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Abstract. Key success criteria for an ITS authoring tool are that (1) the tool supports the creation of effective 
tutoring systems, (2) the tool can be used to build tutors across a wide range of application domains, (3) 
authoring with the tool is cost-effective, (4) the tool supports easy deployment and delivery of tutors in a variety 
of technical contexts, (5) tutors created with the tool are maintainable, and (6) if tutors are used in a research 
context, the tool must support research-related functionality. The Cognitive Tutor Authoring Tools (CTAT) 
address all of these requirements to a substantial degree, fully meeting most of them.  

CTAT supports the creation of both Cognitive Tutors (Koedinger & Corbett, 2006) and a newer type of 
tutors called example-tracing tutors. This paper focuses on the latter. Example-tracing tutors evaluate student 
behavior by flexibly comparing it against examples of correct and incorrect problem-solving behaviors. 
Example-tracing tutors are capable of sophisticated tutoring behaviors: they provide step-by-step guidance on 
complex problems while recognizing multiple student strategies and maintaining multiple interpretations of 
student behavior. On that basis, they should be deemed intelligent tutoring systems. Example-tracing tutors can 
be built without programming, through drag-and-drop techniques and programming by demonstration. Example-
tracing tutors have been built and used in real educational settings for a wide range of application areas.    

Development time estimates from a large number of projects that have used CTAT suggest that CTAT 
improves the cost-effectiveness of ITS development by a factor of 4-8, compared to “historical” estimates of 
tutor development time.  Although there is a lot of variability in these kinds of estimates, they nonetheless 
support our hope that lowering the skill requirements for tutor creation is a key step toward widespread use of 
ITS technology. The main contributions of the work are the example-tracing tutor technology and tools for 
building these types of tutors without programming. 
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INTRODUCTION 

Intelligent tutoring systems (ITSs) have been shown to lead to impressive improvement in student 
learning in a range of domains, using a variety of different approaches (Beal, Walles, Arroyo, & 
Woolf, 2007; Graesser, Chipman, Haynes, & Olney, 2005; Koedinger, Anderson, Hadley, & Mark, 
1997; Martin & Mitrovic, 2002; Mostow & Beck, 2007; Rickel & Johnson, 1999; VanLehn, Lynch, 
Schultz, Shapiro, Shelby, et al., 2005; Mitrovic, McGuigan, Martin, Suraweera, Milik, & Holland, 
2008). However, they have traditionally been difficult to build (e.g., Murray, 2003; Anderson, 1993). 
Many ideas have been offered to make ITSs easier to build: ITS design patterns (Harrer, Pinkwart, 
McLaren, & Scheuer, in press; Devedzic & Harrer, 2005), reusable components and learning objects 
(Koedinger, Suthers, & Forbus, 1999; Ritter & Koedinger, 1997; Ritter, Blessing, & Wheeler, 2003), 



 

community authoring (Aleahmad, Aleven, & Kraut, 2008), use of off-the-shelf tools as an integrated 
part of the ITS development process (e.g., Aleven, Sewall, McLaren, & Koedinger, 2006), and 
authoring tools (e.g., Murray, Blessing & Ainsworth, 2003). In our view, all of these developments 
and approaches are likely to contribute to making ITS technology widespread in the years ahead. We 
expect that authoring tools will turn out to be the centerpiece of that endeavor.  

Many ITS authoring systems have been developed, over 25 by most counts, since the earliest days 
of intelligent tutoring systems (Murray, 2003). Typically, each authoring tool focuses on a particular 
kind of ITSs, such as constraint-based tutors (Mitrovic et al., 2006) and model-tracing tutors 
(Blessing, Gilbert, Ourada, & Ritter, 2007).  In addition to trying to make tutors easier to build, there 
have been a variety of objectives behind ITS authoring systems, including helping authors transfer 
knowledge more accurately into the resulting tutoring system, supporting good (and consistent) design 
principles, and enabling rapid prototyping of ITSs.  Different tools have focused on different aspects 
of tutoring, for instance, support of different tutoring strategies (Ainsworth et al., 2003), tutoring 
within a simulation context (Munro, 2003), supporting multiple knowledge types (Halff et al., 2003), 
and use of hypermedia (Brusilovsky, 2003).  

Our “holy grail” is to create cost-effective tools that non-programmers can use to create and 
deliver, for real use, sophisticated tutors, a goal we have taken significant steps toward achieving. We 
report on our 6-plus years of experience with a suite of authoring tools called the Cognitive Tutor 
Authoring Tools (CTAT). Our experience is not just as tool developers, but also as users of our own 
tools, as consultants to learning science researchers who build tutors as a vehicle for learning science 
experiments, as consultants to developers of tutors for real-world use, as instructors of students 
learning about intelligent tutoring systems through practice with these tools, and finally, as academic 
advisors to graduate students using the tools for their research projects.  

CTAT supports development of two types of ITSs, Cognitive Tutors (Anderson, Corbett, 
Koedinger, & Pelletier, 1995; Koedinger & Aleven, 2007; Koedinger & Corbett, 2006) and a much 
newer type of tutors called example-tracing tutors (Koedinger, Aleven, Heffernan, McLaren, & 
Hockenberry, 2004). Cognitive Tutors rely on cognitive theory and cognitive modeling; they require 
sophisticated AI programming skills to develop. They have a long history and are being used 
extensively in US schools (in more than 2,600 of them, at the time of this writing). Cognitive Tutors 
for high-school mathematics have proven in many studies to improve student learning (Koedinger & 
Aleven, 2007)1. Example-tracing tutors are often (though not always) behaviorally indistinguishable 
from Cognitive Tutors (Aleven, Sewall, McLaren, & Koedinger, 2006; Koedinger et al., 2004). As 
discussed further below, example-tracing tutors implement many of the behaviors typical of ITSs 
(VanLehn, 2006). In fact, they go well beyond VanLehn’s basic requirement that in order to be 
considered an ITS, a system must provide step-by-step guidance within problem-solving activities. 
Example-tracing tutors are much easier to build than Cognitive Tutors. They can be built entirely 
without programming, namely, through drag-and-drop and programming by demonstration techniques 
(Lieberman, 2001; Myers, McDaniel, & Kosbie, 1993). CTAT has been used to build a diverse set of 
example-tracing tutors that have been used in real educational settings (see for example Appendix A or 
the many figures in this paper). In this paper, we focus on example-tracing tutors. We consider the 
main contributions of the work presented in this paper to be both the example-tracing tutor technology 
and the tools for building these kinds of tutors without needing to do any programming. 

                                                        
1 The Cognitive Tutors for high-school and middle-school mathematics that were built in our lab pre-date CTAT. 
They formed the inspiration for developing a set of authoring tools. 



 

 

The main idea behind example-tracing tutors is straightforward. Just as model-tracing tutors work 
by tracing and interpreting student behavior with reference to a cognitive model (an executable 
simulation of student thinking that can solve problems in the way that students will learn how to), 
example-tracing tutors work by interpreting student behavior with reference to specific examples of 
problem-solving behavior. These examples comprise acceptable solution paths for a given tutor 
problem (i.e., the solution space for a given problem in the sense of Newell and Simon (1972)). Using 
CTAT, these behavioral examples can be created by teachers or subject-matter experts without 
programming – simply by demonstrating how problems should be solved. Example-tracing tutors were 
originally conceived as a tool for doing cognitive task analysis and for rapidly prototyping tutor 
behavior en route to developing a Cognitive Tutor. However, a number of extensions to the basic idea 
have turned it into a viable methodology for building tutors. In particular, we have added a number of 
techniques for flexibly matching student behavior against behavioral examples, so that a tutor can 
recognize a wide range of correct student behavior, rather than only the examples exactly as they were 
demonstrated.  

CTAT belongs to a category of authoring tools (Murray, 2003) that focus on creating a model of 
domain expertise that the tutoring system uses as a comparison point for student behavior. The domain 
model is typically executable (i.e., one can run the model to solve a given problem), and student 
actions that diverge from the model are used to provide hints and generate feedback.  Other examples 
of authoring systems that belong to this category are the Cognitive Model SDK (Blessing et al., 2007), 
which supports authoring of an ACT-R-like cognitive model, and DIAG (Towne, 2003), which 
supports the development of a diagnostic model as the basis for tutoring. CTAT can be considered the 
“next generation” of DEMONSTR8, an early authoring system prototype that pioneered the idea of 
developing tutors through programming-by-demonstration (Blessing, 2003). DEMONSTR8 pre-dates 
example-tracing tutors; it focused on rule-based cognitive modeling and model-tracing tutors. To the 
best of our knowledge, however, it was not used to create a real-world tutoring system. Another early 
ITS authoring system that pioneered programming by demonstration techniques is DISCIPLE (Tecuci 
& Keeling, 1999). DISCIPLE was used to create a tutor for history problem solving that has been 
evaluated in an actual middle-school classroom, but we are not aware that DISCIPLE has seen much 
use since. Both systems use (interactive) machine learning techniques to learn from examples and 
explanations provided by an author. Example-tracing tutors, by contrast, directly use behavioral 
examples to provide tutoring, without the use of machine learning. Research is underway within the 
CTAT group on using machine learning to induce rule-based cognitive models from author-
demonstrated examples (Matsuda, Cohen, Sewall, Lacerda, & Koedinger, 2007; Matsuda, Cohen, & 
Koedinger, 2005).  In the current paper, however, we focus on example-tracing tutors. 

CTAT is perhaps furthest down the path of providing a tool that non-programmers can use to 
develop real-world intelligent tutoring systems, although it is not the only such tool. The Assistments 
authoring tool (Razzaq et al., 2005) and REDEEM (Ainsworth et al., 2003) also support tutor 
authoring without programming, but of simpler tutors than CTAT. ASPIRE (Mitrovic et al., 2006) is 
another ITS authoring that makes it possible for non-programmers to create intelligent tutors, in 
particular constraint-based tutors.  Using ASPIRE, complete constraint-based tutors can be built 
without programming, including a text-based user interface, a domain ontology, and a set of 
constraints used to evaluate student solutions. However, ASPIRE, unlike CTAT, is not integrated with 
a drag-and-drop interface development tool (i.e., off-the-shelf development tools such as NetBeans or 
Flash, as discussed below). With CTAT’s predefined sets of tutor-enabled widgets, an author has 



 

many more options for creating a user interface that “makes thinking visible” (Anderson, Corbett, 
Koedinger, & Pelletier, 1995) without needing to do any programming. 

In this paper, we describe the behavior and inner workings of example-tracing tutors, and 
illustrate how they can be developed with CTAT.  We also provide evidence of CTAT’s effectiveness 
in the form of  (a) “vote-with-your-feet” evidence (i.e., widespread use), and (b) estimates of tutor 
development times. We offer a number of general requirements for ITS authoring tools and discuss 
how CTAT (and specifically, its facilities for creating example-tracing tutors) stacks up with respect to 
these requirements. An authoring tool suite should: 

 
1. support authoring of effective, computer-based tutors; 
2. facilitate the development of tutors across a range of application domains; 
3. support  cost-effective tutor development (i.e., minimize time and money, compared to using 

different tools/methodologies); 
4. support delivery of tutors in a wide variety of technical contexts characterized by different 

interface technologies, content management systems, e-learning frameworks, student 
management systems, and web technologies; 

5. create tutors that are easy to maintain (e.g., easy to modify when requirements change); 
6. support research use of tutors through such functionality as logging of student-tutor 

interactions, application of different treatments to different students, and on-line assessment. 
 
These requirements represent some of the lessons learned in the CTAT project. We do not expect 

them to be controversial, although it is perhaps surprising that only one of the six requirements focuses 
on tutoring behavior (namely, requirement #1). During the CTAT project, we shifted from an early 
focus on “affordable authoring” of tutor behavior to the more encompassing problems of easy 
deployment, delivery, and maintenance of tutors. This shift was driven largely by the needs of CTAT 
users who were creating tutors for use in real educational settings. 

THE BEHAVIOR OF EXAMPLE-TRACING TUTORS 

Like many other ITSs, example-tracing tutors help students acquire a complex cognitive skill through 
guided practice (but see duBoulay, 2006 for a broader notion of ITSs).  In this section, we establish 
that example-tracing tutors are capable of a large subset of the behaviors catalogued in Kurt 
VanLehn’s (2006) paper “The Behavior of Tutoring Systems,” the same subset, in fact, as that covered 
by Cognitive Tutors. (This is not to say that there are no behavioral differences between example-
tracing tutors and Cognitive Tutors. Ultimately, Cognitive Tutors are more flexible. However, this 
flexibility is not always needed, and comes at the considerable expense of having to create a rule-
based cognitive model. We briefly return to this topic in a later section.) In the next section, we show 
further that example-tracing tutors are capable of sophisticated behaviors not differentiated in 
VanLehn’s categories. We illustrate our argument with example-tracing tutors that have been 
developed in our lab and that have been used in research studies in real educational settings, a tutor in 
the domain of chemistry (stoichiometry – see Figure 1), and one in the domain of 6th-grade fractions 
(see Figure 2).   



 

 

Figure 1: An example-tracing tutor for high-school stoichiometry.  This tutor has been used in 
several studies in real high school classrooms.  Approximately 200 students have used this tutor for an 

average of approximately 1 ¼ hours (McLaren, Lim, & Koedinger, 2008a). 

 

Figure 2: An example-tracing tutor for 6th-grade fractions learning. This tutor has been used in a 
study in a middle school with 130 participating students, who used the tutor for 2.5 hours. 



 

As is typical of ITSs, CTAT-built tutors provide an interface that makes thinking visible (e.g., 
Anderson et al.,1995), in the sense that they lay out (or prompt students to enter) intermediate steps in 
the solution of a problem.  For example, in the stoichiometry tutor of Figure 1, the student is prompted 
to provide terms of a ratio equation and elements of each term. In the fractions tutor of Figure 2, 
students are prompted to add fractions by first converting them to a common denominator using an 
interactive number line. In addition to an interface that makes thinking visible, example-tracing tutors 
provide various types of guidance that are typical of ITSs, divided by VanLehn (2006) into an “inner 
loop” and “outer loop” (see Table 1). The outer loop pertains to the selection of appropriate problems 
for a student to solve. The inner loop denotes the support that the tutor provides a student within a 
single problem, including step-by-step guidance while the student solves the problem and assistance 
with end-of-problem reflection. We review systematically which of the main inner and outer loop 
behaviors CTAT supports, because we believe that a good way of understanding an authoring tool is to 
look at the behaviors of the tutors that can be built with them. 

 

Table 1: CTAT’s Fall 2008 coverage of the categories of tutoring behavior identified by VanLehn (2006).  

Inner loop (within-problem guidance) 
+ Minimal feedback on steps - classified as correct, incorrect, or suboptimal  
+  Immediate feedback 
+/–  Delayed feedback – not built-in, but certain forms can be authored 
–  Demand feedback 
+ Error-specific feedback 
+ Hints on the next step 
+ Assessment of knowledge 
– End-of-problem review of the solution  
  
Outer loop (problem selection options) Legend  

– Student picks + CTAT supports it 

+ Fixed sequence (+) CTAT will soon support it 

–  Mastery learning +/–  CTAT supports a limited form of it 

(+) Macroadaptation – CTAT does not support it 

 
 
With respect to the inner loop, example-tracing tutors provide correctness feedback on all 

problem-solving steps by the student, and may provide specific feedback messages for commonly 
occurring errors. This feedback is given after each step and is therefore immediate feedback. The 
CTAT example-tracing algorithm does not support delayed feedback, although some specific ways of 
delaying feedback can be authored within CTAT, as illustrated below with a demo tutor for factoring 
quadratics (see also Roll et al., 2006; 2007). Second, example-tracing tutors provide next-step hints at 
the student’s request. Third, they assess student knowledge. Following the ACT-R theory of cognition 
and learning (Anderson & Lebière, 1998), and following the way Cognitive Tutors operate (e.g., 
Koedinger & Aleven, 2007; Koedinger & Corbett, 2006), we consider a complex cognitive skill to be 
composed of many fine-grained “knowledge components” that can be acquired and strengthened 



 

 

separately. In its inner loop, an example-tracing tutor maps student problem-solving behavior onto 
knowledge components, based on a mapping between problem steps and knowledge components 
provided by the author. Finally, CTAT does not have built-in facilities to support students in reviewing 
and reflecting on their solution at the end of a problem. 

With respect to the outer loop (i.e., the way in which problems are selected for students to solve), 
CTAT currently supports fixed problem sequences only, where the tutor is in charge of problem 
selection. CTAT will soon be extended to provide a form of individualized problem selection based on 
Corbett and Anderson’s (1995) Bayesian “knowledge tracing” algorithm. Using this algorithm, CTAT-
based tutors will track how well the student masters each knowledge component targeted in a 
particular unit of instruction, and will select problems that involve unmastered knowledge 
components. VanLehn (2006) refers to this kind of task selection based on fine-grained knowledge 
assessment as “macroadaptation,” although to make matters confusing, in the Cognitive Tutor 
literature, it has always been referred to as “cognitive mastery learning” (Corbett & Anderson, 1995).   
CTAT does not provide facilities for what VanLehn calls “mastery learning,” which under his 
definition is a less-sophisticated form of problem selection based on more aggregate or coarse-grained 
measures of student performance. At this point, there are no plans for adding this kind of problem 
selection algorithm to CTAT. 

According to VanLehn (2006), the existence of an inner loop is what defines ITSs vis-à-vis other 
forms of computer-based instruction. However, we view this definition as overly broad, as it 
encompasses very simple forms of computer-based instruction (for example, simple tutors for two-step 
problems that do not allow for multiple different answers) that belie the historic roots of ITSs in 
artificial intelligence, cognitive science, and investigations into the epistemology of knowledge (e.g., 
Wenger, 1987). We propose that example-tracing tutors should be regarded as ITSs not just because 
they have an inner loop, but because of the flexibility with which they assess student behavior within 
the inner loop: They are capable of providing guidance with respect to multiple strategies for solving a 
given problem, regardless of which strategy the student decides to take. Further, example-tracing 
tutors are capable of entertaining multiple interpretations of student behavior, when a student action 
can be interpreted in multiple ways. These properties are illustrated below. 

HOW EXAMPLE-TRACING TUTORS WORK 

In this section, we focus on the workings of the inner loop of example-tracing tutors, the way in 
which they provide step-by-step guidance to students for a given problem. As mentioned, example-
tracing tutors interpret a student’s solution steps (and hint requests) with respect to a predefined 
solution graph for the given problem, which, following Newell and Simon (1972), we call a “behavior 
graph.” As discussed in the next section, these graphs can be created without programming. We 
review the properties of behavior graphs, the process of interpreting student behavior against such a 
graph (called “example tracing,” by analogy to model tracing), and the mechanisms in CTAT that 
enhance the flexibility of the example-tracing process, so that a wider range of student behavior can be 
recognized as correct than just literally the sequence(s) of steps captured in the behavior graph. 

A behavior graph is a directed, acyclic graph that represents acceptable ways of solving a 
problem. The links in the graph represent problem-solving actions, and the nodes represent problem-
solving states. A behavior graph may contain multiple paths, corresponding to different ways of 
solving a problem. It may also contain links that represent incorrect behavior, marked as such by the 



 

author who created the graph. Let us consider, for example, the stoichiometry problem shown in 
Figure 3. The stoichiometry tutor is an example-tracing tutor developed using CTAT that has been 
used in a series of classroom studies (McLaren, Lim, & Koedinger, 2008a; 2008b, McLaren et al., 
2007, McLaren et al., 2006). Stoichiometry involves basic mathematics to solve elementary chemistry 
problems; solving problems in this domain requires applying concepts, such as unit conversions and 
molecular weight, in solving equations.  The behavior graph of Figure 4 represents a section of the 
solution to the stoichiometry problem in Figure 3.  

 

 
Figure 3: The stoichiometry tutor user interface2 

The optimal solution to this problem, according to a chemistry instructor, is: 
 
1.216 kg COH4 × (1000 g COH4 / 1 kg COH4) 
                          × (1 mol COH4 / 32.04 g COH4) 
                          × (1 mol O2 / 2 mol COH4)  
              = 18.98 mol O2 
 
That is, the student is expected to take the given value (1.216 kg COH4) and multiply it by three 

terms in order to calculate the final answer of 18.98 mol O2: first by a term that represents a unit 
conversion (1000 g COH4 / 1 kg COH4, as has already been done in Figure 3), then by a term that 
represents the molecular weight of COH4 (32.04 g COH4 / mol COH4), and finally by a term that 
represents a stoichiometric relationship (1 mol O2 / 2 mol COH4). The substances and units in the 
numerators and denominators of the terms cancel each other out, leading to a non-ratio as the final 
answer. There are other ways of solving the problem. Since the solution involves a series of 

                                                        
2 There is no subscript notation in the stoichiometry tutor, as one of the reviewers remarked. Chemistry teachers 
who have worked with us advise that the notation used in this tutor is standard in other software tools and does 
not distract students. We are working to upgrade CTAT’s facilities to handle a wider range of mathematical 
notation, which would be useful across a range of tutors.  



 

 

multiplicative terms, the order of the terms does not strictly matter. Thus it is perfectly valid, for 
example, to swap the information entered as the third and fourth terms: 

 
1.216 kg COH4 × (1000 g COH4 / 1 kg COH4)  
                          × (1 mol O2 / 2 mol COH4) 
                          × (1 mol COH4 / 32.04 g COH4)  
             = 18.98 mol O2 
 
Chemistry instructors, however, recommend the first strategy – to apply terms in an order that 

allows cancellation of parts (e.g., units and substance) of prior terms.  For instance, the unit 
conversion (1000 g COH4 / 1 kg COH4, i.e., the second term in each of the equations shown above) is 
the best initial multiplier, since it allows the cancellation of parts of the first term (i.e., the given 
value), as shown by the “strike outs” in the interface of Figure 3. 

 

 
Figure 4: Part of an example behavior graph for the stoichiometry tutor 

The instructor-recommended solution and the alternative solution are both represented in the 
behavior graph for this problem (see Figures 4 and 5 – the links representing correct actions are 
indicated with green text on the label, but this is not visible in the print version of this article). The 
instructor-recommended path is shown on the right. The boldface arrows indicate that the author has 
designated this path as representing the preferred way of solving this problem. The alternative solution 
path described above is encoded in the behavior graph as the path on the left, branching off of the 
preferred path in node MW_UMC. (CTAT authors can name the states in behavior graph. Even if only 



 

a few well-chosen landmark states have meaningful names, it is considerably easier to navigate larger 
graphs.) 

Let us consider in more detail how the example tracer uses the graph to monitor student problem 
solving and provide feedback. In the terminology of VanLehn (2006), the example tracer serves as 
step analyzer. It classifies each student action in the tutor’s interface as correct, incorrect or 
suboptimal by flexibly comparing it against the actions stored in the graph. It also keeps track of the 
student’s problem state by recording which links in the graph the student has “visited.” Specifically, it 
keeps track of the viable paths through the graph, meaning start-to-finish paths that are consistent with 
the student’s observed behavior thus far3. In order for a student action to be accepted as correct, it must 
correspond to an as-yet unvisited link on a viable path, and that link must represent correct behavior. 
(We use the term viable link to refer to such links.) Thus, once on a viable path, the student must stay 
on that path. If the student has visited a complete path through the graph, she has completed the 
problem.  

 

Figure 5: Complete stoichiometry behavior graph (zoomed-out view); this behavior graph is at 
the upper end of complexity of what has been achieved with CTAT 

As one measure of the flexibility of the example-tracing process, the example tracer is capable 
(by means of the algorithm described above) of following a student through a problem even if the 
graph contains multiple paths, regardless of which of them the student actually takes. For example, 
suppose the student, working on the stoichiometry problem discussed above, has entered the second 

                                                        
3 More specifically, a path is viable if all student actions that have been deemed correct so far correspond to links 
on this path. It is viable in the sense that it is a viable interpretation of the student behavior so far. 



 

 

term, and is about to enter the third term. That is, the student is at the point in the problem where the 
expert and non-expert solutions paths diverge (represented by state MW_UMC in the graph, shown in 
Figure 4). At this point, both the start-to-finish path through the left branch, as well as that through the 
right branch, are viable paths, since all student actions that have been accepted as correct occur on 
both. Assume that the student enters the third term of the expert solution (1 mol COH4 / 32.04 g 
COH4).  The six required actions all appear on the right branch (the expert branch), but not all are 
included on the left branch. Thus, after the tutor accepts these actions, the right branch is a viable path, 
but the left branch has been ruled out as a viable path. If the student were to follow up with actions 
that occur on the left branch but not on the right branch (such as, say, carelessly entering the same 
information again, but now as the fourth term), the tutor will reject these actions. Conversely, if the 
student (from the same state MW_UMC as mentioned above) goes down the non-preferred left path, 
the tutor will accept his/her actions as correct, but will not allow him/her to revert to the path on the 
right. In essence, once a path has become non-viable, it stays that way. 

In addition to being able to follow students with respect to multiple paths, example-tracing tutors 
are capable of following the student in the face of ambiguity as to how a student action should be 
interpreted. This ambiguity occurs when a student action matches multiple viable links in the graph. 
When this happens, the example tracer will entertain multiple possible interpretations of the students’ 
problem-solving behavior for as long as they are consistent with that student’s problem-solving 
actions. This capability enables it to follow along smoothly with what the student is doing. For 
instance, this kind of ambiguity occurs at the point in problem solving illustrated in Figure 3, where 
the student has completed the second term, and has entered “1” and “mol” as part of the third term. 
The student could either be multiplying by (a) the molecular weight (with “1 mol COH4” placed in the 
numerator), corresponding to the expert solution path (right branch), or (b) a stoichiometric 
relationship (with “1 mol O2” placed in the numerator), corresponding to the non-preferred solution 
(left branch). The CTAT example tracer maintains both interpretations as possibilities at this point. It 
is therefore in a position to accept as correct student behavior, either “COH4” or “O2” as the substance 
in the numerator, regardless of which one the student decides to enter. By contrast, if the example 
tracer had committed to one interpretation or the other, at the moment that the ambiguous student input 
occurred, it would not have been able to accept, with equal smoothness, all valid subsequent student 
input. The ability to entertain multiple interpretations of student behavior in parallel sets it apart from 
Cognitive Tutors, which (although they can follow students along multiple strategies) do not at any 
point in time entertain multiple interpretations in parallel. Rather, they disambiguate on the spot (see 
e.g., the example in Anderson, 1993).  

As a second mechanism that enhances the flexibility with which student behavior is matched 
against a behavior graph, an author can define ordering constraints (on the steps in the graph) that the 
tutor should enforce as a student solves a problem. In our experience, it is too restrictive to require that 
students enter the steps in the exact same order that they have been recorded in the behavior graph. 
Many problems have (clusters of) steps whose order does not matter, so that enforcing an order could 
confuse students by rejecting actions that are perfectly reasonable just because they do not occur in an 
somewhat arbitrary order selected by the author. Thus, CTAT allows an author to specify that all steps 
in the behavior graph can be done in any order. The behavior graph of Figure 4 is unordered; meaning, 
for instance, that the student can provide the value, unit, and substance of the numerator of the third 
term (the one currently being worked on in Figure 3) in any order.  Alternatively, as described in more 
detail below, an author can specify more fine-grained ordering constraints, by defining (arbitrarily-
nested) groups of actions that should be done in order, or that can be done in any order.  



 

As a third key mechanism for increasing the flexibility of example tracing, links in the graph can 
be generalized so that they match a variety of student input values rather than a single value. An 
author may specify that a link represents a set of values, a numeric range, or a regular expression. 
Further, an author may write a formula (akin to formulas in Excel) that specifies a functional relation 
between problem-solving steps.  

In addition to providing “generic” correctness feedback (i.e., “yes/no” feedback), example-tracing 
tutors can provide specific feedback on common student errors. A behavior graph may contain links 
that represent incorrect actions (marked with red font on the label, although the color may not be 
visible in Figure 4). For instance, the links that lead to nodes with no children at the top of Figure 4 
(e.g., states 76 and 459) represent incorrect actions. When a student action matches no viable link in a 
graph, but does match an incorrect action link emanating from a viable path, an error message 
associated with that incorrect action link is shown to the student. If a student input value does not 
match any viable link in the graph, or any suboptimal or incorrect action link attached to a viable path, 
the tutor provides unspecific feedback indicating only that the student action is incorrect. 

In addition to using their behavior graphs to generate feedback, example-tracing tutors use the 
behavior graph to generate hints as to what the student might do next. Essentially, CTAT’s step 
generator, in the terminology of VanLehn (2006), works by finding an appropriate unvisited link in 
the behavior graph, and then displaying a hint message associated with that link. (Typically, all links 
in the graph have hint messages attached to them.) A key question is what hint to give (e.g., Van Lehn, 
2006, pp. 242-243). When there are multiple interpretations of the student behavior, one is designated 
as the reportable interpretation – the one that most closely matches the preferred solution path through 
the problem. The first unvisited link in this viable path is chosen and the hints associated with this link 
are displayed to the student. Thus, in our stoichiometry example, if the student is in the (ambiguous) 
situation shown in Figure 3, the tutor’s hints will focus on the expert solution (i.e., the right branch). If 
the student ignores the hint and follows the alternative strategy (i.e., the left branch), the right branch 
is no longer viable and the next hint will focus on the left branch.  

In sum, example-tracing tutors exhibit a desirable property of the inner loop not identified by 
VanLehn (2006), although perhaps assumed: they flexibly recognize student behavior within a given 
problem. Specifically, they are able to deal with multiple strategies for solving a given problem, and 
are able to maintain multiple interpretations of student behavior. In our opinion, this level of flexibility 
is highly desirable for an ITS authoring tool, as many ITS applications require it. 

CREATING EXAMPLE-TRACING TUTORS WITH CTAT 

In this section, we describe how an author uses CTAT’s main tools for creating example-tracing 
tutors. (As mentioned, CTAT also provides tools for building Cognitive Tutors, including tools for 
building, testing, and debugging a cognitive model. Those tools however are outside the scope of the 
current paper.) The use of CTAT tools is part of a more-encompassing process aimed at tutor creation, 
outlined in Table 2. In the current paper, we focus on the steps in which CTAT is used, primarily steps 
4-6. The other steps are equally important to building effective tutors (see e.g., Baker, Corbett, & 
Koedinger, 2007) but they are outside the scope of this paper.  

 
 
 



 

 

Table 2: Developing an example-tracing tutor with CTAT 

1. Definition of instructional objectives 
2. Identify problem categories and problems for which to provide tutoring 
3. Cognitive Task Analysis (e.g., think-alouds and difficulty factors analysis) 
4. Tutor design and development 

a. Design and create interface 
b. For each problem (category) 

i. Demonstrate correct and incorrect behavior (i.e., create a behavior graph) 
ii. Generalize and annotate the behavior graph 

iii. (Optional) use template-based Mass Production to create multiple problems 
with isomorphic behavior graphs 

c. Organize curriculum and create curriculum files 
5. Deploy prototype version 
6. Pilot test 
7. Iterate 
8. Deliver final version 
 

 
Figure 6. Creating a Flash-based example-tracing tutor with CTAT. An author creates an 

interface through drag-and-drop techniques in the Flash Interactive Development Environment (IDE) 
(shown on the right), runs the interface (shown on the left, in a browser), and uses CTAT’s Behavior 

Recorder (middle) to create, generalize, and annotate a behavior graph. The tutor in this example is for 
6th-grade fractions. 



 

Creating the user interface for the tutor 

Interface design is an important issue in tutor development, but here we focus on implementation. 
When using CTAT, an author uses an interface builder, in drag-and-drop fashion, to create a tutor 
interface that lays out some or all of the problem-solving steps that the student will go through (step 
4.a in Table 2). The author has the choice between creating a Java-based interface and a Flash-based 
interface. Both can be created using an off-the-shelf Interactive Development Environment (IDE), 
either for Java development (e.g., Netbeans) or for Flash. For instance, the stoichiometry and fractions 
tutors, discussed and shown above, were developed using Flash (see right side of Figure 6). 

 

 
Figure 7: Composer widget (in Java) for building sentences from a sequence of menus 

 

 
Figure 8: Multiple selection widget (in Flash) with a video prompt and audio responses 

For each of these environments, Java and Flash, we have created a set of interface widgets that 
are “CTAT-enabled” in the sense that they communicate with the rest of the tools. The widget sets 
contain tutor-enabled versions of standard widgets such as buttons, combo boxes, text fields, text 
areas, labels, and lists.  In addition, both sets contain composite widgets that we have created, such as 
a table widget, and (in the Java set only), a “Composer” used to build sentences from a sequence of 
menus (see Figure 7). Various widgets support often-used combinations of interface elements, such as 
a question followed by a menu to select the answer, or a question followed by multiple possible 
answers. The set of tutor-enabled Flash widgets (or “components” in the Flash terminology) contains a 
number of media-enabled components (see Figure 8).  Finally, as an example of a domain-specific 
widget, an interactive number line was created for the fractions tutor illustrated in Figures 2 and 11.  



 

 

Figure 9: Tutor for genetics (with Java interface) built with CTAT. 

Using these widgets, an author can construct interfaces that support complex reasoning by 
students, such as the tutor for introductory (college- and high-school level) genetics shown in Figure 94 
and the stoichiometry tutor shown above.  These tutor interfaces are made up entirely of standard 
widgets (with a small amount of custom programming in the case of the stoichiometry tutor, to show 
strike-out of terms in a stoichometry equation that cancel each other out). One of the media widgets 
was used in a tutor for intercultural competence (Ogan, Aleven, & Jones, 2008; see Figure 10). To the 
extent that the pre-defined widget sets are sufficient, tutor interfaces can be built entirely without 

                                                        
4 The Genetics Problem Solving Tutor was implemented with CTAT by Albert Corbett and colleagues. It covers 
a wide range of genetics topics, and has been deployed and evaluated at 14 colleges and universities around the 
country. It is primarily a Cognitive Tutor, although for one of the units in the tutor curriculum, example-tracing 
tutors have been created.  



 

programming, using the drag-and-drop GUI builders built into standard Java or Flash development 
environments.  Programming is necessary only for tutor applications that require new widgets.   

 

Figure 10: A tutor for French culture makes use of CTAT’s video widget  

Dynamic interfaces 

Figure 11: Sequence of screens in a tutor for fractions; this kind of dynamic interface can be 
authored without programming 



 

 

CTAT also offers a capability to create dynamic tutor interfaces, meaning that the interface 
changes in response to student actions, for example by rearranging the screen layout, adding or 
subtracting widgets, or changing the content of existing widgets (see Figure 11). Using CTAT, 
dynamic interfaces can be created without programming. They serve many purposes, and CTAT users 
have requested this feature since day one.  One purpose is to make effective use of limited screen real 
estate, which is important especially for tutors that run in a browser, and for tutors that (e.g., in less-
affluent school districts) run on computers with low-resolution screens. The facility can also be used to 
provide dynamic scaffolding: if a student is struggling, the tutor may add steps in the interface to make 
thinking visible at a finer-grained level (e.g., Razzaq & Heffernan, 2006). As another example, the 
steps in the tutor’s user interface could be revealed one-by-one, in sequence, as the student solves the 
problem, as a way of leading the student through these steps in order (as illustrated in Figure 11). 
Alternatively, the dynamic interface facility could be used to implement dynamically-linked 
representations (Moore, 1992; Reed, 2005): in tutors that display multiple representations of a 
problem. Also, the facility can be used for the tutor to communicate certain consequences of their 
choice to the student. Finally, as a relatively simple use of this facility, the system may take over some 
of the steps that are necessary to solve a problem but that do not address learning objectives (e.g., 
Brown, 1985). In order to create dynamic interfaces, an author can insert links in a behavior graph that 
represent “tutor-performed actions.” Among the possible tutor-performed actions are showing and 
hiding of widgets, and changing the content of a widget. 

Creating behavior graphs 

Figure 12: Empty interface and behavior graph, prior to entering a “start state.” 

An author must create behavior graphs for all problems-to-be-tutored, although a template-based 
“Mass Production” process (described below) substantially reduces the amount of problem-specific 
authoring needed to create multiple problems with the same behavior graph structure. CTAT’s 
Behavior Recorder can be  used for recording, editing, generalizing, and annotating behavior graphs.  



 

Figure 13: Interface after entering the start state information 

The process of creating a behavior graph starts with defining a “start state” for the given problem. 
The author enters problem-specific information into the “empty” interface (see Figure 12), typically, a 
problem statement, values in some of the widgets, problem-specific graphical elements, etc. For 
instance, in Figure 13, the author of the stoichiometry problem discussed previously has typed in the 
problem statement (i.e., “How many moles of O2 …”) and the given initial value (1.216), and has 
selected the relevant units (kg) and substance (COH4) from their respective pull-down menus. Next, 
the author selects “Create Start State” in the Behavior Recorder (Figure 13).  CTAT prompts the 
author to enter a name for the problem, and the initial, solitary node of the behavior graph appears in 
the Behavior Recorder, i.e., the “start state.”  
 

Figure 14: Interface and behavior graph after demonstrating the first step of the expert solution 

Having defined the problem’s start state, the author creates a behavior graph, simply by putting 
the Behavior Recorder in Demonstrate mode and demonstrating expected problem-solving behavior in 
the interface. The author’s problem-solving steps are recorded in a behavior graph, one link per step, 
where a step is typically a single entry in an interface widget.  So, for instance, in Figure 14, the author 
has just selected “Given Value” from the pull-down menu in the lower left of the stoichiometry user 
interface as the reason for the initial value, and this step has been captured by the Behavior Recorder 
as the first link of the behavior graph. A new node is added at the end of the link to represent the new 



 

 

problem-solving state. The label on the link shows details about the specific action it represents. A 
green label (not visible in the print version) indicates that the link represents correct behavior.  
 

Figure 15: After demonstrating the second step of the expert solution 

As the author demonstrates the second step of the solution (e.g., entering “1000” as the numerator 
value of the second term), that step is recorded as well (Figure 15), and so on. For instance, in Figure 
16, the author has demonstrated part of the expert solution to the stoichiometry problem – up to and 
including the second term. Eventually, a complete solution path, from the start state to a final state, is 
captured in the Behavior Recorder. 
 

Figure 16: After demonstrating steps through the completion of the second term 

When creating a behavior graph for a given problem, it is important to record all reasonable (or 
pedagogically desirable) solution paths that students may take. Otherwise, there is a risk that the tutor 



 

will reject valid student input. As discussed further below, however, an author needs only record true 
alternative solution paths, not paths that differ only in minor ways. An author can create alternative 
paths in the graph by backing up to a problem-solving state that has been recorded previously – 
clicking on the state in the graph causes the interface to revert to that state – and then demonstrating a 
different way of solving the problem. The new solution steps will be recorded in a new branch in the 
behavior graph. For example, as discussed earlier, in our stoichiometry problem, a student can enter 
the terms of the stoichiometric equation in any order. After the initial step of entering “Given Value” 
as the explanation for the first term, therefore, valid next steps are (in addition to the already-recorded 
expert solution) to provide either the molecular weight of COH4 (1 mol COH4 / 32.04 g COH4) or the 
relevant stoichiometric relationship (1 mol O2 / 2 mol COH4). To record these strategies as separate 
paths, the author may revert back to the state following the input of “Given Value” and then enter the 
alternative steps,  which will be recorded in a new branch off the selected state (Figure 17). 
 

 
 

Figure 17: Demonstrating the first steps of an alternative, correct solution 

In order for the tutor to provide specific feedback messages related to common errors that 
students are expected to make, an author can demonstrate incorrect steps. The author must mark the 
corresponding links in the behavior graph as representing incorrect behavior, and attach a feedback 
message that will be displayed when a student commits that particular error. For instance, in Figure 18, 
the author has just demonstrated an incorrect action by entering “32.04” in the numerator of the second 
term from the left.  Such an error might easily be made by many students, since “32.04” is a relevant 
value to the problem (i.e., the molecular weight of COH4), but it does not appear in the numerator of 
any term for any of the possible correct solutions.  The author marks the link that results from 
demonstrating this erroneous step as incorrect behavior by selecting “Incorrect Action (Bug)” from the 
pull-down menu connected to that link (see Figure 18).  She is then prompted to provide a specific 
error message (not shown). 

 



 

 

 

Figure 18: Demonstrating an incorrect step and marking it as an “incorrect action” in the 
behavior recorder. 

Annotating a behavior graph 

After a behavior graph has been created, the author’s next step is to annotate the links in the graph 
with hints and knowledge component labels.  It is in this step that the roots of example-tracing tutors 
in the Cognitive Tutor methodology are most clearly visible. In particular, example-tracing tutors 
share the assumption that a complex cognitive skill can be decomposed into small “knowledge 
components” that can be acquired and strengthened separately through practice (see Anderson & 
Lebière, 1998). Thus, the learning objectives targeted by these tutoring systems are (often) defined in 
terms of knowledge components. In Cognitive Tutors, the knowledge components are expressed as 
production rules. In example-tracing tutors, by contrast, the knowledge components are defined 
extensionally, by labeling steps in a behavior graph with the name(s) of the knowledge component(s) 
that they involve. An author can enter the knowledge component label in a dialog box that is 
accessible through the pull-down menu connected to the link (see Figure 19). The knowledge 
components are displayed in the behavior graph in separate link labels. In our stoichiometry task, there 
are (hypothesized to be) different knowledge components for applying a molecular weight term versus 
a unit conversion term versus a stoichiometric relation term. The knowledge components are 
subdivided further by the 6 different elements of each term (value, unit, and substance of the 
numerator and denominator), and by whether the step is an explanation step. Thus, as illustrated in 
Figure 19, the stoichiometry problem described above involves knowledge components for explaining 
unit conversion steps (“set-unit-conversion-as-reason”) and for entering the numerator value of a 
molecular weight  term (“set-numerator-value-of-molecular-weight”). 
 



 

Figure 19: Labeling a step in the behavior graph with a knowledge component; the second 
(lower) label on each link indicates the knowledge component 

 
Understanding problem solving in terms of underlying knowledge components is often an 

important goal of cognitive task analysis, especially as it is done in the service of tutor development. 
By labeling multiple steps in a behavior graph (or across behavior graphs) with the same knowledge 
component, an author makes a prediction that practice on the one step will lead to improved 
performance on the other (see Koedinger et al., 2004 for a detailed example). In essence, she defines 
the applicability conditions of the knowledge component in an extensional manner. The knowledge 
component labeling helps in designing a curriculum and problem set for the tutor. It helps an author 
keep track of whether the problem set she has created so far provides sufficient practice opportunities 
with each of the targeted knowledge components. CTAT automatically generates a skill matrix to 
support this analysis; this report shows which problems involve which knowledge components. Also, 
the knowledge component labels enable the tutor to assess student knowledge in its inner loop. 
Currently, CTAT does not take advantage of this ability to support individualized problem selection, 
but we will soon add the Bayesian knowledge-tracing algorithm created by Corbett and Anderson 
(1995), so that CTAT can track individual students’ knowledge growth, and select problems 
accordingly. However, CTAT does record the results of its inner-loop knowledge assessment in the 
logs of student-tutor activities. The primary purpose of these logs is to support research. 

In addition to knowledge component labels, an author attaches hint sequences to each link in the 
behavior graph – these hints will be displayed when the student requests help from the tutor on the 
given step (see Figure 20). Typically, multiple levels of principle-based help are provided, going from 
broader hints (e.g., what goal or step to work on, what problem-solving principle to apply), to more 
specific advice (e.g., how does the problem-solving principle apply, what calculations need to be 
done), and finally, to a bottom-out hint that provides the resulting answer, or something close to it. The 
hints should be consistent with the knowledge component labels: steps that involve the same 
knowledge component should have similar hint sequences.  

 



 

 

Figure 20: defining a hint sequence 

Generalizing behavior graphs 

As mentioned, an author can generalize a given behavior graph in a number of ways to extend the 
range of student behavior that the example tracer will recognize as matching the graph, beyond 
recognizing only the exact same steps in the exact same order. As mentioned, this flexibility has been 
key in making example-tracing tutors into a viable ITS paradigm. There are three mechanisms, 
illustrated below: 

• Specifying constraints on the ordering of steps: the author can define arbitrarily nested groups 
of steps that should be “ordered” or “unordered.” 

• Defining a range of student input that matches a particular link; for example, an author can 
specify a numeric range, a set of values, or a regular expression. 

• Specifying how one step depends on other steps, through CTAT’s formula mechanism, by 
attaching Excel-like formulas to the links in a behavior graph 

 



 

Figure 21: Desired step order in a tutor for decimal addition and subtraction; steps with the same 
number should be viewed as an “unordered group” 

In many situations, the specific order of (some or all of) the steps needed to solve a problem does 
not matter. In such situations, a tutor should allow students the freedom to perform the steps in any 
order they may choose. On the other hand, where order does matter, the tutor should help students 
learn the right order, meaning that it should reject steps when they are out of order, even if they are 
otherwise correct. CTAT allows an author fine-grained control over the order in which problem steps 
will be accepted, using its Group Editor tool (see Figure 22, bottom left). An author can group links in 
a behavior graph and specify for each group whether it is “ordered” or “unordered.” Groups can be 
nested within groups. Consider, for example, a tutor unit dealing with decimal addition and subtraction 
(see Figure 21; this tutor is part of a project, led by the authors of this paper, to create a comprehensive 
website with tutors for middle-school math). In this tutor, students, after reading the problem 
statement, must select the operation to be performed (“+” or “–”), copy the two numbers presented in 
the problem statement into the interface, making sure that the decimal points are aligned, and then add 
or subtract to find the final answer. There is probably no good reason to require that students enter the 
digits of the two numbers in any particular order, as long as they line up the decimal points correctly. 
On the other hand, it seems pedagogically desirable that they follow a systematic addition or 
subtraction strategy, processing columns in right-to-left manner. With respect to borrowing (in the 
case of subtraction), a small amount of flexibility is desirable: it does not matter whether the 
“borrower column” or the “lender column” is updated first (in the “regrouping row,” see Figure 21), or 
whether the result in a column is written before or after the borrowing has been completed.  

In order to capture the desired tutoring behavior, an author would specify, after recording all the 
steps in a behavior graph, that overall, the graph should be viewed as ordered, and would then create 
three unordered groups of links: one for the steps involved in entering the two given numbers (group 2 
in Figure 21), and one each related to the borrowing that occurs in the hundredths and ones columns 
(groups 4 and 7 in Figure 21), respectively. As illustrated in Figure 22, an author can use CTAT’s 



 

 

Group Editor to create and modify link groups. The author has created two groups and named them 
“Enter-Given-Numbers and “Subtract-Hundredths-Column,” both listed in the Group Editor, and is 
working on creating the third. (The “Top-Level” group is created by CTAT and represents the whole 
graph. Note that it is an ordered group.) The author has selected three links in the behavior graph, has 
clicked on “Create Group,” and is about to provide a name for the group and specify whether it is 
ordered or unordered. 

 

Figure 22: Defining an unordered group of links 

Authors can also generalize a behavior graph by changing the matching criterion for a link, for 
example by attaching a formula, or specifying a range of valid values. We illustrate CTAT’s formula 
facility with a demo tutor for factoring quadratics (see Figure 23). This tutor supports a guess-and-test 
strategy, reflecting the way that factoring is often done in real life – bypassing the quadratic formula5. 
In this tutor, the students themselves define the problems they want to solve with the tutor, by entering 
the coefficients a and b of a quadratic expression x2 + ax + b. They must then factor the expression 
into the form (x + N1)(x + N2). The tutor lets the student venture three guesses for the number pair N1 
and N2. For each, the student must correctly enter the sum and product of N1 and N2. If the sum and 

                                                        
5 The point is to illustrate what is possible with CTAT – we make no claim that the tutor for factoring quadratics 
is effective in real life. 



 

product are equal to the coefficients a and b, the equation has been factored successfully. Otherwise, 
the tutor only accepts a click on the “Next Try” button, and adds input fields for the next attempt 
(through CTAT’s dynamic interface facility). Thus, returning to a point discussed above, the tutor 
supports a specific form of delayed feedback: the correctness of the student’s guesses for N1 and N2 is 
not revealed until later steps. 

 

 
 
Figure 23: Demo tutor for factoring quadratics that supports a guess-and-test strategy, and part of its 

behavior graph. After the student’s first attempt at factoring x2+3x–10 as (x+3)(x–7), which is incorrect, the tutor 
accepts a click on the “Next Try” button but will reject a click on the “Done” button. The student’s second try, 
(x+5)(x–2), is correct. After the student fills out the sum and product of 5 and -2, the tutor will accept a click on 
the “Done” button.   

 
This tutor relies on CTAT’s range mechanism in a number of places. Using this facility, an author 

can specify that a link in the graph can be matched by input within a predefined numeric range.  Range 
matches are used on the steps where the student enters the coefficients a and b for the quadratic-
expression-to-be-factored and the steps where students enter their guesses for N1 and N2.  



 

 

 
 

Figure 24: CTAT’s formula facility 

The tutor also relies on CTAT’s formula mechanism, in two places. First, as one might expect, it 
is used on the steps where the student enters the sum and product of N1 and N2. Second, perhaps 
somewhat surprisingly, the formula mechanism is used on the steps where the student enters the 
guesses N1 and N2 to figure out (by means of the quadratic formula) whether these guesses are correct. 
In Figure 23, the left path branching off of state “EverythingVisibleForTry2” includes correct guesses 
for N1 and N2, followed by the sum and product of N1 and N2, and finally the Done button. (To 
accommodate the fact that N1 and N2 are interchangeable, this path bifurcates at the top, just below 
state “EverythingVisibleForTry2,” and then converges again.) The path that branches off to the right 
of state “EverythingVisibleForTry2” includes any guesses for N1 and N2. It further includes the sum 
and product, followed by the TryNext button, but not the Done button. Thus, after the student has 
entered correct values for N1 and N2 (i.e., values that represent the correct factoring of the quadratic 
expression), both the left and right paths are viable interpretations. However, if the values for N1 and 
N2 are incorrect, only the right path is viable. Since only the left path ends in a Done button 
immediately after the sum and product, the student can finish only when she is currently on the left 
path.  

Figure 24 shows the window in which an author enters formulas, displaying a formula expressing 
how the value in the N2 field depends on other values. (This formula occurs on the left path in the 
graph; it is a straightforward application of the quadratic formula.) The formula refers to values 
accepted on other links (e.g., “link1.input”) and also includes mathematical functions (e.g., “sqrt” for 
the square root). A formula wizard (not shown) lets an author browse the set of functions that can be 
included in formulas. They include the Java string and mathematics libraries and a (growing) CTAT-
specific library. It is straightforward to write Java code to extend the function library.  



 

Without the range and formula mechanisms, it would have been virtually impossible to build an 
example-tracing tutor that supports (1) students’ entering their own expression-to-be-factored and (2) a 
guess-and-test strategy where the tutor can respond to a wide range of student input that cannot be 
anticipated in advance. Without the two mechanisms, the behavior graphs would need to contain an 
intractable number of paths. Thus, the example illustrates another way in which example-tracing tutors 
deserve to be called ITSs – they support dynamic paths where the steps within the path depend on each 
other, obviating the need to enumerate a massive number of paths.  

Mass Production of behavior graphs 

To facilitate the creation of many isomorphic tutored problems, CTAT provides a facility for 
template-based Mass Production. The idea behind Mass Production is to help an author generate many 
problems of the same structure without having to demonstrate solutions to each and every one of them. 
Rather, Mass Production lets an author take advantage of the (ample) reusable information contained 
in a behavior graph – all of the problem-solving states and links and possibly many of the hint 
messages and error feedback. The need for isomorphic problems arises in many task domains, given 
that ITSs tend to focus on recurring problem-solving tasks. For example, in fraction addition, a student 
typically completes multiple practice problems with the same underlying structure. As another 
example, consider the stoichiometry problem discussed earlier, i.e. 

 
1.216 kg COH4 × (1000 g COH4 / 1 kg COH4) 
                          × (1 mol COH4 / 32.04 g COH4) 
                          × (1 mol O2 / 2 mol COH4)  
              = 18.98 mol O2                (1) 
 
Another problem provided in the stoichiometry tutor is the following: 
 
1 g Fe2O3 × (1 mol Fe2O3 / 159.692 g Fe2O3)  
                 × (2 mol Fe / 1 mol Fe2O3)  
                 × (55.847 g Fe / 1 mol Fe)  
           = 0.69943 g Fe           (2) 
 
While the specific terms used to solve these two problems are different – for instance, the first 

multiplier of equation (1) is a unit conversion term, as discussed earlier, while the first multiplier in 
equation (2) is a molecular weight term – the structure across the problems is identical. More 
specifically, the given value (i.e., the first term) is a single, non-ratio number multiplied by three ratios 
(i.e., 6-part terms of the kind discussed before) leading to a non-ratio solution.  In CTAT we take 
advantage of this very common situation by providing a template-based approach to creating behavior 
graphs.   

 



 

 

 
 

Figure 25: Part of a Problems Table for the Stoichiometry Tutors; the rows represent variables, 
the columns represent problems; the cells contain problem-specific values for the variables. 

The Mass Production process is straightforward: After the author has demonstrated and edited 
(and, ideally, debugged and pilot-tested) a behavior graph for a single problem, she turns this behavior 
graph into a template by introducing variables to given values and demonstrated input, effectively 
removing problem-specific information from the graph. The author may also insert the newly defined 
variables into hints and error messages, as appropriate, or may introduce variables that stand for entire 
hint or error messages. Once the template is fully generalized, the author edits a “problems table” in 
Microsoft Excel. For each problem for which a behavior graph is to be created, the author provides 
values for each of the variables in the template, as shown in Figure 25, which has all values filled in 
for a range of problems, including (1) and (2) above. The final step is for the author “to merge” the 
behavior graph template file with the problems table, in a fashion similar to the way mail merge works 
in Microsoft Word. The merge step yields multiple instances of the behavior graph, corresponding to 
individual problems in the problems file (shown as different columns in Figure 25). 

Thus, once an initial behavior graph has been created and debugged, tutors of a similar structure 
can be created very efficiently.  In the case of the stoichiometry tutors, we generated a total of 35 
tutored problems, similar to those in equations (1) and (2), from three basic templates – a one-term 
template, a two-term template, and a three-term template. We have used Mass Production in a number 
of other projects as well. In one project for elementary-school whole-number division, over a thousand 
behavior graphs were created in this manner. In our experience, however, Mass Production is 
worthwhile even with very small numbers of isomorphic tutors (e.g., 4). 

Not only does the Mass Production process make it easier to produce many example-tracing 
tutors that share similar structure, it also supports content consistency and maintenance. It is much 
easier to look across a row of a table, such as that shown in Figure 25, to check for consistent values 
and text, than it is to open separate behavior graphs and search for consistency. With respect to 



 

maintenance, we have found that many changes involve a simple global replace. Without Mass 
Production, individual behavior graphs would have to be opened and edited; a time-consuming process 
highly prone to errors. (Of course, we have also experienced the usual problems with global 
replacement, especially when a Problems Table contains text, as does the one depicted in Figure 25. In 
particular, some text segments may share words but are subtlety different.) The Mass Production 
facility illustrates how an authoring tool can be combined synergistically with off-the-shelf software. 
Not only does Excel provide for convenient editing of tables, its formula mechanism can be used (in 
the Problems Table) to calculate problem-specific values, further enhancing the consistency and 
maintainability of the tutors6.  

CTAT’S ARCHITECTURE 

 
Figure 26: CTAT’s modular architecture 

Over the years of developing and using CTAT, we have come to realize that it is important to 
provide an architecture that is modular and supports plug-and-play of ITS components.  An authoring 
tool such as CTAT will not satisfy all its users all the time, so it is important that the tool is (easily) 
customizable by programmers, even if so far we have emphasized users who are non-programmers. 
The wholesale plugging-in of new components may be the easiest way to customize. A modular 
architecture also adds to the versatility of an authoring tool, especially if multiple options are available 
for (some of) the modules. This versatility enables an author to select the tools appropriate to their 
particular situation and application. In this section, we briefly describe the main components in CTAT 
architecture, and illustrate ways in which it is modular and flexible. 

                                                        
6 CTAT’s new formula mechanism serves a similar purpose, and unlike the Excel formula mechanism, makes it 
possible to dynamically compute values, based on student input, as illustrated in the tutor for factoring quadratics 
above.  



 

 

CTAT’s open architecture (see Figure 26) supports the functions described above: building an 
interface, creating annotated and generalized behavior graphs, and using a behavior graph to provide 
tutoring. In addition, it supports the following functions: 

1. Building cognitive models for use in Cognitive Tutors. 
2. Delivering tutors and tutoring behaviors over the web and by other means. 
3. Student management functions such as setting up student accounts, authentication, and 

teacher reports. 
4. Logging of student-tutor interactions for research purposes. All CTAT- tutors have the built-

in option to write and transmit detailed logs without requiring any extra effort from the 
author. Flash tutors in addition can log student-recorded audio clips to Flash’s media server. 

 
We already discussed the GUI Builder, Student Interface, Behavior Recorder, and Example 

Tracer, but have not yet fully discussed the following components: 
 
• The Tutor Engine takes care of a tutor’s inner loop (VanLehn, 2006), that is, it provides 

step-by-step guidance within a given problem. CTAT provides four different tutor 
engines: two versions of the example tracer described above, one in Java and one in Flash 
(although the Flash-based version has been deprecated), as well as two model-tracing 
engines for cognitive models in Jess (Friedman-Hill, 2003) and TDK (Anderson & 
Pelletier, 1991). 

• The Tutoring Service provides access to inner-loop tutoring behavior over the web by 
running a tutor engine on a server machine. It reflects our desire to have a single example 
tracer compatible with different types of student interfaces running on the web (e.g., 
Flash, Java)7.  

• The Tutor Web Delivery Services serve up tutors or tutor interfaces embedded in web 
pages. They include authentication services and accommodate such functions as gaining 
students’ consent for participating in an experiment. These services integrate with web 
servers to also provide explanatory text and images that an author might want students to 
see during a tutoring session. 

• The Learner Management System provides services such as creation of class lists, student 
accounts, and teacher reports. It also provides “outer loop” functionality (VanLehn, 2006) 
in that it keeps track of each student’s position in the curriculum and provides problem 
selection options (e.g., macroadaptation). We use an industrial-strength LMS system 
created in our lab and substantially perfected by Carnegie Learning, a company that 
markets Cognitive Tutor mathematics courses. This LMS module is gradually replacing 
the learner management functions of a home-grown module called the “TutorShop.” 

• The DataShop is a repository for student-tutor interaction data, primarily for research 
purposes. It also provides analysis tools for researchers, for example, tools to display and 
analyze “learning curves” (VanLehn, Koedinger, Skogsholm, Nwaigwe, Hausmann, 
Weinstein, & Billings, 2007), and an option to export log data to Excel or statistical 
packages for further analysis. The DataShop is not part of CTAT proper (e.g., it is used to 

                                                        
7 It was easier to create a server-side tutor engine than to figure out how to integrate the tutor engine and student 
interfaces locally on the client, although recent developments in Java-Flash integration appear to make that 
option feasible. 



 

collect data from sources other than CTAT tutors), but is a crucial service for CTAT tutors 
used in research experiments.  

• The Cognitive Model Development Tools are used to create and debug rule-based 
cognitive models; they are outside the scope of the current paper, we refer the reader to 
Aleven, McLaren, Sewall, and Koedinger (2006). 

 

 
Figure 27: CTAT was used to add tutoring to the CyclePad thermodynamics simulator 

As evidence of desirable modularity in the CTAT architecture, a number of components in the 
CTAT architecture have multiple instantiations, indicated, in the architecture diagram, with “stacked” 
rectangles, which represent configuration alternatives. We discuss each in turn. 

Alternatives for the student interface: CTAT provides direct support for creating student 
interfaces in Flash and Java, in that its tutor-enabled interface widgets (or components) integrate into 
commercial GUI builders (integrated development environments, or IDEs) available for those 
languages. The choice between Java and Flash makes CTAT more versatile (e.g., Flash may be better 
for the web, Java is better for object-oriented software engineering; and there are many more factors 
affecting the choice). Furthermore, the modular separation of the student interface and tutor engine has 
permitted CTAT users to connect their own interactive simulators or user interfaces to our tutor 
engines, to create tutored versions of the original system. A simulator for thermodynamics (Rosé, 
Kumar, Aleven, Robinson, & Wu, 2006) (see Figure 27) and an interface for student collaboration 
(Harrer, McLaren, Walker, Bollen & Sewall, 2006) have been hooked up to CTAT in this way (cf. 
Blessing et al., 2007; Ritter & Koedinger, 1997), and we are currently in the process of hooking up a 
chemistry simulator.  As a somewhat different aspect of CTAT’s modularity, the sets of interface 
components that can be used in CTAT tutors are easily extensible, because the API for these widgets 
is well-developed. At least one outside author, with our help, has created a custom component (Wylie, 
2007), and we hope that others will contribute components as well, as we make the necessary sources 
and documentation available. 



 

 

 
Figure 28: A simple Example-Tracing tutor embedded in an on-line introductory French course 

within the Open Learning Initiative; this tutor uses the Flash Jumble widget, which lets a student drag 
a scrambled set of items (here, words in a sentence) into the desired order 

Alternatives for the tutor engine: The interface options available in CTAT can be combined in 
mix-and-match fashion with the four tutor engines mentioned above. So far, in real educational 
settings, we have seen example-tracing tutors with Flash interfaces and Java interfaces, an example-
tracing tutor with a simulator, and TDK-based cognitive tutor (of the “traditional” kind) and with a 
CTAT-built interface. Jess-based cognitive tutors (with Flash and Java interfaces) have been created in 
courses, workshops, and are used heavily in the SimStudent project, which uses machine learning to 
infer a rule-based cognitive model from behavior graphs (Matsuda et al., 2005; 2007). 

The ability to mix-and-match interface options and tutor engines hinges on the message protocol 
between interface and tutor engine. This message protocol 
(http://ctat.pact.cs.cmu.edu/index.php?id=tool-tutor) is derived from Ritter and Koedinger’s (1997) 
architecture for plug-in tutor agents and the concomitant tool-tutor communication spec – the basic 
idea is the careful separation of tool/interface functionality and tutor functionality.  



 

 
Figure 29: an on-line assessment authored with CTAT embedded in a Carnegie Learning 

interface (Butcher & Aleven, 2008) 

Alternatives for the delivery environment: As another main driver of a flexible architecture, we 
have encountered the need to deliver tutors in a variety of technical contexts – reflecting the 
experience that CTAT tutors are often (but not always) embedded in a larger framework for e-
Learning or other forms of technology-enhanced learning. For example, CTAT tutors have been used 
in the following contexts: 

• Within an existing e-Learning framework, namely, on-line courses created as part of CMU’s 
Open Learning Initiative (OLI) (see Figure 28).  

• Web-based but separate from any existing e-Learning framework, with the tutor engine 
running either on the client or the server (as part of the Tutoring Service).  The stoichiometry 
and fractions tutors described above belong in this category. 

• Integrated with Carnegie Learning’s Cognitive Tutors, so that CTAT and CL problems are 
interleaved (see Figure 29).  

• Installed desktop applications: In settings where we have had access to the student machines, 
we have installed CTAT as a traditional desktop application. Although there are many 
advantages to running tutors on the web, there are situations (e.g., schools with poor network 
connectivity) where it is an advantage not to have to rely on the web. 



 

 

EVIDENCE OF USE AND IMPROVED AUTHORING AFFORDABILITY 

CTAT has been used extensively to create example-tracing tutors and on-line assessments. We 
know of approximately 370 people who have used CTAT to create working tutors and assessments, 
including people who have used CTAT in research and development projects, and people who have 
used CTAT in courses and summer schools at Carnegie Mellon, Worcester Polytechnic Institute, and 
the University of Edinburgh. In addition, there may be others who have used CTAT that we do not 
know about, since it is freely available on the web.  In the past two years alone, CTAT was 
downloaded over 4,300 times and the CTAT website (http://ctat.pact.cs.cmu.edu) drew over 1.5 
million hits from over 100,000 unique visitors. We regularly receive technical questions and requests 
for support via e-mail.  

As shown in Appendix A, CTAT has been used to create tutors for mathematics (elementary, 
middle-school, and high-school, including whole-number division, fractions, algebra, and geometry), 
chemistry, genetics, thermodynamics, French language learning and culture, Chinese language 
learning, and English as a Second Language (ESL). This list only includes tutors that have seen actual 
use in real educational settings, either as part of classroom research, or as part of regular instruction. 
As the appendix indicates, CTAT-built tutors and assessments have been used in about 26 research 
studies in real educational settings. Further, CTAT will be used in a new project we have just started to 
create a comprehensive website for middle-school mathematics. To the best of our knowledge, this 
makes CTAT the most widely used ITS authoring tool in existence. 

In order to get a sense for whether CTAT improves the cost-effectiveness of authoring ITS, we 
compare against “historical” estimates, reported in the literature, of overall development time and cost 
versus the project output (e.g., hours of instruction produced). This method provides some confidence 
that true gains are being achieved, but it is important not to lose sight of its limitations.  The overall 
project cost-output estimates run the risk of comparing apples and oranges, for example, in that 
historical projects often have had time to produce high quality output, which may require more 
iteration and maintenance, whereas new projects may underestimate costs for such iteration and 
maintenance.  On the other hand, historical projects often stretched out over longer periods of time, so 
that project development teams had time to become familiar with the tools and the technology, to hone 
their development skills, establish good working procedures, select the best tools for the job, re-use 
work done in earlier phases, etc. In other words, within these projects, there usually was sufficient 
time to achieve an economy of scale. Smaller projects typically do not reach that point. Further, the 
estimates of development time tend to be very rough, since they are often based on retrospective 
accounting of how time was spent, and they tend to be somewhat inconsistent across projects, since it 
is not easy to separate tutor development from other project activities. Finally, different projects used 
CTAT at different stages of its development – for instance, the stoichiometry tutors were built before 
functions were available, functionality that would have made their development much easier – which 
also introduces variability. The main point is that the development time estimates should be treated as 
rough estimates. 

As our baseline, we use development time estimates reported in the literature, which for ITSs 
range from 200:1 (Woolf & Cunningham, 1987) to 300:1 (Murray, 2003). The “historical” 
development time estimates for the successful Algebra and Geometry Cognitive Tutors (see, e.g., 
Koedinger et al., 1997) are in line with these estimates. A rough estimate puts the development time 
for these two Cognitive Tutors at 200 hours for each hour of instruction. It is important to note that 
these tutors pre-date CTAT. They were built with the Tutor Development Kit (TDK) (Anderson & 



 

Pelletier, 1991), our initial Lisp-based cognitive modeling environment. In fact, these Cognitive Tutors 
(and their development times) were an important source of inspiration for CTAT. 

The development times for CTAT-built tutors that have seen actual use in real educational 
settings are listed in Appendix A. CTAT staff built the tutors in one of these projects (stoichiometry). 
In all others, the tutors were built primarily by project staff or students not directly associated with 
CTAT, who typically had little prior experience developing tutors. In most of these projects, the 
CTAT staff had a consulting role, but did not do substantial tutor development. In order to provide a 
fair comparison against historical estimates, the development time estimates listed in the table include 
all tutor development activities, from the earliest conception of the tutor to the cognitive task analysis 
activities, tutor implementation, testing, pilot testing (sometimes), and debugging. However, they do 
not include general CTAT extensions implemented (by CTAT personnel) in the course of these 
projects, since we are interested in finding out how much the tool contributes to the affordability of 
authoring. Appendix A also lists, for those projects for which this information could be ascertained, 
the amount of instructional time covered by the CTAT tutors that were developed. This information 
was obtained from the lead researchers involved in each project. Since these projects were research 
studies in real educational settings, the amount of time covered by the tutors is known quite accurately, 
as arrangements needed to be made with collaborating teachers regarding the number of class periods 
that the study would cover. 

The development time picture that emerges is very interesting. If we distinguish between small 
projects (at most one hour of instruction created) and larger projects (more than one hour), we see that 
small projects do not “beat” the 200:1 and 300:1 ratio reported in the literature. On the other hand, the 
larger projects consistently do better than that, with the Whole-Number Division project “weighing in” 
at a 107:1 ratio, an Algebra tutoring project at 87:1, the Stoichiometry project a 85:1 ratio, and the 
fractions project at 48:1. These estimates are higher than those reported in an early paper on CTAT 
(Koedinger et al., 2004), which no doubt reflects the tougher standard used in the current paper, in 
particular, that the tutor must have been used in an actual educational setting.  Even so, the larger 
projects that have used CTAT point to considerable savings in development time, with development 
time estimates 3-4 times better than the historical averages. The fact that the smaller projects have not 
consistently done better than the historical averages is likely due to the many factors discussed above: 
these projects have the start-up costs that all projects have but no opportunity to develop within-project 
economy of scale. The savings are even greater when we measure development effort in terms of cost 
rather than time. In many of the projects listed above, the CTAT tools were used by non-programmers, 
so if one estimates that PhD level AI programmers cost about 1.5-2 times as much as non-
programmers, then our very rough estimate indicates that CTAT leads to 4-8 times more cost-effective 
development of ITSs than the “historical” results reported in the literature. We reiterate that there is a 
risk of comparing apples and oranges: the historical estimates were based on larger-scale projects that 
may have created higher-quality tutors through multiple iterations of use and revision, although we 
should emphasize that we included in our sample only tutors that were good enough for real 
educational settings, which is a high standard. Further, the historical projects may have developed a 
within-project economy of scale not possible for the shorter-duration projects being reviewed here.  



 

 

DISCUSSION 

In this section, we review how CTAT stacks up against the six requirements for authoring tools that 
we outlined in the introduction, summarizing and, in some cases, expanding upon points made earlier 
in the paper.  
 

CTAT supports the authoring of effective tutors (criterion 1). Example-tracing tutors implement 
much of the behavior that is considered typical of ITSs, described by VanLehn (2006), focused on 
step-by-step guidance to students as they solve complex problems.  However, example-tracing tutors 
go well beyond VanLehn’s basic criteria. First, they follow students along multiple solution paths 
within a given problem, regardless of which one the student decides to pick. This capability sets 
CTAT apart from some other authoring tools, including Assistments (Razzaq et al., 2005) though not 
from others, such as ASPIRE (Mitrovic et al., 2006). This capability matters, because many recurring 
problem-solving tasks, such as the stoichiometry problems shown above, naturally give rise to 
multiple solution paths. Even in a relatively simple fraction addition problem (e.g., 1/4 + 1/6), a 
student might use different strategies to find common denominators (e.g., 12 or 24 are both correct). 
Example-tracing tutors’ formula mechanism enables them to recognize a potentially very large number 
of different paths, too many to enumerate explicitly. As illustrated by the tutor for factoring quadratics, 
there is a large class of problem-solving tasks for which it is very difficult to predefine all paths, but 
that are relatively straightforward to address with formulas. As another example, if one wanted to 
build a tutor for fraction addition that will accept, as the common denominator, any common multiple 
of the denominators of the two fractions to be added (e.g., when adding 1/4 + 1/6, convert to common 
denominator 12, 24, 36, 48, 60, etc.), it would not be possible to enumerate all possible paths, but it 
would be straightforward to capture them all with a single formula. 

A second way in which example-tracing tutors go beyond VanLehn’s basic criterion is in their 
ability to maintain multiple interpretations of student behavior, for as long as these interpretations are 
consistent with the students’ actions. This capability obviates the need for disambiguating student 
intent “on the spot,” as for example Cognitive Tutors do. Delayed disambiguation enables the tutor to 
follow the student, “wherever they go” in the given problem, as long as they stay within the behavior 
graph, without interrupting them with disambiguation questions and without running the risk of 
steering them down a different solution path than they had in mind. 

While example-tracing tutors support an interesting range of tutoring behaviors, there remains a 
class of applications for which Cognitive Tutors are the preferred choice, at least when personnel with 
the requisite rule-based programming skill is available. For example, Cognitive Tutors are often 
preferred for problems with variable or unpredictable subgoals, problems in which the relation 
between actions and subgoals is unclear, problems whose solutions constitute complex structures (e.g., 
the Lisp Tutor, Anderson, Conrad, & Corbett, 1989), or problems with subtle ordering constraints 
among steps. We anticipate that we will have more to say about the difference between example-
tracing tutors and Cognitive Tutors as we gain experience using CTAT’s new formula mechanism, 
which significantly narrows the gap.  

Example-tracing tutors have proven their effectiveness on measures of learning.  For instance, the 
stoichiometry tutors discussed earlier led to statistically significant learning gains from pre to posttest 
in all conditions of three separate studies (McLaren, Lim, & Koedinger, 2008a). 

 



 

Example-tracing tutors have been built for a range of application domains (criterion 2). CTAT is 
a versatile tool, and has been applied not only in quantitative domains such as mathematics and 
science, in which ITSs have long had a strong track record, but also in language learning and even 
cultural learning.  As the data presented in Appendix A indicate, the specific domains for which CTAT 
tutors have been built (and used in real educational settings) include mathematics (at the elementary 
school, middle-school, and high-school level), chemistry, genetics, thermodynamics, Chinese, French, 
and English as a Second Language. CTAT has been used to provide tutoring within a simulation for 
thermodynamics, and work is underway to hook up CTAT with a chemistry simulator. 

In general, CTAT is useful for building tutoring systems that support complex problem solving 
and even systems that support not-so-complex problem solving. The example-tracing technology 
seems unnecessary for applications in which there is a single question and answer. For example, 
CTAT may not be particularly useful for teaching vocabulary items or historical facts, although it may 
well be used to create a system for historical analysis, although even for such applications, many 
components of the CTAT architecture may be useful (e.g., web delivery, logging, student 
management). CTAT proper is not currently geared toward supporting the authoring of tutorial 
interactions in natural language, or parsing of answers in natural language. Finally, CTAT is not 
geared towards building systems with large domain ontologies (e.g., Crowley & Medvedeva, 2006) or 
that draw on large stores of factual or conceptual knowledge (e.g. question generation systems). 
 

Example-tracing tutors provide a cost-effective way of developing tutors (i.e., minimize time and 
money) (criterion 3). CTAT is one of very few ITS authoring tools that make it possible to author 
sophisticated tutors without programming. ASPIRE (Mitrovic et al., 2006) is another such tool; we 
briefly compared CTAT to ASPIRE in the introduction. Thus, CTAT can help ITS development 
projects avoid the cost of expensive programmers, those with, for instance, specialized skills in AI 
programming. In many of the CTAT projects reported in Appendix A, non-programmers used CTAT 
to create tutors or on-line assessments, including many authors who are not part of the CTAT 
development team, and who did not have extensive CTAT experience. Often, but not always, these 
authors worked in consultation with the CTAT team. Of course, authoring tools do not obviate the 
need for careful cognitive task analysis, interface design, or use of instructional design or learning 
sciences principles.  Thus, one still needs personnel skilled in these areas. Further, although CTAT 
authors do not have to be programmers, so far, they typically have been tech-savvy people, not to be 
intimidated by relatively complex environments such as the Flash IDE, the Netbeans IDE, and CTAT 
proper. Finally, although the sets of interface-enabled widgets that CTAT provides are often sufficient 
to create interfaces that support complex reasoning tasks, for certain interactions new widgets are no 
doubt necessary. These new widgets will require programming.  

Development time estimates from projects that have used CTAT over the past years indicate that 
CTAT considerably brings down the time needed to develop intelligent tutors. Our estimates of 
affordability savings come from comparing overall development costs of past large-scale development 
projects using prior authoring tools versus projects using CTAT.  These estimates indicate an 
improvement of as much as 4-8 times greater cost-effectiveness, due to CTAT. It should be kept in 
mind that the reliability of such estimates is limited because of the many sources of variability (e.g., 
different personnel, different task domain, different quality of resulting tutors, different time scale of 
projects, and different opportunity to develop within-project economy of scale). It appears that the 
savings may be due in the first place to lower upfront implementation costs for each new problem type 
for which tutoring is to be provided, and to a lesser degree to lower implementation costs per tutored 



 

 

problem. Creating a new problem type for a Cognitive Tutor requires programming extensions to the 
cognitive model, in the form of production rules, and often requires interface programming (although 
many re-usable interface components were developed). With example-tracing tutors, on the other 
hand, an interface and Mass Production template can be created without programming (at least if no 
new interface components are needed) and therefore typically take less time than the interface and 
cognitive model programming needed to add a new problem type to a Cognitive Tutor. Once the 
upfront work for a new problem type has been done, adding a new problem is rather easy both for 
Cognitive Tutors and example-tracing tutors, at least assuming that Mass Production is used. One way 
to take advantage of the relative ease with which new problem types and tutor interfaces can be 
created with CTAT might be to increase problem variability (e.g., Paas & van Merrienboer, 1994), 
which has been shown to lead to increased learning. In other words, students will encounter the same 
knowledge components in a problem set with greater variability, for example in terms of the steps or 
even the whole tutor interface. If we may be somewhat speculative, example-tracing tutors may lead to 
a more varied set of tutors; this greater variability may in turn lead to better student learning. 

A number of developments are underway that may further improve the cost-effectiveness of 
authoring with CTAT, and the quality of the resulting tutors: the SimStudent module of CTAT 
(Matsuda et al., 2005; 2007), which uses machine learning to create rule-based cognitive models, and 
a novel “bootstrapping” facility that lets an author create behavior graphs directly from log data of 
students. The bootstrapping facility is likely to lead to tutors with greater ability to recognize actual 
student strategies and errors, especially in domains with somewhat more open-ended activities such as 
the use of simulators (Harrer et al., 2006; McLaren et al., 2004). 

 
CTAT supports delivery of tutors in a wide variety of technical contexts (criterion 4). Given the 

rise in Internet applications in present times, it is key that CTAT makes the process of building and 
delivering web-based tutors relatively easy. Being able to deliver in multiple contexts adds 
considerably to the complexity of CTAT, but CTAT’s modular architecture helps achieve this goal. 

 
CTAT supports ease-of-maintenance of example-tracing tutors in a number of ways (criterion 5). 

When tutors are built on a larger scale, and are used over longer periods of time, by successive cohorts 
of students, maintenance becomes an important concern. How easy or hard is it to modify tutors when 
requirements change? Although at this point in time, we have limited experience with regular 
maintenance of CTAT-built tutors over extended periods of time, we can point out that, 
serendipitously, many of the mechanisms in CTAT that enhance the ease of authoring, scaling up of 
tutored problems, and the flexibility of tutors also result in tutors that are easier to maintain. In 
particular, the Mass Production facility, designed to reduce repetitious authoring tasks and to support 
the production of many tutored problems, has the welcome side effect of making tutors easier to 
maintain. Similarly, many of the mechanisms that were designed to make example-tracing tutors more 
flexible have the effect of making them easier to maintain. Mechanisms such as unordered mode, 
range matches, and formulas effectively serve to “collapse” multiple behavior graph paths into a single 
one, which should significantly enhance maintainability. We will add that our views on maintainability 
of CTAT tutors are still developing. Few of the tutors built in CTAT have had a multi-year lifespan, 
and only a few of them have been updated regularly, a real test of maintainability. So far, however, our 
experience indicates that it is manageable to maintain a set of example-tracing tutors.  

 



 

Part of the motivation for CTAT has been from the start that it supports research use of tutors 
(criterion 6). In particular, CTAT supports research into how people learn with ITSs, and what 
features make ITSs effective. In a typical research study, a researcher compares student learning with 
two tutor versions that differ only with respect to a single feature hypothesized to be a key influence 
on student learning. Many (but not all) of the tutors presented in this paper were built for such research 
purposes.  For instance, the stoichiometry tutors were used to investigate the effect of polite problem 
statements, feedback, and hints (McLaren et al., 2007). The fractions tutors were used to investigate 
the effect of having students work with multiple graphical representations of fractions and of prompts 
for students to self-explain the representations (Rau, 2008). CTAT supports research in two main 
ways: first, by lowering the skill threshold for tutor building, it makes it easier for researchers from 
non-technical disciplines (e.g., the learning sciences or educational psychology) to create and do 
experiments with CTAT-built tutors. Second, a number of key features are geared toward research use 
of tutors. Most importantly, CTAT tutors write logs of all student-tutor interactions, which allow 
researchers to study students’ learning trajectories in great detail (VanLehn et al., 2007). CTAT also 
makes it possible to create on-line assessments, essentially tutors with the tutoring turned off. These 
“tutors” still evaluate students’ problem-solving actions, but they do so silently, without providing 
feedback or hints. They write logs of student actions, and their evaluations of these actions, effectively 
offering a form of automated grading. Even the mass production capability facilitates the adapting of 
tutors for educational research: in the stoichiometry politeness study, for example, in which we studied 
the effect of polite language on student learning, polite and not-so-polite tutor versions were created 
by editing the problems table in Excel, much easier to do than editing individual behavior graphs. 
Finally, one of the CTAT components (i.e., the TutorShop) has the capability to automatically assign 
students to conditions. 

CONCLUSION 

In this paper, we report on our on-going project to develop the Cognitive Tutor Authoring Tools, 
highlighting two main contributions we believe this project has made in its first 6 years. First, CTAT 
supports the development of example-tracing tutors, a novel way of building intelligent tutoring 
systems. Second, it provides tools for building these types of tutors without programming.  

Example-tracing tutors support sophisticated tutoring behavior. They provide step-by-step 
guidance in complex problem-solving activities, and thus meet VanLehn’s (2006) minimal criterion 
for being regarded as ITSs. They go well beyond VanLehn’s criterion, however, in that they are 
capable of recognizing multiple student strategies, of dynamically defining multiple solution paths 
within a problem, and of maintaining multiple parallel interpretations of student behavior. CTAT is 
one of the very few ITS authoring tools that supports the development of sophisticated tutoring 
behaviors and supports tutor building without programming. ASPIRE (Mitrovic et al., 2006) is 
another such tool. Example-tracing tutors are built through drag-and-drop techniques, programming by 
demonstration, and template-based authoring. They have drastically reduced the skill level required to 
build tutors, which previously required PhD-level AI programming skill. 

Evidence of CTAT effectiveness is its widespread and continued use (“vote-with-your-feet 
evidence”).  At least 350 people have used CTAT, perhaps many more. Tutors have been built with 
CTAT for both real classroom and experimental use, across a wide range of domains, often by authors 
who were not directly associated with the CTAT project and had little prior experience in tutor 



 

 

development. Development time estimates from a range of projects indicate that CTAT greatly 
reduces the cost-effectiveness of building ITS.  Prior estimates of development time (Murray, 2003) 
have ranged from 200-300 hours of development time per one hour of instructional time.   CTAT has 
managed to lower this ratio to 50-100 hours and thus reduced development time by a factor of 3-4. If 
one factors in the lower cost of personnel, then the savings may be as much as 4-8 times. We (or 
others who have used CTAT) do not yet have much experience with maintenance of an extended set of 
CTAT tutors over the course of a multi-year project. The CTAT tutors described in this paper have not 
yet seen multiple cycles of use and revision. We do believe however that maintenance of example-
tracing tutors will turn out to be highly feasible and that the same tool features that limit the amount of 
problem-specific authoring (e.g., Mass Production) that needs to be done for real-world tutoring 
systems will also greatly facilitate maintenance.  

Our experience with CTAT indicates that ITS authoring tools must satisfy many other criteria 
besides ease of authoring: (web) delivery and deployment of tutors, student management, and research 
use of tutors. Further, we have found that authoring tools can be fruitfully combined with other ways 
of facilitating authoring, or lowering its cost, such as use of application software (off-the shelf tools 
such as GUI builders and Excel), and an open architecture that supports plug-and-play of components 
(e.g., use of existing simulators, or an existing learner management system) and is extensible (e.g., we 
hope to see third parties contribute interface widgets/components, or provide Java code to extend the 
library of functions used in CTAT’s formula mechanism). The CTAT authoring suite has now 
persisted (as well as continued to evolve) through over 6 years of use. Other ITS authoring tools also 
have reached or are reaching a mature state where they support development of real-world tutors. It is 
our strong belief that in the years to come, these authoring tools will contribute greatly to making ITSs 
widespread. 

ACKNOWLEDGEMENTS 

Brett Leber and Martina Rau contributed to this paper. The CTAT project was supported by 
grants from ONR Award No: N000140310220, the Grable Foundation, and the National Science 
Foundation under Award No. SBE0354420. Their contributions are gratefully acknowledged. The 
opinions expressed in the current paper do not represent any official position of the funding agencies.  

REFERENCES 

Ainsworth, S., Major, N., Grimshaw, S., Hayes, M., Underwood, J., Williams, B. & Wood, D. (2003). 
REDEEM: Simple intelligent tutoring systems from usable tools. In: T. Murray, S. Blessing, and S. 
Ainsworth (Eds.) Authoring Tools for Advanced Learning Environments (Chapter 8, pp. 205-232). 
Dordrecht, the Netherlands: Kluwer Academic Publishers. 

Aleahmad, T., Aleven, V., & Kraut, R. (2008). Open community authoring of targeted worked example 
problems. In B. Woolf, E. Aimeur, R. Nkambou, S. Lajoie (Eds), Proceedings of the 9th International 
Conference on Intelligent Tutoring Systems, Lecture Notes in Computer Science, 5091 (pp. 216-227). 
Berlin: Springer. 

Aleven, V., Sewall, J., McLaren, B. M., & Koedinger, K. R. (2006). Rapid authoring of intelligent tutors for 
real-world and experimental use. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson, & W. 



 

Didderen (Eds.), Proceedings of the 6th IEEE International Conference on Advanced Learning 
Technologies (ICALT 2006), (pp. 847-851). Los Alamitos, CA: IEEE Computer Society. 

Aleven, V., McLaren, B.M., Sewall, J., & Koedinger, K. R. (2006). The Cognitive Tutor Authoring Tools 
(CTAT): Preliminary evaluation of  efficiency gains. In M. Ikeda, K. D. Ashley, & T. W. Chan (Eds.), 
Proceedings of the 8th International Conference on Intelligent Tutoring Systems (ITS 2006), (pp. 61-70). 
Berlin: Springer Verlag.  

Anderson, J. R. (1993). Rules of the Mind. Mahwah, NJ:  Lawrence Erlbaum. 
Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP Tutor. Cognitive Science, 

13, 467-506.  
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive Tutors: Lessons learned. The 

Journal of the Learning Sciences, 4, 167-207. 
Anderson, J. R., & Lebière, C. (1998). The Atomic Components of Thought. Mahwah, NJ: Erlbaum. 
Anderson, J.R., & Pelletier, R. (1991). A development system for model-tracing tutors. In Proceedings of the 

International Conference of the Learning Sciences (pp. 1-8).  
Baker, R.S.J.d., Corbett, A.T., & Koedinger, K.R. (2007). The difficulty factors approach to the design of 

lessons in intelligent tutor curricula. International Journal of Artificial Intelligence in Education, 17(4), 
341-369. 

Beal, C. R., Walles, R., Arroyo, I., & Woolf, B. P. (2007). Online tutoring for math achievement: A controlled 
evaluation. Journal of Interactive Online Learning, 6, 43-55. 

Blessing, S., Gilbert, S., Ourado, S., & Ritter, S. (2007).  Lowering the bar for creating model-tracing intelligent 
tutoring systems. In the Proceedings of the 13th International Conference on Artificial Intelligence in 
Education (AIED-07)  (pp. 443-450). 

Blessing, S.B. (2003).  A programming by demonstration authoring tool for model-tracing tutors. In: T. Murray, 
S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning Environments. Chapter 4, 93-
119. Dordrecht, the Netherlands: Kluwer Academic Publishers. 

Booth, J.L., Koedinger, K.R., & Siegler, R.S. (2007). [Abstract]. The effect of prior conceptual knowledge on 
procedural performance and learning in algebra. In D.S. McNamara & J.G. Trafton (Eds.), Proceedings of 
the 29th Annual Cognitive Science Society (pp. 137-142). Austin, TX: Cognitive Science Society. 

Brown, J. S. (1985). Idea amplifiers: New kinds of electronic learning environments. Educational Horizons, 63, 
108–112. 

Brusilovsky, P. (2003). Developing adaptive educational hypermedia systems: from design models to authoring 
tools.  In: T. Murray, S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning 
Environments. Chapter 13, 377-409. Dordrecht, the Netherlands: Kluwer Academic Publishers. 

Butcher, K., & Aleven, V. (2008). Diagram interaction during intelligent tutoring in geometry: Support for 
knowledge retention and deep transfer. In C. Schunn (Ed.) Proceedings of the 30th Annual Meeting of the 
Cognitive Science Society, CogSci 2008. New York, NY: Lawrence Erlbaum. 

Crowley R. S., & Medvedeva, O. (2006). An intelligent tutoring system for visual classification problem solving.  
Artificial Intelligence in Medicine, 36(1), 85-117. 

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge. 
User Modeling and User-Adapted Interaction, 4, 253-278. 

Devedzic, V. & Harrer, A. (2005). Software patterns in ITS architectures.  International Journal of Artificial 
Intelligence in Education, 15(2), 63-94. 

du Boulay, B. (2006). Commentary on Kurt VanLehn’s  “The Behavior of Tutoring Systems.”  International 
Journal of Artificial Intelligence in Education, 16(3), 267-270. 



 

 

Friedman-Hill, E. (2003). Jess in Action. Manning Publications Co. 
Graesser, A.C., Chipman, P., Haynes, B.C., & Olney, A. (2005).  AutoTutor: An intelligent tutoring system with 

mixed-initiative dialogue.  IEEE Transactions in Education, 48, 612-618. 
Halff, H.M., Hsieh, P.Y., Wenzel, B.M., Chudanov, T.J., Dirnberger, M.T., Gibson, E.G., & Redfield, C.L. 

(2003).  Requiem for a development system: reflections on knowledge-based, generative instruction. In: T. 
Murray, S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning Environments. 
Chapter 2, 33-59. Dordrecht, the Netherlands: Kluwer Academic Publishers. 

Harrer, A., McLaren, B.M., Walker, E., Bollen, L., & Sewall, J. (2006). Creating Cognitive Tutors for 
collaborative learning: steps toward realization.  User Modeling and User-Adapted Interaction: The 
Journal of Personalization Research (UMUAI).  16. (p. 175-209). 

Harrer, A., Pinkwart, N., McLaren, B.M., & Scheuer, O. (in press). The Scalable Adapter Design Pattern: 
Enabling Interoperability Between Educational Software Tools. IEEE Transactions on Learning 
Technologies.  

Koedinger, K.R. & Aleven, V. (2007). Exploring the Assistance Dilemma in experiments with Cognitive Tutors. 
Educational Psychology Review. 19(3), 239—264. 

Koedinger, K.R., Aleven, V., Heffernan, N., McLaren, B.M., & Hockenberry, M. (2004). Opening the door to 
non-programmers: authoring intelligent tutor behavior by demonstration. In the Proceedings of the Seventh 
International Conference on Intelligent Tutoring Systems (ITS-2004). (p. 162-174). 

Koedinger, K.R., Anderson, J.R., Hadley, W.H., & Mark, M.A. (1997). Intelligent tutoring goes to school in the 
big city.  International Journal of Artificial Intelligence in Education, 8(1), 30-43. 

Koedinger, K. R. & Corbett, A. T. (2006). Cognitive Tutors: Technology bringing learning science to the 
classroom. In K. Sawyer (Ed.) The Cambridge Handbook of the Learning Sciences. Cambridge University 
Press. 

Koedinger, K. R., Suthers, D. D., & Forbus, K. D. (1999). Component-based construction of a science learning 
space. International Journal of Artificial Intelligence in Education, 10, 292-313. 

Kumar, R., Rosé, C. P., Wang, Y. C., Joshi, M., & Robinson, A. (2007).  Tutorial dialogue as adaptive 
collaborative learning support , Proceedings of Artificial Intelligence in Education. 

Lieberman, H. (Ed.)  (2001). Your wish is my command: Programming by example. Morgan Kaufmann, San 
Francisco, CA. 

Martin, B. & Mitrovic, A. (2002). Automatic problem generation in constraint-based tutors.  In S.A, Cerri, G. 
Gouarderes & F. Paraguacu (Eds.) Intelligent Tutoring Systems: 6th International Conference (ITS-2002).  
(p. 388-398). Berlin: Springer. 

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2007). Evaluating a simulated student 
using real students data for training and testing. In C. Conati, K. McCoy & G. Paliouras (Eds.), 
Proceedings of the International Conference on User Modeling (LNAI 4511) (pp. 107-116). Berlin, 
Heidelberg: Springer.  

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005). Building Cognitive Tutors with programming by 
demonstration. In S. Kramer & B. Pfahringer (Eds.), Proceedings of the International Conference on 
Inductive Logic Programming (Technical report, TUM-I0510) (pp. 41-46): Institut fur Informatik, 
Technische Universitat Munchen. 

McLaren, B.M., Lim, S., & Koedinger, K.R. (2008a). When and How Often Should Worked Examples be Given 
to Students? New Results and a Summary of the Current State of Research. In B. C. Love, K. McRae, & V. 
M. Sloutsky (Eds.),  Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 
2176-2181). Austin, TX: Cognitive Science Society. 



 

McLaren, B.M., Lim, S., & Koedinger, K.R. (2008b).  When is Assistance Helpful to Learning?  Results in 
Combining Worked Examples and Intelligent Tutoring.  In B. Woolf, E. Aimeur, R. Nkambou, S. Lajoie 
(Eds), Proceedings of the 9th International Conference on Intelligent Tutoring Systems, Lecture Notes in 
Computer Science, 5091 (pp. 677-680). Berlin: Springer. 

McLaren, B.M., Lim, S., Yaron, D., & Koedinger, K.R. (2007). Can a polite intelligent tutoring system lead to 
improved learning outside of the lab? In the Proceedings of the 13th International Conference on Artificial 
Intelligence in Education (AIED 2007), IOS Press.  (p. 443-440). 

McLaren, B.M., Lim, S., Gagnon, F., Yaron, D., & Koedinger, K.R.  (2006). Studying the effects of personalized 
language and worked examples in the context of a web-based intelligent tutor;  In the Proceedings of the 
8th International Conference on Intelligent Tutoring Systems (ITS-2006).  Jhongli, Taiwan, June 26-30. (p. 
318-328). 

McLaren, B.M., Koedinger, K.R., Schneider, M., Harrer, A., and Bollen, L. (2004). Toward Cognitive Tutoring 
in a Collaborative, Web-Based Environment.  In Engineering Advanced Web Applications, From the 
Proceedings in Connection with the 4th International Conference on Web Engineering (ICWE 2004).  
Munich, Germany, 28-30 July, 2004. Rinton Press, (p. 167-179). 

Mitrovic, A., McGuigan, N., Martin, B. Suraweera, P., Milik, N., Holland, J. (2008). Authoring Constraint-based 
Tutors in ASPIRE: a Case Study of a Capital Investment Tutor. Accepted for ED-MEDIA 2008. 

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., & Holland, J. (2006).  Authoring Constraint-
Based Tutors in ASPIRE. In M. Ikeda, K. D. Ashley, & T. W. Chan (Eds.), Proceedings of the 8th 
International Conference on Intelligent Tutoring Systems (ITS 2006) (pp. 41-50). Berlin: Springer Verlag. 

Moore, J. L. (1992). Winch simulations: Multiple, linked representations of linear functions. In C. Frasson, G. 
Gauthier, & G. I. McCalla (Eds.), Proceedings of the Second International Conference on Intelligent 
Tutoring Systems, ITS ‘92 (pp. 111-115). Berlin: Springer-Verlag. 

Mostow, J., & Beck, J. (2007). When the rubber meets the road:  Lessons from the in-school adventures of an 
automated Reading Tutor that listens. In B. Schneider & S.-K. McDonald (Eds.), Conceptualizing Scale-
Up: Multidisciplinary Perspectives (Vol. 2, pp. 183-200). Lanham, MD: Rowman & Littlefield. 

Munro, A. (2003). Authoring simulation-centered learning environments with Rides and Vivids. In: T. Murray, 
S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning Environments (Chapter 3, pp. 
61-91). Dordrecht, the Netherlands: Kluwer Academic Publishers. 

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated analysis of the state of 
the art.  In: T. Murray, S. Blessing, and S. Ainsworth (Eds.) Authoring Tools for Advanced Learning 
Environments. Chapter 17, 491-544. Dordrecht, the Netherlands: Kluwer Academic Publishers. 

Murray, T., Blessing, S., & Ainsworth, S. (Eds.) (2003). Authoring Tools for Advanced Learning Environments: 
Toward Cost-Effective Adaptive, Interactive and Intelligent Educational Software. Dordrecht, the 
Netherlands: Kluwer Academic Publishers. 

Myers, B.A., McDaniel, R.G., & Kosbie, D.S. (1993).  Marquise: Creating complete user interfaces by 
demonstration.  In Proceedings of INTERCHI’93: Human Factors in Computing Systems. 

Newell, A. & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall. 
Ogan, A., Aleven, V., & Jones, C. (2008). Pause, predict, and ponder: Use of narrative videos to improve 

cultural discussion and learning. In Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human 
Factors in Computing Systems (pp. 155-162). New York, NY: ACM. 

Paas, F., & Van Merrienboer, J. (1994). Variability of worked examples and transfer of geometry problem-
solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122-133. 

Rau, M. A. (2008). Flexible knowledge of fractions with multiple graphical representations in intelligent tutoring 
systems. Albert-Ludwigs-Universität, Freiburg im Breisgau. 



 

 

Razzaq, L. & Heffernan, N.T. (2006). Scaffolding vs. hints in the Assistment System. In Ikeda, Ashley & Chan 
(Eds.). Proceedings of the 8th International Conference on Intelligent Tutoring Systems. Springer-Verlag: 
Berlin. pp. 635-644. 2006. 

Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N.T., Koedinger, K. R., Junker, B., Ritter, S., Knight, A., 
Aniszczyk, C., Choksey, S., Livak, T., Mercado, E., Turner, T.E., Upalekar. R, Walonoski, J.A., Macasek. 
M.A., Rasmussen, K.P. (2005). The Assistment Project: Blending Assessment and Assisting. In C.K. Looi, 
G. McCalla, B. Bredeweg, & J. Breuker (Eds.) Proceedings of the 12th International Conference on 
Artificial Intelligence In Education, 555-562. Amsterdam: ISO Press. 

Reed, S. K. (2005). From research to practice and back: The Animation Tutor project. Educational Psychology 
Review, 17(1), 55-82. 

Rickel, J. & Johnson, W.L. (1999).  Animated agents for procedural training in virtual reality: Perception, 
Cognition, and Motor Control.  Applied Artificial Intelligence, 13, 343-382. 

Ritter, S., Blessing, S., & Wheeler, L. (2003).  Tools for component-based learning environments. Authoring 
Tools for Advanced Learning Environments. Chapter 16, 467-489. Dordrecht, the Netherlands: Kluwer 
Academic Publishers. 

Ritter, S. & Koedinger, K. R. (1997). An architecture for plug-in tutoring agents. International Journal of 
Artificial Intelligence in Education, 7 (3/4), 315-347. 

Roll, I., Ryu, E., Sewall, J., Leber, B., McLaren, B.M., Aleven, V., & Koedinger, K.R. (2006) Towards Teaching 
Metacognition: Supporting Spontaneous Self-Assessment. in Proceedings of 8th International Conference 
on Intelligent Tutoring Systems, 738-40. Berlin: Springer Verlag. 

Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2007). Can help seeking be tutored? Searching for the 
secret sauce of metacognitive tutoring. International Conference on Artificial Intelligence in Education 
2007, Los-Angeles, CA. 

Rosé, C. P., Kumar, R., Aleven, V., Robinson, A., & Wu, C. (2006). CycleTalk: Data driven design of support 
for simulation based learning. International Journal of Artificial Intelligence and Education, 16,  195-223. 

Tecuci, G., & Keeling, H. (1999). Developing an intelligent educational agent with Disciple. International 
Journal of Artificial Intelligence in Education, 10, 221-237  

Towne, D. (2003).  Automated Knowledge Acquisition for Intelligent Support of Diagnostic Reasoning. 
Authoring Tools for Advanced Learning Environments. Chapter 5, 121-147. Dordrecht, the Netherlands: 
Kluwer Academic Publishers. 

VanLehn, K., Koedinger, K.R., Skogsholm, A., Nwaigwe, A. Hausmann, R.G.M., Weinstein, A. & Billings, B. 
(2007). What’s in a Step? Toward General, Abstract Representations of Tutoring System Log Data. User 
Modeling 2007: 455-459. 

VanLehn, K. (2006). The behavior of tutoring systems.  International Journal of Artificial Intelligence in 
Education, 16(3), 227-265. 

VanLehn, K., Lynch, C., Schultz, K., Shapiro, J.A., Shelby, R.H., Taylor, L., et al. (2005).  The Andes physics 
tutoring system: Lessons learned.  International Journal of Artificial Intelligence in Education, 15(3), 147-
204. 

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to 
the Communication of Knowledge. Los Altos, CA: Morgan Kaufmann. 

Woolf, B. P., & Cunningham, P. (1987). Building a community memory for intelligent tutoring systems. AAAI 
1987 (pp. 82-89). 



 

Wylie, R.  (2007) Are we asking the right questions? Understanding which tasks lead to robust learning of the 
English article system. In R. Luckin, K. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International 
Conference on Artificial Intelligence in Education (pp. 709-710). Amsterdam, the Netherlands: IOS Press. 

Yaron, D., Evans, K. & Karabinos, M. (2003).  Scenes and Labs Supporting Online Chemistry.  Paper presented 
at the 83rd Annual AERA National Conference, April 2003.



 

 

Appendix A: Tutors built with CTAT 
 

Project Title Domain Tutor Description Studie
s 

Student
s 

Instructional 
Time 

Developme
nt Time 

Time 
Ratio 

Papers 

The Self-Assessment 
Tutor 

Geometry - 
Angles, 
Quadrilaterals 

Tutor designed to tutor students on their self-assessment 
skills; to help students make appropriative learning 
decisions based on their self assessment; and to give 
students a tutoring environment, low on cognitive load, 
in which they can practice using their help-seeking 
skills.  

1 67 45 mins  ~9 weeks 540:1 Roll, Ryu, Sewall, 
Leber, McLaren, 
Aleven, & 
Koedinger, 2006; 
Roll, Aleven, 
McLaren, & 
Koedinger, 2007 

Using Elaborated 
Explanations to 
Support Geometry 
Learning 

Geometry The assessment consisted of two types of problems. 
First, problem-solving items were used to determine if 
students could recognize solvable quantities and 
calculate the answers using known geometry principles. 
Second, reasoning items were used in which students 
reasoned about the relationships between diagram 
elements based on geometry principles. 

1 90 30 mins ~2 months 720:1 Butcher & Aleven, 
2008. 

Fluency and Sense 
Making in Elementary 
Math Learning 

4th-Grade Math - 
Whole-number 
division 

The tutor provided practice with whole-number division, 
with two conditions, one aimed at fluency, one aimed at 
fluency and sense making, through self-explanation 
support, including an interactive multiplication table. 
On-line assessment was also created with CTAT. 

1 ~35 2.5 hrs each 
for 2 
conditions 
plus 1 hr of 
assessment 

~4 months 107:1  

Improving Skill at 
Solving Equations 
through Better 
Encoding of Algebraic 
Concepts 

Middle and High 
School Math - 
Algebra 

CTAT example-tracing tutors interleaved with Carnegie 
Learning tutor sections. Tutors supports self-explanation 
of worked examples with correct and incorrect equation-
solving steps. 

3 268 16 mins 
each for 2 
conditions 

~120 hrs 240:1 Booth, Koedinger, & 
Siegler, 2007. 

Intelligent Writing 
Tutor 

ESL - English 
article system (a, 
an, the, null) 

Two computer-based systems to help students learn the 
English article system (a, an, the, null). The first system, 
a menu-based task, mimics cloze activities found in 
many ESL textbooks. The second, a controlled-editing 
task, gives students practice with both detecting errors 
and producing the correct response. The researchers 
created a custom CTAT widget for use in their systems. 

3 ~50    Wylie, 2007 

Improving Cultural 
Learning By Predicting 
In French Film 

French – 
Intercultural 
competence 

This tutor uses the multimedia components of CTAT to 
display a French film and elicit predictions and 
responses from students about cultural behaviors. 

2 45     Ogan, Aleven, & 
Jones, in press; 2006 



 

Project Title Domain Tutor Description Studie
s 

Student
s 

Instructional 
Time 

Developme
nt Time 

Time 
Ratio 

Papers 

Chinese PSLC-OLI 
Course 

Chinese - 
Elementary 
Chinese 

18-unit course includes various (simple) example-
tracing tutors: Jumble, Media Multiple Selection, and 
the CTAT Video template.  

 Regular 
use 

    

French OLI Course Introductory 
French 

Various (simple) example-tracing tutors have been 
created that make use of the Jumble, Media Multiple 
Selection, and the CTAT Video template  

 Regular 
use 

    

Enhancing Learning 
Through Worked 
Examples with 
Interactive Graphics 

Algebra - Equation 
Models of 
Problem Situations 

Two types of example-tracing tutor units have been 
developed. In the Model Generation unit (16 problems), 
students are given a situation and write an equation. In 
the Model Analysis unit (4 problems), students are given 
a problem situation and an equation, and employ menus 
to describe what each component of the equation 
represents. 

1 60-120 ~3 hrs ~260 hrs 87:1  

Effect of 
Personalization and 
Worked Examples in 
the Solving of 
Stoichiometry  

Chemistry 
Stoichiometry 

Example-tracing tutors with Flash interface for 
stoichiometry problem solving. On-line assessment was 
also authored with CTAT. 

4 223 12 hrs 1016 hrs 85:1 McLaren, Lim, 
Gagnon, Yaron, & 
Koedinger, 2006; 
McLaren, Lim, 
Yaron, & Koedinger, 
2007. 

Learning a tonal 
language-Chinese  

Chinese Example-tracing tutors for learning to recognize sounds 
in tonal language 

      

Genetics Cognitive 
Tutor:  

Genetics Java Cognitive Tutor (with one unit of example-tracing 
tutors) supporting genetics problem solving. 

 Regular 
use 

    

CycleTalk Mechanical 
Engineering - 
Thermodynamics 

Example-tracing tutors connected to a simulator that 
help students design and optimize thermodynamic 
cycles, such as the Rankine cycle used in power plants. 
A separate (non-CTAT) module supports natural 
language dialogue about thermodynamics design. 

4 330    Rosé, Kumar, 
Aleven, Robinson, & 
Wu 2006; Kumar, 
Rosé, Wang, Joshi, 
& Robinson, 2007 

Bridging the gap 
between 
comprehension and 
production in second 
language learning    

French - Grammar Training and tests for grammatical accuracy. In the 
experimental condition, comprehension and production 
items alternate, whereas in the control condition they are 
blocked. The CTAT Flash user interface was used to 
display feedback to students.  

2  45     



 

 

Project Title Domain Tutor Description Studie
s 

Student
s 

Instructional 
Time 

Developme
nt Time 

Time 
Ratio 

Papers 

Fostering fluency in 
second language 
learning: Testing two 
types of instruction  
   

ESL – speaking 
fluency 

The CTAT Flash framework was used for the user 
interface and problem assessment  including sourcing of 
data (brd).  Also student data was logged to the Data 
Shop using the CTAT Data Shop integration. The CTAT 
TutorShop study delivery server software was used to 
sequence the study. 
 

1  30      

OLI Economics course Economics – 
supply and 
demand 

Example-tracing tutors use of a graph as a plotting input 
device.  

 Regular 
use 

    

Visual Feature Focus 
in Geometry: 
Instructional Support 
for Visual 
Coordination During 
Learning 

Geometry - Angles Study 1 Tutor: Visual examples and non-examples were 
shown either alone, or with a set of text statements from 
which relevant statements were selected. Feedback was 
provided on selected statements. 
 
Assessment: Conceptual training was assessed by 
quizzes following each unit. Problem solving also was 
tested by quizzes following each unit of study. Pre- and 
posttest performance was assessed using Butcher & 
Aleven's previous CTAT assessment. 

2 60 + 90 
= 150 

    

The Fractions Tutor  6th-Grade Math -  
Fraction 
Conversion, 
Fraction Addition  

Students solve fractions problems with four tutor 
versions (all example-tracing tutors): single v. multiple 
representations of fractions, and self-explanation (with 
drop-down menu) v. no self-explanation.  

1 132 2.5 hours 
each for 4 
conditions 

12 weeks 48:1  

 
 


