used in real educational settings (see for example Appendix A or
the many figures in this paper). In this paper, we focus on example-tracing tutors. We consider the
main contributions of the work presented in this paper to be both the example-tracing tutor technology
and the tools for building these kinds of tutors without needing to do any programming.

1 The Cognitive Tutors for high-school and middle-school mathematics that were built in our lab pre-date CTAT.
They formed the inspiration for developing a set of authoring tools.

The main idea behind example-tracing tutors is straightforward. Just as model-tracing tutors work
by tracing and interpreting student behavior with reference to a cognitive model (an executable
simulation of student thinking that can solve problems in the way that students will learn how to),
example-tracing tutors work by interpreting student behavior with reference to specific examples of
problem-solving behavior. These examples comprise acceptable solution paths for a given tutor
problem (i.e., the solution space for a given problem in the sense of Newell and Simon (1972)). Using
CTAT, these behavioral examples can be created by teachers or subject-matter experts without
programming – simply by demonstrating how problems should be solved. Example-tracing tutors were
originally conceived as a tool for doing cognitive task analysis and for rapidly prototyping tutor
behavior en route to developing a Cognitive Tutor. However, a number of extensions to the basic idea
have turned it into a viable methodology for building tutors. In particular, we have added a number of
techniques for flexibly matching student behavior against behavioral examples, so that a tutor can
recognize a wide range of correct student behavior, rather than only the examples exactly as they were
demonstrated.

CTAT belongs to a category of authoring tools (Murray, 2003) that focus on creating a model of
domain expertise that the tutoring system uses as a comparison point for student behavior. The domain
model is typically executable (i.e., one can run the model to solve a given problem), and student
actions that diverge from the model are used to provide hints and generate feedback. Other examples
of authoring systems that belong to this category are the Cognitive Model SDK (Blessing et al., 2007),
which supports authoring of an ACT-R-like cognitive model, and DIAG (Towne, 2003), which
supports the development of a diagnostic model as the basis for tutoring. CTAT can be considered the
“next generation” of DEMONSTR8, an early authoring system prototype that pioneered the idea of
developing tutors through programming-by-demonstration (Blessing, 2003). DEMONSTR8 pre-dates
example-tracing tutors; it focused on rule-based cognitive modeling and model-tracing tutors. To the
best of our knowledge, however, it was not used to create a real-world tutoring system. Another early
ITS authoring system that pioneered programming by demonstration techniques is DISCIPLE (Tecuci
& Keeling, 1999). DISCIPLE was used to create a tutor for history problem solving that has been
evaluated in an actual middle-school classroom, but we are not aware that DISCIPLE has seen much
use since. Both systems use (interactive) machine learning techniques to learn from examples and
explanations provided by an author. Example-tracing tutors, by contrast, directly use behavioral
examples to provide tutoring, without the use of machine learning. Research is underway within the
CTAT group on using machine learning to induce rule-based cognitive models from author-
demonstrated examples (Matsuda, Cohen, Sewall, Lacerda, & Koedinger, 2007; Matsuda, Cohen, &
Koedinger, 2005). In the current paper, however, we focus on example-tracing tutors.

CTAT is perhaps furthest down the path of providing a tool that non-programmers can use to
develop real-world intelligent tutoring systems, although it is not the only such tool. The Assistments
authoring tool (Razzaq et al., 2005) and REDEEM (Ainsworth et al., 2003) also support tutor
authoring without programming, but of simpler tutors than CTAT. ASPIRE (Mitrovic et al., 2006) is
another ITS authoring that makes it possible for non-programmers to create intelligent tutors, in
particular constraint-based tutors. Using ASPIRE, complete constraint-based tutors can be built
without programming, including a text-based user interface, a domain ontology, and a set of
constraints used to evaluate student solutions. However, ASPIRE, unlike CTAT, is not integrated with
a drag-and-drop interface development tool (i.e., off-the-shelf development tools such as NetBeans or
Flash, as discussed below). With CTAT’s predefined sets of tutor-enabled widgets, an author has

many more options for creating a user interface that “makes thinking visible” (Anderson, Corbett,
Koedinger, & Pelletier, 1995) without needing to do any programming.

In this paper, we describe the behavior and inner workings of example-tracing tutors, and
illustrate how they can be developed with CTAT. We also provide evidence of CTAT’s effectiveness
in the form of (a) “vote-with-your-feet” evidence (i.e., widespread use), and (b) estimates of tutor
development times. We offer a number of general requirements for ITS authoring tools and discuss
how CTAT (and specifically, its facilities for creating example-tracing tutors) stacks up with respect to
these requirements. An authoring tool suite should:

1. support authoring of effective, computer-based tutors;
2. facilitate the development of tutors across a range of application domains;
3. support cost-effective tutor development (i.e., minimize time and money, compared to using

different tools/methodologies);
4. support delivery of tutors in a wide variety of technical contexts characterized by different

interface technologies, content management systems, e-learning frameworks, student
management systems, and web technologies;

5. create tutors that are easy to maintain (e.g., easy to modify when requirements change);
6. support research use of tutors through such functionality as logging of student-tutor

interactions, application of different treatments to different students, and on-line assessment.

These requirements represent some of the lessons learned in the CTAT project. We do not expect

them to be controversial, although it is perhaps surprising that only one of the six requirements focuses
on tutoring behavior (namely, requirement #1). During the CTAT project, we shifted from an early
focus on “affordable authoring” of tutor behavior to the more encompassing problems of easy
deployment, delivery, and maintenance of tutors. This shift was driven largely by the needs of CTAT
users who were creating tutors for use in real educational settings.

THE BEHAVIOR OF EXAMPLE-TRACING TUTORS

Like many other ITSs, example-tracing tutors help students acquire a complex cognitive skill through
guided practice (but see duBoulay, 2006 for a broader notion of ITSs). In this section, we establish
that example-tracing tutors are capable of a large subset of the behaviors catalogued in Kurt
VanLehn’s (2006) paper “The Behavior of Tutoring Systems,” the same subset, in fact, as that covered
by Cognitive Tutors. (This is not to say that there are no behavioral differences between example-
tracing tutors and Cognitive Tutors. Ultimately, Cognitive Tutors are more flexible. However, this
flexibility is not always needed, and comes at the considerable expense of having to create a rule-
based cognitive model. We briefly return to this topic in a later section.) In the next section, we show
further that example-tracing tutors are capable of sophisticated behaviors not differentiated in
VanLehn’s categories. We illustrate our argument with example-tracing tutors that have been
developed in our lab and that have been used in research studies in real educational settings, a tutor in
the domain of chemistry (stoichiometry – see Figure 1), and one in the domain of 6th-grade fractions
(see Figure 2).

Figure 1: An example-tracing tutor for high-school stoichiometry. This tutor has been used in
several studies in real high school classrooms. Approximately 200 students have used this tutor for an

average of approximately 1 ¼ hours (McLaren, Lim, & Koedinger, 2008a).

Figure 2: An example-tracing tutor for 6th-grade fractions learning. This tutor has been used in a
study in a middle school with 130 participating students, who used the tutor for 2.5 hours.

As is typical of ITSs, CTAT-built tutors provide an interface that makes thinking visible (e.g.,
Anderson et al.,1995), in the sense that they lay out (or prompt students to enter) intermediate steps in
the solution of a problem. For example, in the stoichiometry tutor of Figure 1, the student is prompted
to provide terms of a ratio equation and elements of each term. In the fractions tutor of Figure 2,
students are prompted to add fractions by first converting them to a common denominator using an
interactive number line. In addition to an interface that makes thinking visible, example-tracing tutors
provide various types of guidance that are typical of ITSs, divided by VanLehn (2006) into an “inner
loop” and “outer loop” (see Table 1). The outer loop pertains to the selection of appropriate problems
for a student to solve. The inner loop denotes the support that the tutor provides a student within a
single problem, including step-by-step guidance while the student solves the problem and assistance
with end-of-problem reflection. We review systematically which of the main inner and outer loop
behaviors CTAT supports, because we believe that a good way of understanding an authoring tool is to
look at the behaviors of the tutors that can be built with them.

Table 1: CTAT’s Fall 2008 coverage of the categories of tutoring behavior identified by VanLehn (2006).

Inner loop (within-problem guidance)
+ Minimal feedback on steps - classified as correct, incorrect, or suboptimal
+ Immediate feedback
+/– Delayed feedback – not built-in, but certain forms can be authored
– Demand feedback
+ Error-specific feedback
+ Hints on the next step
+ Assessment of knowledge
– End-of-problem review of the solution

Outer loop (problem selection options) Legend

– Student picks + CTAT supports it

+ Fixed sequence (+) CTAT will soon support it

– Mastery learning +/– CTAT supports a limited form of it

(+) Macroadaptation – CTAT does not support it

With respect to the inner loop, example-tracing tutors provide correctness feedback on all

problem-solving steps by the student, and may provide specific feedback messages for commonly
occurring errors. This feedback is given after each step and is therefore immediate feedback. The
CTAT example-tracing algorithm does not support delayed feedback, although some specific ways of
delaying feedback can be authored within CTAT, as illustrated below with a demo tutor for factoring
quadratics (see also Roll et al., 2006; 2007). Second, example-tracing tutors provide next-step hints at
the student’s request. Third, they assess student knowledge. Following the ACT-R theory of cognition
and learning (Anderson & Lebière, 1998), and following the way Cognitive Tutors operate (e.g.,
Koedinger & Aleven, 2007; Koedinger & Corbett, 2006), we consider a complex cognitive skill to be
composed of many fine-grained “knowledge components” that can be acquired and strengthened

separately. In its inner loop, an example-tracing tutor maps student problem-solving behavior onto
knowledge components, based on a mapping between problem steps and knowledge components
provided by the author. Finally, CTAT does not have built-in facilities to support students in reviewing
and reflecting on their solution at the end of a problem.

With respect to the outer loop (i.e., the way in which problems are selected for students to solve),
CTAT currently supports fixed problem sequences only, where the tutor is in charge of problem
selection. CTAT will soon be extended to provide a form of individualized problem selection based on
Corbett and Anderson’s (1995) Bayesian “knowledge tracing” algorithm. Using this algorithm, CTAT-
based tutors will track how well the student masters each knowledge component targeted in a
particular unit of instruction, and will select problems that involve unmastered knowledge
components. VanLehn (2006) refers to this kind of task selection based on fine-grained knowledge
assessment as “macroadaptation,” although to make matters confusing, in the Cognitive Tutor
literature, it has always been referred to as “cognitive mastery learning” (Corbett & Anderson, 1995).
CTAT does not provide facilities for what VanLehn calls “mastery learning,” which under his
definition is a less-sophisticated form of problem selection based on more aggregate or coarse-grained
measures of student performance. At this point, there are no plans for adding this kind of problem
selection algorithm to CTAT.

According to VanLehn (2006), the existence of an inner loop is what defines ITSs vis-à-vis other
forms of computer-based instruction. However, we view this definition as overly broad, as it
encompasses very simple forms of computer-based instruction (for example, simple tutors for two-step
problems that do not allow for multiple different answers) that belie the historic roots of ITSs in
artificial intelligence, cognitive science, and investigations into the epistemology of knowledge (e.g.,
Wenger, 1987). We propose that example-tracing tutors should be regarded as ITSs not just because
they have an inner loop, but because of the flexibility with which they assess student behavior within
the inner loop: They are capable of providing guidance with respect to multiple strategies for solving a
given problem, regardless of which strategy the student decides to take. Further, example-tracing
tutors are capable of entertaining multiple interpretations of student behavior, when a student action
can be interpreted in multiple ways. These properties are illustrated below.

HOW EXAMPLE-TRACING TUTORS WORK

In this section, we focus on the workings of the inner loop of example-tracing tutors, the way in
which they provide step-by-step guidance to students for a given problem. As mentioned, example-
tracing tutors interpret a student’s solution steps (and hint requests) with respect to a predefined
solution graph for the given problem, which, following Newell and Simon (1972), we call a “behavior
graph.” As discussed in the next section, these graphs can be created without programming. We
review the properties of behavior graphs, the process of interpreting student behavior against such a
graph (called “example tracing,” by analogy to model tracing), and the mechanisms in CTAT that
enhance the flexibility of the example-tracing process, so that a wider range of student behavior can be
recognized as correct than just literally the sequence(s) of steps captured in the behavior graph.

A behavior graph is a directed, acyclic graph that represents acceptable ways of solving a
problem. The links in the graph represent problem-solving actions, and the nodes represent problem-
solving states. A behavior graph may contain multiple paths, corresponding to different ways of
solving a problem. It may also contain links that represent incorrect behavior, marked as such by the

author who created the graph. Let us consider, for example, the stoichiometry problem shown in
Figure 3. The stoichiometry tutor is an example-tracing tutor developed using CTAT that has been
used in a series of classroom studies (McLaren, Lim, & Koedinger, 2008a; 2008b, McLaren et al.,
2007, McLaren et al., 2006). Stoichiometry involves basic mathematics to solve elementary chemistry
problems; solving problems in this domain requires applying concepts, such as unit conversions and
molecular weight, in solving equations. The behavior graph of Figure 4 represents a section of the
solution to the stoichiometry problem in Figure 3.

Figure 3: The stoichiometry tutor user interface2

The optimal solution to this problem, according to a chemistry instructor, is:

1.216 kg COH4 × (1000 g COH4 / 1 kg COH4)
 × (1 mol COH4 / 32.04 g COH4)
 × (1 mol O2 / 2 mol COH4)
 = 18.98 mol O2

That is, the student is expected to take the given value (1.216 kg COH4) and multiply it by three

terms in order to calculate the final answer of 18.98 mol O2: first by a term that represents a unit
conversion (1000 g COH4 / 1 kg COH4, as has already been done in Figure 3), then by a term that
represents the molecular weight of COH4 (32.04 g COH4 / mol COH4), and finally by a term that
represents a stoichiometric relationship (1 mol O2 / 2 mol COH4). The substances and units in the
numerators and denominators of the terms cancel each other out, leading to a non-ratio as the final
answer. There are other ways of solving the problem. Since the solution involves a series of

2 There is no subscript notation in the stoichiometry tutor, as one of the reviewers remarked. Chemistry teachers
who have worked with us advise that the notation used in this tutor is standard in other software tools and does
not distract students. We are working to upgrade CTAT’s facilities to handle a wider range of mathematical
notation, which would be useful across a range of tutors.

multiplicative terms, the order of the terms does not strictly matter. Thus it is perfectly valid, for
example, to swap the information entered as the third and fourth terms:

1.216 kg COH4 × (1000 g COH4 / 1 kg COH4)
 × (1 mol O2 / 2 mol COH4)
 × (1 mol COH4 / 32.04 g COH4)
 = 18.98 mol O2

Chemistry instructors, however, recommend the first strategy – to apply terms in an order that

allows cancellation of parts (e.g., units and substance) of prior terms. For instance, the unit
conversion (1000 g COH4 / 1 kg COH4, i.e., the second term in each of the equations shown above) is
the best initial multiplier, since it allows the cancellation of parts of the first term (i.e., the given
value), as shown by the “strike outs” in the interface of Figure 3.

Figure 4: Part of an example behavior graph for the stoichiometry tutor

The instructor-recommended solution and the alternative solution are both represented in the
behavior graph for this problem (see Figures 4 and 5 – the links representing correct actions are
indicated with green text on the label, but this is not visible in the print version of this article). The
instructor-recommended path is shown on the right. The boldface arrows indicate that the author has
designated this path as representing the preferred way of solving this problem. The alternative solution
path described above is encoded in the behavior graph as the path on the left, branching off of the
preferred path in node MW_UMC. (CTAT authors can name the states in behavior graph. Even if only

a few well-chosen landmark states have meaningful names, it is considerably easier to navigate larger
graphs.)

Let us consider in more detail how the example tracer uses the graph to monitor student problem
solving and provide feedback. In the terminology of VanLehn (2006), the example tracer serves as
step analyzer. It classifies each student action in the tutor’s interface as correct, incorrect or
suboptimal by flexibly comparing it against the actions stored in the graph. It also keeps track of the
student’s problem state by recording which links in the graph the student has “visited.” Specifically, it
keeps track of the viable paths through the graph, meaning start-to-finish paths that are consistent with
the student’s observed behavior thus far3. In order for a student action to be accepted as correct, it must
correspond to an as-yet unvisited link on a viable path, and that link must represent correct behavior.
(We use the term viable link to refer to such links.) Thus, once on a viable path, the student must stay
on that path. If the student has visited a complete path through the graph, she has completed the
problem.

Figure 5: Complete stoichiometry behavior graph (zoomed-out view); this behavior graph is at
the upper end of complexity of what has been achieved with CTAT

As one measure of the flexibility of the example-tracing process, the example tracer is capable
(by means of the algorithm described above) of following a student through a problem even if the
graph contains multiple paths, regardless of which of them the student actually takes. For example,
suppose the student, working on the stoichiometry problem discussed above, has entered the second

3 More specifically, a path is viable if all student actions that have been deemed correct so far correspond to links
on this path. It is viable in the sense that it is a viable interpretation of the student behavior so far.

term, and is about to enter the third term. That is, the student is at the point in the problem where the
expert and non-expert solutions paths diverge (represented by state MW_UMC in the graph, shown in
Figure 4). At this point, both the start-to-finish path through the left branch, as well as that through the
right branch, are viable paths, since all student actions that have been accepted as correct occur on
both. Assume that the student enters the third term of the expert solution (1 mol COH4 / 32.04 g
COH4). The six required actions all appear on the right branch (the expert branch), but not all are
included on the left branch. Thus, after the tutor accepts these actions, the right branch is a viable path,
but the left branch has been ruled out as a viable path. If the student were to follow up with actions
that occur on the left branch but not on the right branch (such as, say, carelessly entering the same
information again, but now as the fourth term), the tutor will reject these actions. Conversely, if the
student (from the same state MW_UMC as mentioned above) goes down the non-preferred left path,
the tutor will accept his/her actions as correct, but will not allow him/her to revert to the path on the
right. In essence, once a path has become non-viable, it stays that way.

In addition to being able to follow students with respect to multiple paths, example-tracing tutors
are capable of following the student in the face of ambiguity as to how a student action should be
interpreted. This ambiguity occurs when a student action matches multiple viable links in the graph.
When this happens, the example tracer will entertain multiple possible interpretations of the students’
problem-solving behavior for as long as they are consistent with that student’s problem-solving
actions. This capability enables it to follow along smoothly with what the student is doing. For
instance, this kind of ambiguity occurs at the point in problem solving illustrated in Figure 3, where
the student has completed the second term, and has entered “1” and “mol” as part of the third term.
The student could either be multiplying by (a) the molecular weight (with “1 mol COH4” placed in the
numerator), corresponding to the expert solution path (right branch), or (b) a stoichiometric
relationship (with “1 mol O2” placed in the numerator), corresponding to the non-preferred solution
(left branch). The CTAT example tracer maintains both interpretations as possibilities at this point. It
is therefore in a position to accept as correct student behavior, either “COH4” or “O2” as the substance
in the numerator, regardless of which one the student decides to enter. By contrast, if the example
tracer had committed to one interpretation or the other, at the moment that the ambiguous student input
occurred, it would not have been able to accept, with equal smoothness, all valid subsequent student
input. The ability to entertain multiple interpretations of student behavior in parallel sets it apart from
Cognitive Tutors, which (although they can follow students along multiple strategies) do not at any
point in time entertain multiple interpretations in parallel. Rather, they disambiguate on the spot (see
e.g., the example in Anderson, 1993).

As a second mechanism that enhances the flexibility with which student behavior is matched
against a behavior graph, an author can define ordering constraints (on the steps in the graph) that the
tutor should enforce as a student solves a problem. In our experience, it is too restrictive to require that
students enter the steps in the exact same order that they have been recorded in the behavior graph.
Many problems have (clusters of) steps whose order does not matter, so that enforcing an order could
confuse students by rejecting actions that are perfectly reasonable just because they do not occur in an
somewhat arbitrary order selected by the author. Thus, CTAT allows an author to specify that all steps
in the behavior graph can be done in any order. The behavior graph of Figure 4 is unordered; meaning,
for instance, that the student can provide the value, unit, and substance of the numerator of the third
term (the one currently being worked on in Figure 3) in any order. Alternatively, as described in more
detail below, an author can specify more fine-grained ordering constraints, by defining (arbitrarily-
nested) groups of actions that should be done in order, or that can be done in any order.

As a third key mechanism for increasing the flexibility of example tracing, links in the graph can
be generalized so that they match a variety of student input values rather than a single value. An
author may specify that a link represents a set of values, a numeric range, or a regular expression.
Further, an author may write a formula (akin to formulas in Excel) that specifies a functional relation
between problem-solving steps.

In addition to providing “generic” correctness feedback (i.e., “yes/no” feedback), example-tracing
tutors can provide specific feedback on common student errors. A behavior graph may contain links
that represent incorrect actions (marked with red font on the label, although the color may not be
visible in Figure 4). For instance, the links that lead to nodes with no children at the top of Figure 4
(e.g., states 76 and 459) represent incorrect actions. When a student action matches no viable link in a
graph, but does match an incorrect action link emanating from a viable path, an error message
associated with that incorrect action link is shown to the student. If a student input value does not
match any viable link in the graph, or any suboptimal or incorrect action link attached to a viable path,
the tutor provides unspecific feedback indicating only that the student action is incorrect.

In addition to using their behavior graphs to generate feedback, example-tracing tutors use the
behavior graph to generate hints as to what the student might do next. Essentially, CTAT’s step
generator, in the terminology of VanLehn (2006), works by finding an appropriate unvisited link in
the behavior graph, and then displaying a hint message associated with that link. (Typically, all links
in the graph have hint messages attached to them.) A key question is what hint to give (e.g., Van Lehn,
2006, pp. 242-243). When there are multiple interpretations of the student behavior, one is designated
as the reportable interpretation – the one that most closely matches the preferred solution path through
the problem. The first unvisited link in this viable path is chosen and the hints associated with this link
are displayed to the student. Thus, in our stoichiometry example, if the student is in the (ambiguous)
situation shown in Figure 3, the tutor’s hints will focus on the expert solution (i.e., the right branch). If
the student ignores the hint and follows the alternative strategy (i.e., the left branch), the right branch
is no longer viable and the next hint will focus on the left branch.

In sum, example-tracing tutors exhibit a desirable property of the inner loop not identified by
VanLehn (2006), although perhaps assumed: they flexibly recognize student behavior within a given
problem. Specifically, they are able to deal with multiple strategies for solving a given problem, and
are able to maintain multiple interpretations of student behavior. In our opinion, this level of flexibility
is highly desirable for an ITS authoring tool, as many ITS applications require it.

CREATING EXAMPLE-TRACING TUTORS WITH CTAT

In this section, we describe how an author uses CTAT’s main tools for creating example-tracing
tutors. (As mentioned, CTAT also provides tools for building Cognitive Tutors, including tools for
building, testing, and debugging a cognitive model. Those tools however are outside the scope of the
current paper.) The use of CTAT tools is part of a more-encompassing process aimed at tutor creation,
outlined in Table 2. In the current paper, we focus on the steps in which CTAT is used, primarily steps
4-6. The other steps are equally important to building effective tutors (see e.g., Baker, Corbett, &
Koedinger, 2007) but they are outside the scope of this paper.

Table 2: Developing an example-tracing tutor with CTAT

1. Definition of instructional objectives
2. Identify problem categories and problems for which to provide tutoring
3. Cognitive Task Analysis (e.g., think-alouds and difficulty factors analysis)
4. Tutor design and development

a. Design and create interface
b. For each problem (category)

i. Demonstrate correct and incorrect behavior (i.e., create a behavior graph)
ii. Generalize and annotate the behavior graph

iii. (Optional) use template-based Mass Production to create multiple problems
with isomorphic behavior graphs

c. Organize curriculum and create curriculum files
5. Deploy prototype version
6. Pilot test
7. Iterate
8. Deliver final version

Figure 6. Creating a Flash-based example-tracing tutor with CTAT. An author creates an

interface through drag-and-drop techniques in the Flash Interactive Development Environment (IDE)
(shown on the right), runs the interface (shown on the left, in a browser), and uses CTAT’s Behavior

Recorder (middle) to create, generalize, and annotate a behavior graph. The tutor in this example is for
6th-grade fractions.

Creating the user interface for the tutor

Interface design is an important issue in tutor development, but here we focus on implementation.
When using CTAT, an author uses an interface builder, in drag-and-drop fashion, to create a tutor
interface that lays out some or all of the problem-solving steps that the student will go through (step
4.a in Table 2). The author has the choice between creating a Java-based interface and a Flash-based
interface. Both can be created using an off-the-shelf Interactive Development Environment (IDE),
either for Java development (e.g., Netbeans) or for Flash. For instance, the stoichiometry and fractions
tutors, discussed and shown above, were developed using Flash (see right side of Figure 6).

Figure 7: Composer widget (in Java) for building sentences from a sequence of menus

Figure 8: Multiple selection widget (in Flash) with a video prompt and audio responses

For each of these environments, Java and Flash, we have created a set of interface widgets that
are “CTAT-enabled” in the sense that they communicate with the rest of the tools. The widget sets
contain tutor-enabled versions of standard widgets such as buttons, combo boxes, text fields, text
areas, labels, and lists. In addition, both sets contain composite widgets that we have created, such as
a table widget, and (in the Java set only), a “Composer” used to build sentences from a sequence of
menus (see Figure 7). Various widgets support often-used combinations of interface elements, such as
a question followed by a menu to select the answer, or a question followed by multiple possible
answers. The set of tutor-enabled Flash widgets (or “components” in the Flash terminology) contains a
number of media-enabled components (see Figure 8). Finally, as an example of a domain-specific
widget, an interactive number line was created for the fractions tutor illustrated in Figures 2 and 11.

Figure 9: Tutor for genetics (with Java interface) built with CTAT.

Using these widgets, an author can construct interfaces that support complex reasoning by
students, such as the tutor for introductory (college- and high-school level) genetics shown in Figure 94
and the stoichiometry tutor shown above. These tutor interfaces are made up entirely of standard
widgets (with a small amount of custom programming in the case of the stoichiometry tutor, to show
strike-out of terms in a stoichometry equation that cancel each other out). One of the media widgets
was used in a tutor for intercultural competence (Ogan, Aleven, & Jones, 2008; see Figure 10). To the
extent that the pre-defined widget sets are sufficient, tutor interfaces can be built entirely without

4 The Genetics Problem Solving Tutor was implemented with CTAT by Albert Corbett and colleagues. It covers
a wide range of genetics topics, and has been deployed and evaluated at 14 colleges and universities around the
country. It is primarily a Cognitive Tutor, although for one of the units in the tutor curriculum, example-tracing
tutors have been created.

programming, using the drag-and-drop GUI builders built into standard Java or Flash development
environments. Programming is necessary only for tutor applications that require new widgets.

Figure 10: A tutor for French culture makes use of CTAT’s video widget

Dynamic interfaces

Figure 11: Sequence of screens in a tutor for fractions; this kind of dynamic interface can be
authored without programming

CTAT also offers a capability to create dynamic tutor interfaces, meaning that the interface
changes in response to student actions, for example by rearranging the screen layout, adding or
subtracting widgets, or changing the content of existing widgets (see Figure 11). Using CTAT,
dynamic interfaces can be created without programming. They serve many purposes, and CTAT users
have requested this feature since day one. One purpose is to make effective use of limited screen real
estate, which is important especially for tutors that run in a browser, and for tutors that (e.g., in less-
affluent school districts) run on computers with low-resolution screens. The facility can also be used to
provide dynamic scaffolding: if a student is struggling, the tutor may add steps in the interface to make
thinking visible at a finer-grained level (e.g., Razzaq & Heffernan, 2006). As another example, the
steps in the tutor’s user interface could be revealed one-by-one, in sequence, as the student solves the
problem, as a way of leading the student through these steps in order (as illustrated in Figure 11).
Alternatively, the dynamic interface facility could be used to implement dynamically-linked
representations (Moore, 1992; Reed, 2005): in tutors that display multiple representations of a
problem. Also, the facility can be used for the tutor to communicate certain consequences of their
choice to the student. Finally, as a relatively simple use of this facility, the system may take over some
of the steps that are necessary to solve a problem but that do not address learning objectives (e.g.,
Brown, 1985). In order to create dynamic interfaces, an author can insert links in a behavior graph that
represent “tutor-performed actions.” Among the possible tutor-performed actions are showing and
hiding of widgets, and changing the content of a widget.

Creating behavior graphs

Figure 12: Empty interface and behavior graph, prior to entering a “start state.”

An author must create behavior graphs for all problems-to-be-tutored, although a template-based
“Mass Production” process (described below) substantially reduces the amount of problem-specific
authoring needed to create multiple problems with the same behavior graph structure. CTAT’s
Behavior Recorder can be used for recording, editing, generalizing, and annotating behavior graphs.

Figure 13: Interface after entering the start state information

The process of creating a behavior graph starts with defining a “start state” for the given problem.
The author enters problem-specific information into the “empty” interface (see Figure 12), typically, a
problem statement, values in some of the widgets, problem-specific graphical elements, etc. For
instance, in Figure 13, the author of the stoichiometry problem discussed previously has typed in the
problem statement (i.e., “How many moles of O2 …”) and the given initial value (1.216), and has
selected the relevant units (kg) and substance (COH4) from their respective pull-down menus. Next,
the author selects “Create Start State” in the Behavior Recorder (Figure 13). CTAT prompts the
author to enter a name for the problem, and the initial, solitary node of the behavior graph appears in
the Behavior Recorder, i.e., the “start state.”

Figure 14: Interface and behavior graph after demonstrating the first step of the expert solution

Having defined the problem’s start state, the author creates a behavior graph, simply by putting
the Behavior Recorder in Demonstrate mode and demonstrating expected problem-solving behavior in
the interface. The author’s problem-solving steps are recorded in a behavior graph, one link per step,
where a step is typically a single entry in an interface widget. So, for instance, in Figure 14, the author
has just selected “Given Value” from the pull-down menu in the lower left of the stoichiometry user
interface as the reason for the initial value, and this step has been captured by the Behavior Recorder
as the first link of the behavior graph. A new node is added at the end of the link to represent the new

problem-solving state. The label on the link shows details about the specific action it represents. A
green label (not visible in the print version) indicates that the link represents correct behavior.

Figure 15: After demonstrating the second step of the expert solution

As the author demonstrates the second step of the solution (e.g., entering “1000” as the numerator
value of the second term), that step is recorded as well (Figure 15), and so on. For instance, in Figure
16, the author has demonstrated part of the expert solution to the stoichiometry problem – up to and
including the second term. Eventually, a complete solution path, from the start state to a final state, is
captured in the Behavior Recorder.

Figure 16: After demonstrating steps through the completion of the second term

When creating a behavior graph for a given problem, it is important to record all reasonable (or
pedagogically desirable) solution paths that students may take. Otherwise, there is a risk that the tutor

will reject valid student input. As discussed further below, however, an author needs only record true
alternative solution paths, not paths that differ only in minor ways. An author can create alternative
paths in the graph by backing up to a problem-solving state that has been recorded previously –
clicking on the state in the graph causes the interface to revert to that state – and then demonstrating a
different way of solving the problem. The new solution steps will be recorded in a new branch in the
behavior graph. For example, as discussed earlier, in our stoichiometry problem, a student can enter
the terms of the stoichiometric equation in any order. After the initial step of entering “Given Value”
as the explanation for the first term, therefore, valid next steps are (in addition to the already-recorded
expert solution) to provide either the molecular weight of COH4 (1 mol COH4 / 32.04 g COH4) or the
relevant stoichiometric relationship (1 mol O2 / 2 mol COH4). To record these strategies as separate
paths, the author may revert back to the state following the input of “Given Value” and then enter the
alternative steps, which will be recorded in a new branch off the selected state (Figure 17).

Figure 17: Demonstrating the first steps of an alternative, correct solution

In order for the tutor to provide specific feedback messages related to common errors that
students are expected to make, an author can demonstrate incorrect steps. The author must mark the
corresponding links in the behavior graph as representing incorrect behavior, and attach a feedback
message that will be displayed when a student commits that particular error. For instance, in Figure 18,
the author has just demonstrated an incorrect action by entering “32.04” in the numerator of the second
term from the left. Such an error might easily be made by many students, since “32.04” is a relevant
value to the problem (i.e., the molecular weight of COH4), but it does not appear in the numerator of
any term for any of the possible correct solutions. The author marks the link that results from
demonstrating this erroneous step as incorrect behavior by selecting “Incorrect Action (Bug)” from the
pull-down menu connected to that link (see Figure 18). She is then prompted to provide a specific
error message (not shown).

Figure 18: Demonstrating an incorrect step and marking it as an “incorrect action” in the
behavior recorder.

Annotating a behavior graph

After a behavior graph has been created, the author’s next step is to annotate the links in the graph
with hints and knowledge component labels. It is in this step that the roots of example-tracing tutors
in the Cognitive Tutor methodology are most clearly visible. In particular, example-tracing tutors
share the assumption that a complex cognitive skill can be decomposed into small “knowledge
components” that can be acquired and strengthened separately through practice (see Anderson &
Lebière, 1998). Thus, the learning objectives targeted by these tutoring systems are (often) defined in
terms of knowledge components. In Cognitive Tutors, the knowledge components are expressed as
production rules. In example-tracing tutors, by contrast, the knowledge components are defined
extensionally, by labeling steps in a behavior graph with the name(s) of the knowledge component(s)
that they involve. An author can enter the knowledge component label in a dialog box that is
accessible through the pull-down menu connected to the link (see Figure 19). The knowledge
components are displayed in the behavior graph in separate link labels. In our stoichiometry task, there
are (hypothesized to be) different knowledge components for applying a molecular weight term versus
a unit conversion term versus a stoichiometric relation term. The knowledge components are
subdivided further by the 6 different elements of each term (value, unit, and substance of the
numerator and denominator), and by whether the step is an explanation step. Thus, as illustrated in
Figure 19, the stoichiometry problem described above involves knowledge components for explaining
unit conversion steps (“set-unit-conversion-as-reason”) and for entering the numerator value of a
molecular weight term (“set-numerator-value-of-molecular-weight”).

Figure 19: Labeling a step in the behavior graph with a knowledge component; the second
(lower) label on each link indicates the knowledge component

Understanding problem solving in terms of underlying knowledge components is often an

important goal of cognitive task analysis, especially as it is done in the service of tutor development.
By labeling multiple steps in a behavior graph (or across behavior graphs) with the same knowledge
component, an author makes a prediction that practice on the one step will lead to improved
performance on the other (see Koedinger et al., 2004 for a detailed example). In essence, she defines
the applicability conditions of the knowledge component in an extensional manner. The knowledge
component labeling helps in designing a curriculum and problem set for the tutor. It helps an author
keep track of whether the problem set she has created so far provides sufficient practice opportunities
with each of the targeted knowledge components. CTAT automatically generates a skill matrix to
support this analysis; this report shows which problems involve which knowledge components. Also,
the knowledge component labels enable the tutor to assess student knowledge in its inner loop.
Currently, CTAT does not take advantage of this ability to support individualized problem selection,
but we will soon add the Bayesian knowledge-tracing algorithm created by Corbett and Anderson
(1995), so that CTAT can track individual students’ knowledge growth, and select problems
accordingly. However, CTAT does record the results of its inner-loop knowledge assessment in the
logs of student-tutor activities. The primary purpose of these logs is to support research.

In addition to knowledge component labels, an author attaches hint sequences to each link in the
behavior graph – these hints will be displayed when the student requests help from the tutor on the
given step (see Figure 20). Typically, multiple levels of principle-based help are provided, going from
broader hints (e.g., what goal or step to work on, what problem-solving principle to apply), to more
specific advice (e.g., how does the problem-solving principle apply, what calculations need to be
done), and finally, to a bottom-out hint that provides the resulting answer, or something close to it. The
hints should be consistent with the knowledge component labels: steps that involve the same
knowledge component should have similar hint sequences.

Figure 20: defining a hint sequence

Generalizing behavior graphs

As mentioned, an author can generalize a given behavior graph in a number of ways to extend the
range of student behavior that the example tracer will recognize as matching the graph, beyond
recognizing only the exact same steps in the exact same order. As mentioned, this flexibility has been
key in making example-tracing tutors into a viable ITS paradigm. There are three mechanisms,
illustrated below:

• Specifying constraints on the ordering of steps: the author can define arbitrarily nested groups
of steps that should be “ordered” or “unordered.”

• Defining a range of student input that matches a particular link; for example, an author can
specify a numeric range, a set of values, or a regular expression.

• Specifying how one step depends on other steps, through CTAT’s formula mechanism, by
attaching Excel-like formulas to the links in a behavior graph

Figure 21: Desired step order in a tutor for decimal addition and subtraction; steps with the same
number should be viewed as an “unordered group”

In many situations, the specific order of (some or all of) the steps needed to solve a problem does
not matter. In such situations, a tutor should allow students the freedom to perform the steps in any
order they may choose. On the other hand, where order does matter, the tutor should help students
learn the right order, meaning that it should reject steps when they are out of order, even if they are
otherwise correct. CTAT allows an author fine-grained control over the order in which problem steps
will be accepted, using its Group Editor tool (see Figure 22, bottom left). An author can group links in
a behavior graph and specify for each group whether it is “ordered” or “unordered.” Groups can be
nested within groups. Consider, for example, a tutor unit dealing with decimal addition and subtraction
(see Figure 21; this tutor is part of a project, led by the authors of this paper, to create a comprehensive
website with tutors for middle-school math). In this tutor, students, after reading the problem
statement, must select the operation to be performed (“+” or “–”), copy the two numbers presented in
the problem statement into the interface, making sure that the decimal points are aligned, and then add
or subtract to find the final answer. There is probably no good reason to require that students enter the
digits of the two numbers in any particular order, as long as they line up the decimal points correctly.
On the other hand, it seems pedagogically desirable that they follow a systematic addition or
subtraction strategy, processing columns in right-to-left manner. With respect to borrowing (in the
case of subtraction), a small amount of flexibility is desirable: it does not matter whether the
“borrower column” or the “lender column” is updated first (in the “regrouping row,” see Figure 21), or
whether the result in a column is written before or after the borrowing has been completed.

In order to capture the desired tutoring behavior, an author would specify, after recording all the
steps in a behavior graph, that overall, the graph should be viewed as ordered, and would then create
three unordered groups of links: one for the steps involved in entering the two given numbers (group 2
in Figure 21), and one each related to the borrowing that occurs in the hundredths and ones columns
(groups 4 and 7 in Figure 21), respectively. As illustrated in Figure 22, an author can use CTAT’s

Group Editor to create and modify link groups. The author has created two groups and named them
“Enter-Given-Numbers and “Subtract-Hundredths-Column,” both listed in the Group Editor, and is
working on creating the third. (The “Top-Level” group is created by CTAT and represents the whole
graph. Note that it is an ordered group.) The author has selected three links in the behavior graph, has
clicked on “Create Group,” and is about to provide a name for the group and specify whether it is
ordered or unordered.

Figure 22: Defining an unordered group of links

Authors can also generalize a behavior graph by changing the matching criterion for a link, for
example by attaching a formula, or specifying a range of valid values. We illustrate CTAT’s formula
facility with a demo tutor for factoring quadratics (see Figure 23). This tutor supports a guess-and-test
strategy, reflecting the way that factoring is often done in real life – bypassing the quadratic formula5.
In this tutor, the students themselves define the problems they want to solve with the tutor, by entering
the coefficients a and b of a quadratic expression x2 + ax + b. They must then factor the expression
into the form (x + N1)(x + N2). The tutor lets the student venture three guesses for the number pair N1
and N2. For each, the student must correctly enter the sum and product of N1 and N2. If the sum and

5 The point is to illustrate what is possible with CTAT – we make no claim that the tutor for factoring quadratics
is effective in real life.

product are equal to the coefficients a and b, the equation has been factored successfully. Otherwise,
the tutor only accepts a click on the “Next Try” button, and adds input fields for the next attempt
(through CTAT’s dynamic interface facility). Thus, returning to a point discussed above, the tutor
supports a specific form of delayed feedback: the correctness of the student’s guesses for N1 and N2 is
not revealed until later steps.

Figure 23: Demo tutor for factoring quadratics that supports a guess-and-test strategy, and part of its

behavior graph. After the student’s first attempt at factoring x2+3x–10 as (x+3)(x–7), which is incorrect, the tutor
accepts a click on the “Next Try” button but will reject a click on the “Done” button. The student’s second try,
(x+5)(x–2), is correct. After the student fills out the sum and product of 5 and -2, the tutor will accept a click on
the “Done” button.

This tutor relies on CTAT’s range mechanism in a number of places. Using this facility, an author

can specify that a link in the graph can be matched by input within a predefined numeric range. Range
matches are used on the steps where the student enters the coefficients a and b for the quadratic-
expression-to-be-factored and the steps where students enter their guesses for N1 and N2.

Figure 24: CTAT’s formula facility

The tutor also relies on CTAT’s formula mechanism, in two places. First, as one might expect, it
is used on the steps where the student enters the sum and product of N1 and N2. Second, perhaps
somewhat surprisingly, the formula mechanism is used on the steps where the student enters the
guesses N1 and N2 to figure out (by means of the quadratic formula) whether these guesses are correct.
In Figure 23, the left path branching off of state “EverythingVisibleForTry2” includes correct guesses
for N1 and N2, followed by the sum and product of N1 and N2, and finally the Done button. (To
accommodate the fact that N1 and N2 are interchangeable, this path bifurcates at the top, just below
state “EverythingVisibleForTry2,” and then converges again.) The path that branches off to the right
of state “EverythingVisibleForTry2” includes any guesses for N1 and N2. It further includes the sum
and product, followed by the TryNext button, but not the Done button. Thus, after the student has
entered correct values for N1 and N2 (i.e., values that represent the correct factoring of the quadratic
expression), both the left and right paths are viable interpretations. However, if the values for N1 and
N2 are incorrect, only the right path is viable. Since only the left path ends in a Done button
immediately after the sum and product, the student can finish only when she is currently on the left
path.

Figure 24 shows the window in which an author enters formulas, displaying a formula expressing
how the value in the N2 field depends on other values. (This formula occurs on the left path in the
graph; it is a straightforward application of the quadratic formula.) The formula refers to values
accepted on other links (e.g., “link1.input”) and also includes mathematical functions (e.g., “sqrt” for
the square root). A formula wizard (not shown) lets an author browse the set of functions that can be
included in formulas. They include the Java string and mathematics libraries and a (growing) CTAT-
specific library. It is straightforward to write Java code to extend the function library.

Without the range and formula mechanisms, it would have been virtually impossible to build an
example-tracing tutor that supports (1) students’ entering their own expression-to-be-factored and (2) a
guess-and-test strategy where the tutor can respond to a wide range of student input that cannot be
anticipated in advance. Without the two mechanisms, the behavior graphs would need to contain an
intractable number of paths. Thus, the example illustrates another way in which example-tracing tutors
deserve to be called ITSs – they support dynamic paths where the steps within the path depend on each
other, obviating the need to enumerate a massive number of paths.

Mass Production of behavior graphs

To facilitate the creation of many isomorphic tutored problems, CTAT provides a facility for
template-based Mass Production. The idea behind Mass Production is to help an author generate many
problems of the same structure without having to demonstrate solutions to each and every one of them.
Rather, Mass Production lets an author take advantage of the (ample) reusable information contained
in a behavior graph – all of the problem-solving states and links and possibly many of the hint
messages and error feedback. The need for isomorphic problems arises in many task domains, given
that ITSs tend to focus on recurring problem-solving tasks. For example, in fraction addition, a student
typically completes multiple practice problems with the same underlying structure. As another
example, consider the stoichiometry problem discussed earlier, i.e.

1.216 kg COH4 × (1000 g COH4 / 1 kg COH4)
 × (1 mol COH4 / 32.04 g COH4)
 × (1 mol O2 / 2 mol COH4)
 = 18.98 mol O2 (1)

Another problem provided in the stoichiometry tutor is the following:

1 g Fe2O3 × (1 mol Fe2O3 / 159.692 g Fe2O3)
 × (2 mol Fe / 1 mol Fe2O3)
 × (55.847 g Fe / 1 mol Fe)
 = 0.69943 g Fe (2)

While the specific terms used to solve these two problems are different – for instance, the first

multiplier of equation (1) is a unit conversion term, as discussed earlier, while the first multiplier in
equation (2) is a molecular weight term – the structure across the problems is identical. More
specifically, the given value (i.e., the first term) is a single, non-ratio number multiplied by three ratios
(i.e., 6-part terms of the kind discussed before) leading to a non-ratio solution. In CTAT we take
advantage of this very common situation by providing a template-based approach to creating behavior
graphs.

Figure 25: Part of a Problems Table for the Stoichiometry Tutors; the rows represent variables,
the columns represent problems; the cells contain problem-specific values for the variables.

The Mass Production process is straightforward: After the author has demonstrated and edited
(and, ideally, debugged and pilot-tested) a behavior graph for a single problem, she turns this behavior
graph into a template by introducing variables to given values and demonstrated input, effectively
removing problem-specific information from the graph. The author may also insert the newly defined
variables into hints and error messages, as appropriate, or may introduce variables that stand for entire
hint or error messages. Once the template is fully generalized, the author edits a “problems table” in
Microsoft Excel. For each problem for which a behavior graph is to be created, the author provides
values for each of the variables in the template, as shown in Figure 25, which has all values filled in
for a range of problems, including (1) and (2) above. The final step is for the author “to merge” the
behavior graph template file with the problems table, in a fashion similar to the way mail merge works
in Microsoft Word. The merge step yields multiple instances of the behavior graph, corresponding to
individual problems in the problems file (shown as different columns in Figure 25).

Thus, once an initial behavior graph has been created and debugged, tutors of a similar structure
can be created very efficiently. In the case of the stoichiometry tutors, we generated a total of 35
tutored problems, similar to those in equations (1) and (2), from three basic templates – a one-term
template, a two-term template, and a three-term template. We have used Mass Production in a number
of other projects as well. In one project for elementary-school whole-number division, over a thousand
behavior graphs were created in this manner. In our experience, however, Mass Production is
worthwhile even with very small numbers of isomorphic tutors (e.g., 4).

Not only does the Mass Production process make it easier to produce many example-tracing
tutors that share similar structure, it also supports content consistency and maintenance. It is much
easier to look across a row of a table, such as that shown in Figure 25, to check for consistent values
and text, than it is to open separate behavior graphs and search for consistency. With respect to

maintenance, we have found that many changes involve a simple global replace. Without Mass
Production, individual behavior graphs would have to be opened and edited; a time-consuming process
highly prone to errors. (Of course, we have also experienced the usual problems with global
replacement, especially when a Problems Table contains text, as does the one depicted in Figure 25. In
particular, some text segments may share words but are subtlety different.) The Mass Production
facility illustrates how an authoring tool can be combined synergistically with off-the-shelf software.
Not only does Excel provide for convenient editing of tables, its formula mechanism can be used (in
the Problems Table) to calculate problem-specific values, further enhancing the consistency and
maintainability of the tutors6.

CTAT’S ARCHITECTURE

Figure 26: CTAT’s modular architecture

Over the years of developing and using CTAT, we have come to realize that it is important to
provide an architecture that is modular and supports plug-and-play of ITS components. An authoring
tool such as CTAT will not satisfy all its users all the time, so it is important that the tool is (easily)
customizable by programmers, even if so far we have emphasized users who are non-programmers.
The wholesale plugging-in of new components may be the easiest way to customize. A modular
architecture also adds to the versatility of an authoring tool, especially if multiple options are available
for (some of) the modules. This versatility enables an author to select the tools appropriate to their
particular situation and application. In this section, we briefly describe the main components in CTAT
architecture, and illustrate ways in which it is modular and flexible.

6 CTAT’s new formula mechanism serves a similar purpose, and unlike the Excel formula mechanism, makes it
possible to dynamically compute values, based on student input, as illustrated in the tutor for factoring quadratics
above.

CTAT’s open architecture (see Figure 26) supports the functions described above: building an
interface, creating annotated and generalized behavior graphs, and using a behavior graph to provide
tutoring. In addition, it supports the following functions:

1. Building cognitive models for use in Cognitive Tutors.
2. Delivering tutors and tutoring behaviors over the web and by other means.
3. Student management functions such as setting up student accounts, authentication, and

teacher reports.
4. Logging of student-tutor interactions for research purposes. All CTAT- tutors have the built-

in option to write and transmit detailed logs without requiring any extra effort from the
author. Flash tutors in addition can log student-recorded audio clips to Flash’s media server.

We already discussed the GUI Builder, Student Interface, Behavior Recorder, and Example

Tracer, but have not yet fully discussed the following components:

• The Tutor Engine takes care of a tutor’s inner loop (VanLehn, 2006), that is, it provides

step-by-step guidance within a given problem. CTAT provides four different tutor
engines: two versions of the example tracer described above, one in Java and one in Flash
(although the Flash-based version has been deprecated), as well as two model-tracing
engines for cognitive models in Jess (Friedman-Hill, 2003) and TDK (Anderson &
Pelletier, 1991).

• The Tutoring Service provides access to inner-loop tutoring behavior over the web by
running a tutor engine on a server machine. It reflects our desire to have a single example
tracer compatible with different types of student interfaces running on the web (e.g.,
Flash, Java)7.

• The Tutor Web Delivery Services serve up tutors or tutor interfaces embedded in web
pages. They include authentication services and accommodate such functions as gaining
students’ consent for participating in an experiment. These services integrate with web
servers to also provide explanatory text and images that an author might want students to
see during a tutoring session.

• The Learner Management System provides services such as creation of class lists, student
accounts, and teacher reports. It also provides “outer loop” functionality (VanLehn, 2006)
in that it keeps track of each student’s position in the curriculum and provides problem
selection options (e.g., macroadaptation). We use an industrial-strength LMS system
created in our lab and substantially perfected by Carnegie Learning, a company that
markets Cognitive Tutor mathematics courses. This LMS module is gradually replacing
the learner management functions of a home-grown module called the “TutorShop.”

• The DataShop is a repository for student-tutor interaction data, primarily for research
purposes. It also provides analysis tools for researchers, for example, tools to display and
analyze “learning curves” (VanLehn, Koedinger, Skogsholm, Nwaigwe, Hausmann,
Weinstein, & Billings, 2007), and an option to export log data to Excel or statistical
packages for further analysis. The DataShop is not part of CTAT proper (e.g., it is used to

7 It was easier to create a server-side tutor engine than to figure out how to integrate the tutor engine and student
interfaces locally on the client, although recent developments in Java-Flash integration appear to make that
option feasible.

collect data from sources other than CTAT tutors), but is a crucial service for CTAT tutors
used in research experiments.

• The Cognitive Model Development Tools are used to create and debug rule-based
cognitive models; they are outside the scope of the current paper, we refer the reader to
Aleven, McLaren, Sewall, and Koedinger (2006).

Figure 27: CTAT was used to add tutoring to the CyclePad thermodynamics simulator

As evidence of desirable modularity in the CTAT architecture, a number of components in the
CTAT architecture have multiple instantiations, indicated, in the architecture diagram, with “stacked”
rectangles, which represent configuration alternatives. We discuss each in turn.

Alternatives for the student interface: CTAT provides direct support for creating student
interfaces in Flash and Java, in that its tutor-enabled interface widgets (or components) integrate into
commercial GUI builders (integrated development environments, or IDEs) available for those
languages. The choice between Java and Flash makes CTAT more versatile (e.g., Flash may be better
for the web, Java is better for object-oriented software engineering; and there are many more factors
affecting the choice). Furthermore, the modular separation of the student interface and tutor engine has
permitted CTAT users to connect their own interactive simulators or user interfaces to our tutor
engines, to create tutored versions of the original system. A simulator for thermodynamics (Rosé,
Kumar, Aleven, Robinson, & Wu, 2006) (see Figure 27) and an interface for student collaboration
(Harrer, McLaren, Walker, Bollen & Sewall, 2006) have been hooked up to CTAT in this way (cf.
Blessing et al., 2007; Ritter & Koedinger, 1997), and we are currently in the process of hooking up a
chemistry simulator. As a somewhat different aspect of CTAT’s modularity, the sets of interface
components that can be used in CTAT tutors are easily extensible, because the API for these widgets
is well-developed. At least one outside author, with our help, has created a custom component (Wylie,
2007), and we hope that others will contribute components as well, as we make the necessary sources
and documentation available.

Figure 28: A simple Example-Tracing tutor embedded in an on-line introductory French course

within the Open Learning Initiative; this tutor uses the Flash Jumble widget, which lets a student drag
a scrambled set of items (here, words in a sentence) into the desired order

Alternatives for the tutor engine: The interface options available in CTAT can be combined in
mix-and-match fashion with the four tutor engines mentioned above. So far, in real educational
settings, we have seen example-tracing tutors with Flash interfaces and Java interfaces, an example-
tracing tutor with a simulator, and TDK-based cognitive tutor (of the “traditional” kind) and with a
CTAT-built interface. Jess-based cognitive tutors (with Flash and Java interfaces) have been created in
courses, workshops, and are used heavily in the SimStudent project, which uses machine learning to
infer a rule-based cognitive model from behavior graphs (Matsuda et al., 2005; 2007).

The ability to mix-and-match interface options and tutor engines hinges on the message protocol
between interface and tutor engine. This message protocol
(http://ctat.pact.cs.cmu.edu/index.php?id=tool-tutor) is derived from Ritter and Koedinger’s (1997)
architecture for plug-in tutor agents and the concomitant tool-tutor communication spec – the basic
idea is the careful separation of tool/interface functionality and tutor functionality.

Figure 29: an on-line assessment authored with CTAT embedded in a Carnegie Learning

interface (Butcher & Aleven, 2008)

Alternatives for the delivery environment: As another main driver of a flexible architecture, we
have encountered the need to deliver tutors in a variety of technical contexts – reflecting the
experience that CTAT tutors are often (but not always) embedded in a larger framework for e-
Learning or other forms of technology-enhanced learning. For example, CTAT tutors have been used
in the following contexts:

• Within an existing e-Learning framework, namely, on-line courses created as part of CMU’s
Open Learning Initiative (OLI) (see Figure 28).

• Web-based but separate from any existing e-Learning framework, with the tutor engine
running either on the client or the server (as part of the Tutoring Service). The stoichiometry
and fractions tutors described above belong in this category.

• Integrated with Carnegie Learning’s Cognitive Tutors, so that CTAT and CL problems are
interleaved (see Figure 29).

• Installed desktop applications: In settings where we have had access to the student machines,
we have installed CTAT as a traditional desktop application. Although there are many
advantages to running tutors on the web, there are situations (e.g., schools with poor network
connectivity) where it is an advantage not to have to rely on the web.

EVIDENCE OF USE AND IMPROVED AUTHORING AFFORDABILITY

CTAT has been used extensively to create example-tracing tutors and on-line assessments. We
know of approximately 370 people who have used CTAT to create working tutors and assessments,
including people who have used CTAT in research and development projects, and people who have
used CTAT in courses and summer schools at Carnegie Mellon, Worcester Polytechnic Institute, and
the University of Edinburgh. In addition, there may be others who have used CTAT that we do not
know about, since it is freely available on the web. In the past two years alone, CTAT was
downloaded over 4,300 times and the CTAT website (http://ctat.pact.cs.cmu.edu) drew over 1.5
million hits from over 100,000 unique visitors. We regularly receive technical questions and requests
for support via e-mail.

As shown in Appendix A, CTAT has been used to create tutors for mathematics (elementary,
middle-school, and high-school, including whole-number division, fractions, algebra, and geometry),
chemistry, genetics, thermodynamics, French language learning and culture, Chinese language
learning, and English as a Second Language (ESL). This list only includes tutors that have seen actual
use in real educational settings, either as part of classroom research, or as part of regular instruction.
As the appendix indicates, CTAT-built tutors and assessments have been used in about 26 research
studies in real educational settings. Further, CTAT will be used in a new project we have just started to
create a comprehensive website for middle-school mathematics. To the best of our knowledge, this
makes CTAT the most widely used ITS authoring tool in existence.

In order to get a sense for whether CTAT improves the cost-effectiveness of authoring ITS, we
compare against “historical” estimates, reported in the literature, of overall development time and cost
versus the project output (e.g., hours of instruction produced). This method provides some confidence
that true gains are being achieved, but it is important not to lose sight of its limitations. The overall
project cost-output estimates run the risk of comparing apples and oranges, for example, in that
historical projects often have had time to produce high quality output, which may require more
iteration and maintenance, whereas new projects may underestimate costs for such iteration and
maintenance. On the other hand, historical projects often stretched out over longer periods of time, so
that project development teams had time to become familiar with the tools and the technology, to hone
their development skills, establish good working procedures, select the best tools for the job, re-use
work done in earlier phases, etc. In other words, within these projects, there usually was sufficient
time to achieve an economy of scale. Smaller projects typically do not reach that point. Further, the
estimates of development time tend to be very rough, since they are often based on retrospective
accounting of how time was spent, and they tend to be somewhat inconsistent across projects, since it
is not easy to separate tutor development from other project activities. Finally, different projects used
CTAT at different stages of its development – for instance, the stoichiometry tutors were built before
functions were available, functionality that would have made their development much easier – which
also introduces variability. The main point is that the development time estimates should be treated as
rough estimates.

As our baseline, we use development time estimates reported in the literature, which for ITSs
range from 200:1 (Woolf & Cunningham, 1987) to 300:1 (Murray, 2003). The “historical”
development time estimates for the successful Algebra and Geometry Cognitive Tutors (see, e.g.,
Koedinger et al., 1997) are in line with these estimates. A rough estimate puts the development time
for these two Cognitive Tutors at 200 hours for each hour of instruction. It is important to note that
these tutors pre-date CTAT. They were built with the Tutor Development Kit (TDK) (Anderson &

Pelletier, 1991), our initial Lisp-based cognitive modeling environment. In fact, these Cognitive Tutors
(and their development times) were an important source of inspiration for CTAT.

The development times for CTAT-built tutors that have seen actual use in real educational
settings are listed in Appendix A. CTAT staff built the tutors in one of these projects (stoichiometry).
In all others, the tutors were built primarily by project staff or students not directly associated with
CTAT, who typically had little prior experience developing tutors. In most of these projects, the
CTAT staff had a consulting role, but did not do substantial tutor development. In order to provide a
fair comparison against historical estimates, the development time estimates listed in the table include
all tutor development activities, from the earliest conception of the tutor to the cognitive task analysis
activities, tutor implementation, testing, pilot testing (sometimes), and debugging. However, they do
not include general CTAT extensions implemented (by CTAT personnel) in the course of these
projects, since we are interested in finding out how much the tool contributes to the affordability of
authoring. Appendix A also lists, for those projects for which this information could be ascertained,
the amount of instructional time covered by the CTAT tutors that were developed. This information
was obtained from the lead researchers involved in each project. Since these projects were research
studies in real educational settings, the amount of time covered by the tutors is known quite accurately,
as arrangements needed to be made with collaborating teachers regarding the number of class periods
that the study would cover.

The development time picture that emerges is very interesting. If we distinguish between small
projects (at most one hour of instruction created) and larger projects (more than one hour), we see that
small projects do not “beat” the 200:1 and 300:1 ratio reported in the literature. On the other hand, the
larger projects consistently do better than that, with the Whole-Number Division project “weighing in”
at a 107:1 ratio, an Algebra tutoring project at 87:1, the Stoichiometry project a 85:1 ratio, and the
fractions project at 48:1. These estimates are higher than those reported in an early paper on CTAT
(Koedinger et al., 2004), which no doubt reflects the tougher standard used in the current paper, in
particular, that the tutor must have been used in an actual educational setting. Even so, the larger
projects that have used CTAT point to considerable savings in development time, with development
time estimates 3-4 times better than the historical averages. The fact that the smaller projects have not
consistently done better than the historical averages is likely due to the many factors discussed above:
these projects have the start-up costs that all projects have but no opportunity to develop within-project
economy of scale. The savings are even greater when we measure development effort in terms of cost
rather than time. In many of the projects listed above, the CTAT tools were used by non-programmers,
so if one estimates that PhD level AI programmers cost about 1.5-2 times as much as non-
programmers, then our very rough estimate indicates that CTAT leads to 4-8 times more cost-effective
development of ITSs than the “historical” results reported in the literature. We reiterate that there is a
risk of comparing apples and oranges: the historical estimates were based on larger-scale projects that
may have created higher-quality tutors through multiple iterations of use and revision, although we
should emphasize that we included in our sample only tutors that were good enough for real
educational settings, which is a high standard. Further, the historical projects may have developed a
within-project economy of scale not possible for the shorter-duration projects being reviewed here.

DISCUSSION

In this section, we review how CTAT stacks up against the six requirements for authoring tools that
we outlined in the introduction, summarizing and, in some cases, expanding upon points made earlier
in the paper.

CTAT supports the authoring of effective tutors (criterion 1). Example-tracing tutors implement
much of the behavior that is considered typical of ITSs, described by VanLehn (2006), focused on
step-by-step guidance to students as they solve complex problems. However, example-tracing tutors
go well beyond VanLehn’s basic criteria. First, they follow students along multiple solution paths
within a given problem, regardless of which one the student decides to pick. This capability sets
CTAT apart from some other authoring tools, including Assistments (Razzaq et al., 2005) though not
from others, such as ASPIRE (Mitrovic et al., 2006). This capability matters, because many recurring
problem-solving tasks, such as the stoichiometry problems shown above, naturally give rise to
multiple solution paths. Even in a relatively simple fraction addition problem (e.g., 1/4 + 1/6), a
student might use different strategies to find common denominators (e.g., 12 or 24 are both correct).
Example-tracing tutors’ formula mechanism enables them to recognize a potentially very large number
of different paths, too many to enumerate explicitly. As illustrated by the tutor for factoring quadratics,
there is a large class of problem-solving tasks for which it is very difficult to predefine all paths, but
that are relatively straightforward to address with formulas. As another example, if one wanted to
build a tutor for fraction addition that will accept, as the common denominator, any common multiple
of the denominators of the two fractions to be added (e.g., when adding 1/4 + 1/6, convert to common
denominator 12, 24, 36, 48, 60, etc.), it would not be possible to enumerate all possible paths, but it
would be straightforward to capture them all with a single formula.

A second way in which example-tracing tutors go beyond VanLehn’s basic criterion is in their
ability to maintain multiple interpretations of student behavior, for as long as these interpretations are
consistent with the students’ actions. This capability obviates the need for disambiguating student
intent “on the spot,” as for example Cognitive Tutors do. Delayed disambiguation enables the tutor to
follow the student, “wherever they go” in the given problem, as long as they stay within the behavior
graph, without interrupting them with disambiguation questions and without running the risk of
steering them down a different solution path than they had in mind.

While example-tracing tutors support an interesting range of tutoring behaviors, there remains a
class of applications for which Cognitive Tutors are the preferred choice, at least when personnel with
the requisite rule-based programming skill is available. For example, Cognitive Tutors are often
preferred for problems with variable or unpredictable subgoals, problems in which the relation
between actions and subgoals is unclear, problems whose solutions constitute complex structures (e.g.,
the Lisp Tutor, Anderson, Conrad, & Corbett, 1989), or problems with subtle ordering constraints
among steps. We anticipate that we will have more to say about the difference between example-
tracing tutors and Cognitive Tutors as we gain experience using CTAT’s new formula mechanism,
which significantly narrows the gap.

Example-tracing tutors have proven their effectiveness on measures of learning. For instance, the
stoichiometry tutors discussed earlier led to statistically significant learning gains from pre to posttest
in all conditions of three separate studies (McLaren, Lim, & Koedinger, 2008a).

Example-tracing tutors have been built for a range of application domains (criterion 2). CTAT is
a versatile tool, and has been applied not only in quantitative domains such as mathematics and
science, in which ITSs have long had a strong track record, but also in language learning and even
cultural learning. As the data presented in Appendix A indicate, the specific domains for which CTAT
tutors have been built (and used in real educational settings) include mathematics (at the elementary
school, middle-school, and high-school level), chemistry, genetics, thermodynamics, Chinese, French,
and English as a Second Language. CTAT has been used to provide tutoring within a simulation for
thermodynamics, and work is underway to hook up CTAT with a chemistry simulator.

In general, CTAT is useful for building tutoring systems that support complex problem solving
and even systems that support not-so-complex problem solving. The example-tracing technology
seems unnecessary for applications in which there is a single question and answer. For example,
CTAT may not be particularly useful for teaching vocabulary items or historical facts, although it may
well be used to create a system for historical analysis, although even for such applications, many
components of the CTAT architecture may be useful (e.g., web delivery, logging, student
management). CTAT proper is not currently geared toward supporting the authoring of tutorial
interactions in natural language, or parsing of answers in natural language. Finally, CTAT is not
geared towards building systems with large domain ontologies (e.g., Crowley & Medvedeva, 2006) or
that draw on large stores of factual or conceptual knowledge (e.g. question generation systems).

Example-tracing tutors provide a cost-effective way of developing tutors (i.e., minimize time and
money) (criterion 3). CTAT is one of very few ITS authoring tools that make it possible to author
sophisticated tutors without programming. ASPIRE (Mitrovic et al., 2006) is another such tool; we
briefly compared CTAT to ASPIRE in the introduction. Thus, CTAT can help ITS development
projects avoid the cost of expensive programmers, those with, for instance, specialized skills in AI
programming. In many of the CTAT projects reported in Appendix A, non-programmers used CTAT
to create tutors or on-line assessments, including many authors who are not part of the CTAT
development team, and who did not have extensive CTAT experience. Often, but not always, these
authors worked in consultation with the CTAT team. Of course, authoring tools do not obviate the
need for careful cognitive task analysis, interface design, or use of instructional design or learning
sciences principles. Thus, one still needs personnel skilled in these areas. Further, although CTAT
authors do not have to be programmers, so far, they typically have been tech-savvy people, not to be
intimidated by relatively complex environments such as the Flash IDE, the Netbeans IDE, and CTAT
proper. Finally, although the sets of interface-enabled widgets that CTAT provides are often sufficient
to create interfaces that support complex reasoning tasks, for certain interactions new widgets are no
doubt necessary. These new widgets will require programming.

Development time estimates from projects that have used CTAT over the past years indicate that
CTAT considerably brings down the time needed to develop intelligent tutors. Our estimates of
affordability savings come from comparing overall development costs of past large-scale development
projects using prior authoring tools versus projects using CTAT. These estimates indicate an
improvement of as much as 4-8 times greater cost-effectiveness, due to CTAT. It should be kept in
mind that the reliability of such estimates is limited because of the many sources of variability (e.g.,
different personnel, different task domain, different quality of resulting tutors, different time scale of
projects, and different opportunity to develop within-project economy of scale). It appears that the
savings may be due in the first place to lower upfront implementation costs for each new problem type
for which tutoring is to be provided, and to a lesser degree to lower implementation costs per tutored

problem. Creating a new problem type for a Cognitive Tutor requires programming extensions to the
cognitive model, in the form of production rules, and often requires interface programming (although
many re-usable interface components were developed). With example-tracing tutors, on the other
hand, an interface and Mass Production template can be created without programming (at least if no
new interface components are needed) and therefore typically take less time than the interface and
cognitive model programming needed to add a new problem type to a Cognitive Tutor. Once the
upfront work for a new problem type has been done, adding a new problem is rather easy both for
Cognitive Tutors and example-tracing tutors, at least assuming that Mass Production is used. One way
to take advantage of the relative ease with which new problem types and tutor interfaces can be
created with CTAT might be to increase problem variability (e.g., Paas & van Merrienboer, 1994),
which has been shown to lead to increased learning. In other words, students will encounter the same
knowledge components in a problem set with greater variability, for example in terms of the steps or
even the whole tutor interface. If we may be somewhat speculative, example-tracing tutors may lead to
a more varied set of tutors; this greater variability may in turn lead to better student learning.

A number of developments are underway that may further improve the cost-effectiveness of
authoring with CTAT, and the quality of the resulting tutors: the SimStudent module of CTAT
(Matsuda et al., 2005; 2007), which uses machine learning to create rule-based cognitive models, and
a novel “bootstrapping” facility that lets an author create behavior graphs directly from log data of
students. The bootstrapping facility is likely to lead to tutors with greater ability to recognize actual
student strategies and errors, especially in domains with somewhat more open-ended activities such as
the use of simulators (Harrer et al., 2006; McLaren et al., 2004).

CTAT supports delivery of tutors in a wide variety of technical contexts (criterion 4). Given the

rise in Internet applications in present times, it is key that CTAT makes the process of building and
delivering web-based tutors relatively easy. Being able to deliver in multiple contexts adds
considerably to the complexity of CTAT, but CTAT’s modular architecture helps achieve this goal.

CTAT supports ease-of-maintenance of example-tracing tutors in a number of ways (criterion 5).

When tutors are built on a larger scale, and are used over longer periods of time, by successive cohorts
of students, maintenance becomes an important concern. How easy or hard is it to modify tutors when
requirements change? Although at this point in time, we have limited experience with regular
maintenance of CTAT-built tutors over extended periods of time, we can point out that,
serendipitously, many of the mechanisms in CTAT that enhance the ease of authoring, scaling up of
tutored problems, and the flexibility of tutors also result in tutors that are easier to maintain. In
particular, the Mass Production facility, designed to reduce repetitious authoring tasks and to support
the production of many tutored problems, has the welcome side effect of making tutors easier to
maintain. Similarly, many of the mechanisms that were designed to make example-tracing tutors more
flexible have the effect of making them easier to maintain. Mechanisms such as unordered mode,
range matches, and formulas effectively serve to “collapse” multiple behavior graph paths into a single
one, which should significantly enhance maintainability. We will add that our views on maintainability
of CTAT tutors are still developing. Few of the tutors built in CTAT have had a multi-year lifespan,
and only a few of them have been updated regularly, a real test of maintainability. So far, however, our
experience indicates that it is manageable to maintain a set of example-tracing tutors.

Part of the motivation for CTAT has been from the start that it supports research use of tutors
(criterion 6). In particular, CTAT supports research into how people learn with ITSs, and what
features make ITSs effective. In a typical research study, a researcher compares student learning with
two tutor versions that differ only with respect to a single feature hypothesized to be a key influence
on student learning. Many (but not all) of the tutors presented in this paper were built for such research
purposes. For instance, the stoichiometry tutors were used to investigate the effect of polite problem
statements, feedback, and hints (McLaren et al., 2007). The fractions tutors were used to investigate
the effect of having students work with multiple graphical representations of fractions and of prompts
for students to self-explain the representations (Rau, 2008). CTAT supports research in two main
ways: first, by lowering the skill threshold for tutor building, it makes it easier for researchers from
non-technical disciplines (e.g., the learning sciences or educational psychology) to create and do
experiments with CTAT-built tutors. Second, a number of key features are geared toward research use
of tutors. Most importantly, CTAT tutors write logs of all student-tutor interactions, which allow
researchers to study students’ learning trajectories in great detail (VanLehn et al., 2007). CTAT also
makes it possible to create on-line assessments, essentially tutors with the tutoring turned off. These
“tutors” still evaluate students’ problem-solving actions, but they do so silently, without providing
feedback or hints. They write logs of student actions, and their evaluations of these actions, effectively
offering a form of automated grading. Even the mass production capability facilitates the adapting of
tutors for educational research: in the stoichiometry politeness study, for example, in which we studied
the effect of polite language on student learning, polite and not-so-polite tutor versions were created
by editing the problems table in Excel, much easier to do than editing individual behavior graphs.
Finally, one of the CTAT components (i.e., the TutorShop) has the capability to automatically assign
students to conditions.

CONCLUSION

In this paper, we report on our on-going project to develop the Cognitive Tutor Authoring Tools,
highlighting two main contributions we believe this project has made in its first 6 years. First, CTAT
supports the development of example-tracing tutors, a novel way of building intelligent tutoring
systems. Second, it provides tools for building these types of tutors without programming.

Example-tracing tutors support sophisticated tutoring behavior. They provide step-by-step
guidance in complex problem-solving activities, and thus meet VanLehn’s (2006) minimal criterion
for being regarded as ITSs. They go well beyond VanLehn’s criterion, however, in that they are
capable of recognizing multiple student strategies, of dynamically defining multiple solution paths
within a problem, and of maintaining multiple parallel interpretations of student behavior. CTAT is
one of the very few ITS authoring tools that supports the development of sophisticated tutoring
behaviors and supports tutor building without programming. ASPIRE (Mitrovic et al., 2006) is
another such tool. Example-tracing tutors are built through drag-and-drop techniques, programming by
demonstration, and template-based authoring. They have drastically reduced the skill level required to
build tutors, which previously required PhD-level AI programming skill.

Evidence of CTAT effectiveness is its widespread and continued use (“vote-with-your-feet
evidence”). At least 350 people have used CTAT, perhaps many more. Tutors have been built with
CTAT for both real classroom and experimental use, across a wide range of domains, often by authors
who were not directly associated with the CTAT project and had little prior experience in tutor

development. Development time estimates from a range of projects indicate that CTAT greatly
reduces the cost-effectiveness of building ITS. Prior estimates of development time (Murray, 2003)
have ranged from 200-300 hours of development time per one hour of instructional time. CTAT has
managed to lower this ratio to 50-100 hours and thus reduced development time by a factor of 3-4. If
one factors in the lower cost of personnel, then the savings may be as much as 4-8 times. We (or
others who have used CTAT) do not yet have much experience with maintenance of an extended set of
CTAT tutors over the course of a multi-year project. The CTAT tutors described in this paper have not
yet seen multiple cycles of use and revision. We do believe however that maintenance of example-
tracing tutors will turn out to be highly feasible and that the same tool features that limit the amount of
problem-specific authoring (e.g., Mass Production) that needs to be done for real-world tutoring
systems will also greatly facilitate maintenance.

Our experience with CTAT indicates that ITS authoring tools must satisfy many other criteria
besides ease of authoring: (web) delivery and deployment of tutors, student management, and research
use of tutors. Further, we have found that authoring tools can be fruitfully combined with other ways
of facilitating authoring, or lowering its cost, such as use of application software (off-the shelf tools
such as GUI builders and Excel), and an open architecture that supports plug-and-play of components
(e.g., use of existing simulators, or an existing learner management system) and is extensible (e.g., we
hope to see third parties contribute interface widgets/components, or provide Java code to extend the
library of functions used in CTAT’s formula mechanism). The CTAT authoring suite has now
persisted (as well as continued to evolve) through over 6 years of use. Other ITS authoring tools also
have reached or are reaching a mature state where they support development of real-world tutors. It is
our strong belief that in the years to come, these authoring tools will contribute greatly to making ITSs
widespread.

ACKNOWLEDGEMENTS

Brett Leber and Martina Rau contributed to this paper. The CTAT project was supported by
grants from ONR Award No: N000140310220, the Grable Foundation, and the National Science
Foundation under Award No. SBE0354420. Their contributions are gratefully acknowledged. The
opinions expressed in the current paper do not represent any official position of the funding agencies.

REFERENCES

Ainsworth, S., Major, N., Grimshaw, S., Hayes, M., Underwood, J., Williams, B. & Wood, D. (2003).
REDEEM: Simple intelligent tutoring systems from usable tools. In: T. Murray, S. Blessing, and S.
Ainsworth (Eds.) Authoring Tools for Advanced Learning Environments (Chapter 8, pp. 205-232).
Dordrecht, the Netherlands: Kluwer Academic Publishers.

Aleahmad, T., Aleven, V., & Kraut, R. (2008). Open community authoring of targeted worked example
problems. In B. Woolf, E. Aimeur, R. Nkambou, S. Lajoie (Eds), Proceedings of the 9th International
Conference on Intelligent Tutoring Systems, Lecture Notes in Computer Science, 5091 (pp. 216-227).
Berlin: Springer.

Aleven, V., Sewall, J., McLaren, B. M., & Koedinger, K. R. (2006). Rapid authoring of intelligent tutors for
real-world and experimental use. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson, & W.

Didderen (Eds.), Proceedings of the 6th IEEE International Conference on Advanced Learning
Technologies (ICALT 2006), (pp. 847-851). Los Alamitos, CA: IEEE Computer Society.

Aleven, V., McLaren, B.M., Sewall, J., & Koedinger, K. R. (2006). The Cognitive Tutor Authoring Tools
(CTAT): Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley, & T. W. Chan (Eds.),
Proceedings of the 8th International Conference on Intelligent Tutoring Systems (ITS 2006), (pp. 61-70).
Berlin: Springer Verlag.

Anderson, J. R. (1993). Rules of the Mind. Mahwah, NJ: Lawrence Erlbaum.
Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP Tutor. Cognitive Science,

13, 467-506.
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive Tutors: Lessons learned. The

Journal of the Learning Sciences, 4, 167-207.
Anderson, J. R., & Lebière, C. (1998). The Atomic Components of Thought. Mahwah, NJ: Erlbaum.
Anderson, J.R., & Pelletier, R. (1991). A development system for model-tracing tutors. In Proceedings of the

International Conference of the Learning Sciences (pp. 1-8).
Baker, R.S.J.d., Corbett, A.T., & Koedinger, K.R. (2007). The difficulty factors approach to the design of

lessons in intelligent tutor curricula. International Journal of Artificial Intelligence in Education, 17(4),
341-369.

Beal, C. R., Walles, R., Arroyo, I., & Woolf, B. P. (2007). Online tutoring for math achievement: A controlled
evaluation. Journal of Interactive Online Learning, 6, 43-55.

Blessing, S., Gilbert, S., Ourado, S., & Ritter, S. (2007). Lowering the bar for creating model-tracing intelligent
tutoring systems. In the Proceedings of the 13th International Conference on Artificial Intelligence in
Education (AIED-07) (pp. 443-450).

Blessing, S.B. (2003). A programming by demonstration authoring tool for model-tracing tutors. In: T. Murray,
S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning Environments. Chapter 4, 93-
119. Dordrecht, the Netherlands: Kluwer Academic Publishers.

Booth, J.L., Koedinger, K.R., & Siegler, R.S. (2007). [Abstract]. The effect of prior conceptual knowledge on
procedural performance and learning in algebra. In D.S. McNamara & J.G. Trafton (Eds.), Proceedings of
the 29th Annual Cognitive Science Society (pp. 137-142). Austin, TX: Cognitive Science Society.

Brown, J. S. (1985). Idea amplifiers: New kinds of electronic learning environments. Educational Horizons, 63,
108–112.

Brusilovsky, P. (2003). Developing adaptive educational hypermedia systems: from design models to authoring
tools. In: T. Murray, S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning
Environments. Chapter 13, 377-409. Dordrecht, the Netherlands: Kluwer Academic Publishers.

Butcher, K., & Aleven, V. (2008). Diagram interaction during intelligent tutoring in geometry: Support for
knowledge retention and deep transfer. In C. Schunn (Ed.) Proceedings of the 30th Annual Meeting of the
Cognitive Science Society, CogSci 2008. New York, NY: Lawrence Erlbaum.

Crowley R. S., & Medvedeva, O. (2006). An intelligent tutoring system for visual classification problem solving.
Artificial Intelligence in Medicine, 36(1), 85-117.

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge.
User Modeling and User-Adapted Interaction, 4, 253-278.

Devedzic, V. & Harrer, A. (2005). Software patterns in ITS architectures. International Journal of Artificial
Intelligence in Education, 15(2), 63-94.

du Boulay, B. (2006). Commentary on Kurt VanLehn’s “The Behavior of Tutoring Systems.” International
Journal of Artificial Intelligence in Education, 16(3), 267-270.

Friedman-Hill, E. (2003). Jess in Action. Manning Publications Co.
Graesser, A.C., Chipman, P., Haynes, B.C., & Olney, A. (2005). AutoTutor: An intelligent tutoring system with

mixed-initiative dialogue. IEEE Transactions in Education, 48, 612-618.
Halff, H.M., Hsieh, P.Y., Wenzel, B.M., Chudanov, T.J., Dirnberger, M.T., Gibson, E.G., & Redfield, C.L.

(2003). Requiem for a development system: reflections on knowledge-based, generative instruction. In: T.
Murray, S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning Environments.
Chapter 2, 33-59. Dordrecht, the Netherlands: Kluwer Academic Publishers.

Harrer, A., McLaren, B.M., Walker, E., Bollen, L., & Sewall, J. (2006). Creating Cognitive Tutors for
collaborative learning: steps toward realization. User Modeling and User-Adapted Interaction: The
Journal of Personalization Research (UMUAI). 16. (p. 175-209).

Harrer, A., Pinkwart, N., McLaren, B.M., & Scheuer, O. (in press). The Scalable Adapter Design Pattern:
Enabling Interoperability Between Educational Software Tools. IEEE Transactions on Learning
Technologies.

Koedinger, K.R. & Aleven, V. (2007). Exploring the Assistance Dilemma in experiments with Cognitive Tutors.
Educational Psychology Review. 19(3), 239—264.

Koedinger, K.R., Aleven, V., Heffernan, N., McLaren, B.M., & Hockenberry, M. (2004). Opening the door to
non-programmers: authoring intelligent tutor behavior by demonstration. In the Proceedings of the Seventh
International Conference on Intelligent Tutoring Systems (ITS-2004). (p. 162-174).

Koedinger, K.R., Anderson, J.R., Hadley, W.H., & Mark, M.A. (1997). Intelligent tutoring goes to school in the
big city. International Journal of Artificial Intelligence in Education, 8(1), 30-43.

Koedinger, K. R. & Corbett, A. T. (2006). Cognitive Tutors: Technology bringing learning science to the
classroom. In K. Sawyer (Ed.) The Cambridge Handbook of the Learning Sciences. Cambridge University
Press.

Koedinger, K. R., Suthers, D. D., & Forbus, K. D. (1999). Component-based construction of a science learning
space. International Journal of Artificial Intelligence in Education, 10, 292-313.

Kumar, R., Rosé, C. P., Wang, Y. C., Joshi, M., & Robinson, A. (2007). Tutorial dialogue as adaptive
collaborative learning support , Proceedings of Artificial Intelligence in Education.

Lieberman, H. (Ed.) (2001). Your wish is my command: Programming by example. Morgan Kaufmann, San
Francisco, CA.

Martin, B. & Mitrovic, A. (2002). Automatic problem generation in constraint-based tutors. In S.A, Cerri, G.
Gouarderes & F. Paraguacu (Eds.) Intelligent Tutoring Systems: 6th International Conference (ITS-2002).
(p. 388-398). Berlin: Springer.

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2007). Evaluating a simulated student
using real students data for training and testing. In C. Conati, K. McCoy & G. Paliouras (Eds.),
Proceedings of the International Conference on User Modeling (LNAI 4511) (pp. 107-116). Berlin,
Heidelberg: Springer.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005). Building Cognitive Tutors with programming by
demonstration. In S. Kramer & B. Pfahringer (Eds.), Proceedings of the International Conference on
Inductive Logic Programming (Technical report, TUM-I0510) (pp. 41-46): Institut fur Informatik,
Technische Universitat Munchen.

McLaren, B.M., Lim, S., & Koedinger, K.R. (2008a). When and How Often Should Worked Examples be Given
to Students? New Results and a Summary of the Current State of Research. In B. C. Love, K. McRae, & V.
M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp.
2176-2181). Austin, TX: Cognitive Science Society.

McLaren, B.M., Lim, S., & Koedinger, K.R. (2008b). When is Assistance Helpful to Learning? Results in
Combining Worked Examples and Intelligent Tutoring. In B. Woolf, E. Aimeur, R. Nkambou, S. Lajoie
(Eds), Proceedings of the 9th International Conference on Intelligent Tutoring Systems, Lecture Notes in
Computer Science, 5091 (pp. 677-680). Berlin: Springer.

McLaren, B.M., Lim, S., Yaron, D., & Koedinger, K.R. (2007). Can a polite intelligent tutoring system lead to
improved learning outside of the lab? In the Proceedings of the 13th International Conference on Artificial
Intelligence in Education (AIED 2007), IOS Press. (p. 443-440).

McLaren, B.M., Lim, S., Gagnon, F., Yaron, D., & Koedinger, K.R. (2006). Studying the effects of personalized
language and worked examples in the context of a web-based intelligent tutor; In the Proceedings of the
8th International Conference on Intelligent Tutoring Systems (ITS-2006). Jhongli, Taiwan, June 26-30. (p.
318-328).

McLaren, B.M., Koedinger, K.R., Schneider, M., Harrer, A., and Bollen, L. (2004). Toward Cognitive Tutoring
in a Collaborative, Web-Based Environment. In Engineering Advanced Web Applications, From the
Proceedings in Connection with the 4th International Conference on Web Engineering (ICWE 2004).
Munich, Germany, 28-30 July, 2004. Rinton Press, (p. 167-179).

Mitrovic, A., McGuigan, N., Martin, B. Suraweera, P., Milik, N., Holland, J. (2008). Authoring Constraint-based
Tutors in ASPIRE: a Case Study of a Capital Investment Tutor. Accepted for ED-MEDIA 2008.

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., & Holland, J. (2006). Authoring Constraint-
Based Tutors in ASPIRE. In M. Ikeda, K. D. Ashley, & T. W. Chan (Eds.), Proceedings of the 8th
International Conference on Intelligent Tutoring Systems (ITS 2006) (pp. 41-50). Berlin: Springer Verlag.

Moore, J. L. (1992). Winch simulations: Multiple, linked representations of linear functions. In C. Frasson, G.
Gauthier, & G. I. McCalla (Eds.), Proceedings of the Second International Conference on Intelligent
Tutoring Systems, ITS ‘92 (pp. 111-115). Berlin: Springer-Verlag.

Mostow, J., & Beck, J. (2007). When the rubber meets the road: Lessons from the in-school adventures of an
automated Reading Tutor that listens. In B. Schneider & S.-K. McDonald (Eds.), Conceptualizing Scale-
Up: Multidisciplinary Perspectives (Vol. 2, pp. 183-200). Lanham, MD: Rowman & Littlefield.

Munro, A. (2003). Authoring simulation-centered learning environments with Rides and Vivids. In: T. Murray,
S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning Environments (Chapter 3, pp.
61-91). Dordrecht, the Netherlands: Kluwer Academic Publishers.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated analysis of the state of
the art. In: T. Murray, S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning
Environments. Chapter 17, 491-544. Dordrecht, the Netherlands: Kluwer Academic Publishers.

Murray, T., Blessing, S., & Ainsworth, S. (Eds.) (2003). Authoring Tools for Advanced Learning Environments:
Toward Cost-Effective Adaptive, Interactive and Intelligent Educational Software. Dordrecht, the
Netherlands: Kluwer Academic Publishers.

Myers, B.A., McDaniel, R.G., & Kosbie, D.S. (1993). Marquise: Creating complete user interfaces by
demonstration. In Proceedings of INTERCHI’93: Human Factors in Computing Systems.

Newell, A. & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
Ogan, A., Aleven, V., & Jones, C. (2008). Pause, predict, and ponder: Use of narrative videos to improve

cultural discussion and learning. In Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human
Factors in Computing Systems (pp. 155-162). New York, NY: ACM.

Paas, F., & Van Merrienboer, J. (1994). Variability of worked examples and transfer of geometry problem-
solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122-133.

Rau, M. A. (2008). Flexible knowledge of fractions with multiple graphical representations in intelligent tutoring
systems. Albert-Ludwigs-Universität, Freiburg im Breisgau.

Razzaq, L. & Heffernan, N.T. (2006). Scaffolding vs. hints in the Assistment System. In Ikeda, Ashley & Chan
(Eds.). Proceedings of the 8th International Conference on Intelligent Tutoring Systems. Springer-Verlag:
Berlin. pp. 635-644. 2006.

Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N.T., Koedinger, K. R., Junker, B., Ritter, S., Knight, A.,
Aniszczyk, C., Choksey, S., Livak, T., Mercado, E., Turner, T.E., Upalekar. R, Walonoski, J.A., Macasek.
M.A., Rasmussen, K.P. (2005). The Assistment Project: Blending Assessment and Assisting. In C.K. Looi,
G. McCalla, B. Bredeweg, & J. Breuker (Eds.) Proceedings of the 12th International Conference on
Artificial Intelligence In Education, 555-562. Amsterdam: ISO Press.

Reed, S. K. (2005). From research to practice and back: The Animation Tutor project. Educational Psychology
Review, 17(1), 55-82.

Rickel, J. & Johnson, W.L. (1999). Animated agents for procedural training in virtual reality: Perception,
Cognition, and Motor Control. Applied Artificial Intelligence, 13, 343-382.

Ritter, S., Blessing, S., & Wheeler, L. (2003). Tools for component-based learning environments. Authoring
Tools for Advanced Learning Environments. Chapter 16, 467-489. Dordrecht, the Netherlands: Kluwer
Academic Publishers.

Ritter, S. & Koedinger, K. R. (1997). An architecture for plug-in tutoring agents. International Journal of
Artificial Intelligence in Education, 7 (3/4), 315-347.

Roll, I., Ryu, E., Sewall, J., Leber, B., McLaren, B.M., Aleven, V., & Koedinger, K.R. (2006) Towards Teaching
Metacognition: Supporting Spontaneous Self-Assessment. in Proceedings of 8th International Conference
on Intelligent Tutoring Systems, 738-40. Berlin: Springer Verlag.

Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2007). Can help seeking be tutored? Searching for the
secret sauce of metacognitive tutoring. International Conference on Artificial Intelligence in Education
2007, Los-Angeles, CA.

Rosé, C. P., Kumar, R., Aleven, V., Robinson, A., & Wu, C. (2006). CycleTalk: Data driven design of support
for simulation based learning. International Journal of Artificial Intelligence and Education, 16, 195-223.

Tecuci, G., & Keeling, H. (1999). Developing an intelligent educational agent with Disciple. International
Journal of Artificial Intelligence in Education, 10, 221-237

Towne, D. (2003). Automated Knowledge Acquisition for Intelligent Support of Diagnostic Reasoning.
Authoring Tools for Advanced Learning Environments. Chapter 5, 121-147. Dordrecht, the Netherlands:
Kluwer Academic Publishers.

VanLehn, K., Koedinger, K.R., Skogsholm, A., Nwaigwe, A. Hausmann, R.G.M., Weinstein, A. & Billings, B.
(2007). What’s in a Step? Toward General, Abstract Representations of Tutoring System Log Data. User
Modeling 2007: 455-459.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in
Education, 16(3), 227-265.

VanLehn, K., Lynch, C., Schultz, K., Shapiro, J.A., Shelby, R.H., Taylor, L., et al. (2005). The Andes physics
tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education, 15(3), 147-
204.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to
the Communication of Knowledge. Los Altos, CA: Morgan Kaufmann.

Woolf, B. P., & Cunningham, P. (1987). Building a community memory for intelligent tutoring systems. AAAI
1987 (pp. 82-89).

Wylie, R. (2007) Are we asking the right questions? Understanding which tasks lead to robust learning of the
English article system. In R. Luckin, K. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International
Conference on Artificial Intelligence in Education (pp. 709-710). Amsterdam, the Netherlands: IOS Press.

Yaron, D., Evans, K. & Karabinos, M. (2003). Scenes and Labs Supporting Online Chemistry. Paper presented
at the 83rd Annual AERA National Conference, April 2003.

Appendix A: Tutors built with CTAT

Project Title Domain Tutor Description Studie
s

Student
s

Instructional
Time

Developme
nt Time

Time
Ratio

Papers

The Self-Assessment
Tutor

Geometry -
Angles,
Quadrilaterals

Tutor designed to tutor students on their self-assessment
skills; to help students make appropriative learning
decisions based on their self assessment; and to give
students a tutoring environment, low on cognitive load,
in which they can practice using their help-seeking
skills.

1 67 45 mins ~9 weeks 540:1 Roll, Ryu, Sewall,
Leber, McLaren,
Aleven, &
Koedinger, 2006;
Roll, Aleven,
McLaren, &
Koedinger, 2007

Using Elaborated
Explanations to
Support Geometry
Learning

Geometry The assessment consisted of two types of problems.
First, problem-solving items were used to determine if
students could recognize solvable quantities and
calculate the answers using known geometry principles.
Second, reasoning items were used in which students
reasoned about the relationships between diagram
elements based on geometry principles.

1 90 30 mins ~2 months 720:1 Butcher & Aleven,
2008.

Fluency and Sense
Making in Elementary
Math Learning

4th-Grade Math -
Whole-number
division

The tutor provided practice with whole-number division,
with two conditions, one aimed at fluency, one aimed at
fluency and sense making, through self-explanation
support, including an interactive multiplication table.
On-line assessment was also created with CTAT.

1 ~35 2.5 hrs each
for 2
conditions
plus 1 hr of
assessment

~4 months 107:1

Improving Skill at
Solving Equations
through Better
Encoding of Algebraic
Concepts

Middle and High
School Math -
Algebra

CTAT example-tracing tutors interleaved with Carnegie
Learning tutor sections. Tutors supports self-explanation
of worked examples with correct and incorrect equation-
solving steps.

3 268 16 mins
each for 2
conditions

~120 hrs 240:1 Booth, Koedinger, &
Siegler, 2007.

Intelligent Writing
Tutor

ESL - English
article system (a,
an, the, null)

Two computer-based systems to help students learn the
English article system (a, an, the, null). The first system,
a menu-based task, mimics cloze activities found in
many ESL textbooks. The second, a controlled-editing
task, gives students practice with both detecting errors
and producing the correct response. The researchers
created a custom CTAT widget for use in their systems.

3 ~50 Wylie, 2007

Improving Cultural
Learning By Predicting
In French Film

French –
Intercultural
competence

This tutor uses the multimedia components of CTAT to
display a French film and elicit predictions and
responses from students about cultural behaviors.

2 45 Ogan, Aleven, &
Jones, in press; 2006

Project Title Domain Tutor Description Studie
s

Student
s

Instructional
Time

Developme
nt Time

Time
Ratio

Papers

Chinese PSLC-OLI
Course

Chinese -
Elementary
Chinese

18-unit course includes various (simple) example-
tracing tutors: Jumble, Media Multiple Selection, and
the CTAT Video template.

 Regular
use

French OLI Course Introductory
French

Various (simple) example-tracing tutors have been
created that make use of the Jumble, Media Multiple
Selection, and the CTAT Video template

 Regular
use

Enhancing Learning
Through Worked
Examples with
Interactive Graphics

Algebra - Equation
Models of
Problem Situations

Two types of example-tracing tutor units have been
developed. In the Model Generation unit (16 problems),
students are given a situation and write an equation. In
the Model Analysis unit (4 problems), students are given
a problem situation and an equation, and employ menus
to describe what each component of the equation
represents.

1 60-120 ~3 hrs ~260 hrs 87:1

Effect of
Personalization and
Worked Examples in
the Solving of
Stoichiometry

Chemistry
Stoichiometry

Example-tracing tutors with Flash interface for
stoichiometry problem solving. On-line assessment was
also authored with CTAT.

4 223 12 hrs 1016 hrs 85:1 McLaren, Lim,
Gagnon, Yaron, &
Koedinger, 2006;
McLaren, Lim,
Yaron, & Koedinger,
2007.

Learning a tonal
language-Chinese

Chinese Example-tracing tutors for learning to recognize sounds
in tonal language

Genetics Cognitive
Tutor:

Genetics Java Cognitive Tutor (with one unit of example-tracing
tutors) supporting genetics problem solving.

 Regular
use

CycleTalk Mechanical
Engineering -
Thermodynamics

Example-tracing tutors connected to a simulator that
help students design and optimize thermodynamic
cycles, such as the Rankine cycle used in power plants.
A separate (non-CTAT) module supports natural
language dialogue about thermodynamics design.

4 330 Rosé, Kumar,
Aleven, Robinson, &
Wu 2006; Kumar,
Rosé, Wang, Joshi,
& Robinson, 2007

Bridging the gap
between
comprehension and
production in second
language learning

French - Grammar Training and tests for grammatical accuracy. In the
experimental condition, comprehension and production
items alternate, whereas in the control condition they are
blocked. The CTAT Flash user interface was used to
display feedback to students.

2 45

Project Title Domain Tutor Description Studie
s

Student
s

Instructional
Time

Developme
nt Time

Time
Ratio

Papers

Fostering fluency in
second language
learning: Testing two
types of instruction

ESL – speaking
fluency

The CTAT Flash framework was used for the user
interface and problem assessment including sourcing of
data (brd). Also student data was logged to the Data
Shop using the CTAT Data Shop integration. The CTAT
TutorShop study delivery server software was used to
sequence the study.

1 30

OLI Economics course Economics –
supply and
demand

Example-tracing tutors use of a graph as a plotting input
device.

 Regular
use

Visual Feature Focus
in Geometry:
Instructional Support
for Visual
Coordination During
Learning

Geometry - Angles Study 1 Tutor: Visual examples and non-examples were
shown either alone, or with a set of text statements from
which relevant statements were selected. Feedback was
provided on selected statements.

Assessment: Conceptual training was assessed by
quizzes following each unit. Problem solving also was
tested by quizzes following each unit of study. Pre- and
posttest performance was assessed using Butcher &
Aleven's previous CTAT assessment.

2 60 + 90
= 150

The Fractions Tutor 6th-Grade Math -
Fraction
Conversion,
Fraction Addition

Students solve fractions problems with four tutor
versions (all example-tracing tutors): single v. multiple
representations of fractions, and self-explanation (with
drop-down menu) v. no self-explanation.

1 132 2.5 hours
each for 4
conditions

12 weeks 48:1

