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This study investigated the cognitive processes involved in inductive reason-
ing. Sixteen undergraduates solved quadratic function—finding problems and
provided concurrent verbal protocols. Three fundamental areas of inductive
activity were identified: Data Gathering, Pattern Finding, and Hypothesis
Generation. These activities are evident in three different strategies that they
used to successfully find functions. In all three strategies, Pattern Finding
played a critical role not previously identified in the literature. In the most
common strategy, called the Pursuit strategy, participants created new quan-
tities from x and y, detected patterns in thede quantities, and expressed these
patterns in terms of x. These expressions were then built into full hypotheses.
The processes involved in this strategy are instantiated in an ACT-based
model that simulates both successful and Ansuccessful performance. The
protocols and the model suggest that numerical knowledge is essential to the
detection of patterns and, therefore, to higher-order problem solving.

One of his teachers, apparently eager for a respite from the day’s lessons, asked the
class to work quietly at their desks and add up the first hundred whole numbers. Surely
this would occupy the little tykes for a good long time. Yet the teacher had barely
spoken, and the other children had hardly proceeded past “1 + 2 + 3+4+5=15"
when Carl walked up and placed the answer on the teacher’s desk. One imagines that
the teacher registered a combination of incredulity and frustration at this unexpected
turn of events,-but a quick look at Gauss’s answer showed it to be perfectly correct.
How did he do it?

William Dunham, Journey Through Genius, 1990, 236 —2%7.
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'I. . INTRODUCTION

He did it by inductive reasoning. Inductive reasoning is defined as the process of inferring
a general rule by observation and analysis of specific instances (Polya, 1945)'. Gauss
recognized a pattern: that the numbers from 1 to 100, when added together from end to
end (ie., 1 + 100; 2 + 99; 3 + 98; etc.) always equal 101. He inferred that there would
be 50 such pairs, and thus, he multiplied 101 by 50 to reach the answer that 1 + 2 + 3
+ ...+ 100 = 5050. But our dear Gauss did not stop there. He realized that the sum of
the numbers from 1 to n would always be expressible in this way: n + 1 times n/2. Thus,
he induced the formula that n * (n + 1)/2 equals the sum of the numbers from 1 to n.

The Role of Inductive Reasoning in Problem Solving and Mathematics

Gauss turned a potentially onerous computational task into an interesting and relatively
speedy process of discovery by using inductive reasoning. Inductive reasoning can be
useful in many problem-solving situations and is used commonly by practitioners of
mathematics (Polya, 1954). Research has established the importance of inductive reason-
ing for problem solving, for learning, and for gaining expertise (Bisanz, Bisanz, &
Korpan, 1994; Holland, Holyoak, Nisbett, & Thagard, 1986; Pellegrino & Glaser, 1982).
Indeed, Pellegrino and Glaser (1982) noted that “the inductive reasoning factor. . ., which
can be extracted from most aptitude and intelligence tests, is the single best predictor of
academic performance and achievement test scores.” (p. 277). Klauer (1996) notes that
“problem-solving requires one to induce rules, i.e., to make use of inductive reasoning”
and cites as evidence the rule induction work conducted by Simon and Lea (1974), the
review of concept learning, serial patterns, and prdBlem solving by Egan and Greeno
(1974), and the investigation of expertise and problem solving in physics by Chi, Glaser,
and Rees (1982). Even in problem domains that appear deductive on the surface, it seems
that problem-solving knowledge is acquired primarily through inductive learning methods
rather than through abstract rule following. Research on the Wason selection task, which
nominally requires deductive knowledge of modus ponens and modus tollens, has shown
that people solve such problems using either inductive methods based on concrete mental
models (Johnson-Laird, 1983) or by applying semigeneral reasoning schemas induced
from experience (Cheng & Holyoak, 1985).

The importance of inductive reasoning to learning is illustrated in work by Zhu and
Simon (1987) about learning from worked-out examples. Students learned and were able
to transfer what they learned when presented with worked-out examples from which they
had to induce how and when to apply each problem-solving method. Klauer (1996)
provides more direct evidence of the effect of inductive reasoning on learning. In his
work, acquisition of declarative knowledge was improved after training in inductive
reasoning. The role of inductive reasoning in mathematics learning was demonstrated.by
Koedinger and Anderson (1998). They showed that an instructional approach based on

- z =helping students induce algebraic expressions from arithmetic procedures led to greater

learning than a textbook-based instructional approach.

\”'

———



- WL Qo 09

et

az,»,‘," .

-
-

INDUCTIVE REASONING IN MATHEMATICS 251
TABLE 1

Klauer’s (1996) System for Classifying Inductive Reasoning Tasks
Type of inductive reasoning task Cognitive operations
Generalize Detect similarity of attributes
Discriminate Discriminate attributes
Cross clossify Detect similarity and differences in attributes
Recognize relationships Detect similarity of relationships
Differentiate relationships Detect differences in relationships
System construction Detect similarity and differences in relationships

Finally, research has demonstrated the importance of inductive reasoning to the
development of expertise. In addition to the work by Chi et al. (1982) in this area, work
by Cummins (1992) demonstrates that induction of structural similarities between prob-
lems leads to expert-level conceptual performance when working with equations. Even in
the domain of geometry theorem proving, expert representations seem to reflect inductive
experience with diagrams rather than command of textbook definitions and theorems
(Koedinger & Anderson, 1989, 1990). Thus, inductive reasoning facilitates problem
solving, learning, and the development of expertise. It is fundamental to the learning and
performance of mathematics, and is, therefore, an important process to investigate to gain
a deeper understanding of mathematical cognition.

Function-Finding Task Is Representative of Inductive Reasoning

Recall our definition of inductive reasoning as Ahe process of inferring a general rule by
observation and analysis of specific instances. The literature covers a wide variety of
inductive reasoning tasks: series-completion problems (Thurstone, 1938: Simon & Ko-
tovsky, 1963; Bjork, 1968; Gregg, 1967; Klah# & Wallace, 1970; Kotovsky & Simon,
1973; Sternberg & Gardner, 1983), Raven matrices (Raven, 1938; Hunt, 1974; Sternberg
& Gardner, 1983), classification problems (Goldman & Pellegrino, 1984; Sternberg &
Gardner, 1983), analogy problems (Evans, 1968; Sternberg, 1977; Pellegrino & Glaser,
1982; Sternberg & Gardner, 1983; Goldman & Pellegrino, 1984). These varied tasks have
been organized by Klauer (1996) according to the inductive processes that they require
(see Table 1). In Klauer’s classification system, several inductive processes are identified
and each is paired with a specific cognitive operation, such as detecting similarities and
differences in attributes and in relationships.

Klauer (1996) defines “comparing relations” to require “scrutinizing at least two pairs
of objects,” such that “understanding the series A-B-C requires mapping thé relation
between A-B and the relation between B-C” (Klauer, p. 47). He thus asserts that the
classification problems in the literature are “generalization” problems according to this
system. Similarly, because series-completion problems require noting similar telation-
ships across instances, they are classified as problems of “recognizing relationships,” and
because matrix problems require the detection of both similar and different relationships
from cell to cell, they are classified as “system construction” problems. We w01)xl,d also



INDUCTIVE REASONING IN MATHEMATICS -~ 253
TABLE 2 .

Measures of Angle 1 and Angle 2

Angle 1 Angle 2
120 60
110 70
80 100
90 ) 90

From these data instances you might induce that you can find the measure of angle 2
by subtracting angle 1 from 180°. At that point, you have successfully found the function
that fits this data. Learning or recalling geometric conjectures by setting up and solving
function-finding problems is an approach advocated by the National Council of Teachers
of Mathematics (NCTM) and by some geometry textbooks (NCTM, 1989; Serra, 1989).

An example of how function finding appears in a very different field of math,
combinatorics, is the following problem: Determine how many possible subsets there
could be from a set of 10 elements. Some people will know how to calculate this answer
without having to work out the actual individual sets at all. Others, however, will likely
resort to the useful strategy of examining a smaller case as an example (Polya, 1945).
Thus, one might first aim to discover how many subsets are possible from a set of only
three elements, this being a case that is easily calculated by actually producing each of
those subsets and then counting the total. Producing a few examples in this manner, we
would begin to have some data. Thus, for the case where there are only two elements,
there are 4 possible subsets (the sets: [a b}, [a], [b], [null]). For a set of three elements,
there are 8 possible subsets. For a set of 4 elements, there are 16 possible subsets (see
Table 3). :

We might now induce that there will be 32 po%sible subsets for a set of 5 elements, as
the number of subsets for each set of “n” elements seems to be equal to 2, multiplied by
itself “n” times. If this is the case, then we can multiply 2 by itself 10 times to determine
the number of subsets for a set of 10 elements. Indeed, the answer to the problem is 2'°,
or 1024.2 The process just described is a process of function finding: investigating smaller
examples to produce some data from which to infer a general rule that may then be applied
to the instance of interest.

These examples illustrate how a problem that is not a function-finding task on the
surface (e.g., how many subsets can be made of a set of 10 elements) may be converted

TABLE 3
Number of Possible Subsets from a
Set of ‘/n’’ Elements

N
No. of elements No. of subsets
1 2
2 4 . *
3 8
4 16
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Figure 1.  Sample set of data for a function-finding problem.

classify number analogy problems (e.g., Pellegrino & Glaser, 1982) as “system construc-
tion” problems. The problem presented to young Gauss would not fall into any of the
categories of problems studied in the literature, but in Klauer’s system it might be
classified as a problem of “recognizing relationships.”

In this study, our goal was to examine the particular role of inductive reasoning in
mathematics. Thus, we sought a numerical task that is not merely a puzzle, but which is
applicable and basic to doing real mathematics. The task we chose was function finding,
which requires detecting and characterizing both similarities and differences in the
relationships between successive pairs of numbers. It is thus classified as a “system
construction” problem in Klauer’s system. A basic example of a function-finding problem
is to find a function that fits the data in Figure 1 (i.e., y = x?).

The problem of finding functions from data is fundamental to mathematics, as we
demonstrate in the next section, and to science as well. Furthermore, as an inductive
reasoning task, it encompasses several of the inductive processes identified in Klauer’s
system. Thus, the function-finding task is ideal both from the standpoint of representing
inductive reasoning problems, and from the standpoint of being representative of math-
ematics in general. )

Function Finding is Pervasiv&;, in Mathematics

Many problems of inductive reasoning in mathematics, as well as in the sciences, distill
to a basic problem of inducing a function from a set of numbers. Function finding can be
found in algebra, in geometry, in calculus, in number theory, in combinatorics, and so
forth. Consider this example from geometry: Suppose you know that the measure of angle
1 in Figure 2 is equal to x degrees, and you are trying to find the measure of angle 2 in
terms of x. However, you do not yet know the fact (or you have forgotten) that the
measures of two angles that lie together on a straight line add up to 180°. You might
measure several sets of such angles with a protractor, and record the measures from these
examples in a table. Suppose you have collected the data instances displayed in Table 2.

%
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Figure 2.  Given the measure of angle 1, find the measure of angle 2.
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to a function—finding task in order to aid its solution. These examples demonstrate that
function finding is valuable not only for making discoveries, but also as a heuristic for
problem solving and recall. Function—finding skills may also facilitate learning in math-
ematics: Koedinger and Anderson (1998) showed that learning to translate story problems
to algebraic expressions could be facilitated by using function finding as a scaffold during
instruction. Thus, function finding plays multiple roles in mathematics: in discovery,
problem solving, recall, and learning. In addition to its direct relevance to mathematics,
function finding is also representative of inductive reasoning in general. Therefore,
function finding is an important topic for investigation to improve our understanding of
mathematical cognition.

Research on Function Finding

As function finding is so ubiquitous in mathematics, we sought to understand the cognitive
processes involved in solving function-finding problems. The literature contains a number
of studies that have examined function-finding behavior in the context of scientific
reasoning (Huesmann & Cheng, 1973; Gerwin & Newsted, 1977; Qin & Simon, 1990).
Participants in these studies were asked to discover a function that corresponded to a given
set of data. Huesmann and Cheng put forth a theory of inductive function finding based
on the hypotheses proposed by participants in their study. They found that functions
involving fewer operations or less-difficult operations are proposed as hypotheses before
more-difficult functions, and they identified addition, subtraction, and multiplication as
less-difficult operators and division and exponentiation as more-difficult operators. Their
theory characterizes induction as a process of search through a hierarchy of potential
functions. Gerwin and Newsted (1977) elaborated on this theory and proposed a theory of
“heuristic search,” in which a participant infer{ a general class of likely hypotheses based
on significant features of the data. Here we see the first acknowledgment of the process
of data analysis as having a significant role in the hypothesis generation process.

These theories identify several processes involved in induction: search, hypothesis
generation, and data analysis. However, because they were based mainly on solution-time
data, these studies could not illuminate the actual cognitive processes being employed by
participants. A deeper understanding of induction requires a much finer-grained exami-
nation of participants’ behavior as they solve induction problems. Qin and Simon (1990)
attempted to specify the cognitive processes of induction more directly. Participants in
their study provided concurrent think-aloud protocols while they attempted to discover
Kepler’s Third Law (x> = cy®) from a set of (x,y) data instances. Qin and Simon analyzed
in detail the verbalizations of both successful and unsuccessful participants and were able
to characterize many of their inductive problem-solving processes. Their results indicate
that participants do indeed examine the data to inform their search for a hypothesis. They
also found that linear functions were proposed most frequently, thus substantiating and
further explicating the claim by Huesmann and Cheng that functions with fewek and less
difficult operations are proposed before more difficult ones.

As a concrete instantiation of the function-finding process that they observed, Qin and
Simon proposed that the Bacon model, originally developed by Langley, Simon, Brad-
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shaw, and Zytkow (1987), embodies search processes similar to those used by the
participants in their study. The BacoN model was developed to demonstrate that significant
scientific discoveries can be accomplished by a small set of basic heuristics, and by a
computer. The five heuristics of BACON can be summarized as follows: (1) Find a rule to
describe the data; (2) Note any constant in the data; (3) Note any linear relation in the data;
(4) If two sets of data increase together, then produce their quotient as a new quantity; (5)
If two sets of data increase and decrease inversely to one another, then produce their
product as a new quantity. Implicit in this set of heuristics is an iterative method of
creating new quantities and subjecting these quantities to the same analyses to which the
original x and y are subjected. Through this process, BACON eventually compares x to a
quantity for which a clear functional relationship with x can be expressed. At this point,
BacoN will have solved the problem.

BACON's five discovery processes are direct and efficient. Indeed, they may be too
efficient and advanced to suffice as a basis for understanding student inductive reasoning. '
Consider BACON’s heuristic to determine whether the data represents a linear function. For
many students the task of determining whether a set of data represents a linear function
is a very involved and difficult process, one that would not be accomplished purely by
inspection. It is likely that in a model of student function-finding performance, this linear
heuristic would not be instantiated as a single process, as is the case for Bacon, but as
many subprocesses. Thus, we emphasize that BACON is an effective model of how rules can
be induced from data, but an inappropriate model for adaptation to educational purposes.
To understand and improve student performance, an elaboration of this concise model is
needed. '

One further issue with respect to the BacoN model is its somewhat singular focus on
hypothesis generation. We propose that induction involves not only hypothesis generation
processes but also processes of finding patterns add gathering data. BacoN addresses the
process of finding patterns, whether constant, increasing, or decreasing. However, stu-
dents’ processes of finding patterns are more complex than these processes captured by
BacoN, and they merit further explication, both in terms of the activities involved and in
terms of their relation to hypothesis generation activities. BACON also does not address the
processes of collecting data and organizing it in preparation for analysis. In attempting to
understand student inductive reasoning, we cannot assume the existence of adequate data
collection and organization skills. A complete understanding of student inductive reason-
ing should specify the processes of finding patterns and gathering data in addition to
generating hypotheses, for each of these areas is important to inductive reasoning.

In this study, we provide an in-depth analysis and characterization of data gathering
and pattern finding processes and attempt to determine the relationship between these
processes and the hypothesis generation process. To this end, the participants in this study
collected and organized their own data so that we could observe and analyze these
processes. The participants also provided verbal protocols (Newell & Simon, 1972) so that
we would obtain the richest possible view of students’ inductive reasoning capabilitiés and
behaviors. We chose undergraduate students as our participant population because we aim

A 4, to understand the processes of intelligent novices, rather than experts. Finally, we chose
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to provide clean and accurate data for this initial investigation, rather than data containing
noise ‘or anomalies. vl Lo Gbolt Lo ae Coe . ‘

Understanding how -inductive reasoning is done at this most basic level will be
fundamental to understanding how it is conducted not only in similar situations, but also
under more difficult conditions, such as might arise in scientific settings. Our analysis of

the cognitive processes of function-finding will concern the strategies participants used

when they succeeded at solving induction problems, and the differences between these
solution paths and the paths of those who failed to solve the problems. The most common
solution strategy observed will be instantiated in a cognitive model to make our theory of
inductive reasoning explicit. ‘ '

IL. METHODS
Participants

Participants were 18 Carnegie Mellon University undergraduates with varying degrees of
mathematical experience, ranging from no more than a high school algebra class to
advanced college math courses. Two participants were dropped from the analyses for not
following directions. -

Materials

Materials included a pen and an ample supply of paper for solving each problem; a tape
recorder and lapel microphone for recording verbal protocols; and a Hypercard, computer-
interface program for generating data instances.’

Task /

Two function-finding problems (“F1” and “F2”) were presented to each participant. Each
participant was given the opportunity to generate up to 10 data instances for the problem
at hand, using a Hypercard computer interface. For example, a participant might decide to
begin by finding the value of y when x equals 7, and so would enter “7” into the interface
by clicking the mouse 7 times and then clicking the “Done” button to see the correspond-
ing y-value.? Figure 3 shows the computer interface after a participant pressed the “Click™
button 7 times for the x-value and the computer displayed the y-value of 14 in the answer
box. In this manner, participants not only chose the order in which data instances were
collected, but chose also which instances were collected, and when they were opliected
with respect to the remainder of the problem-solving process.

Participants were provided with paper and pen for solving the problems (the computer
was used only for providing data), and were allowed up to 25 minutes per probiem to
discover a mathematical function of the form f(x) = y that accurately described the
relationship between the two variables, x and y. Participants were asked to find a

closed-form function that related x and Y, or, in other words, that could be used to directly
e
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Data Interface

|C|ick Here| DONE

el

[ N NN NN J
Answer: .

14

Number of clicks: 7 Number of answers left: 9

Figure 3. Example screen from data collection interface: collecting f(7) = 14.

compute y from x without repeated iterations. Recursive solutions were not accepted.
Thus, f(x) = 3x + 7 was allowed, but y, , ; = y, + 3 was not. Participants were also
asked to find f(1000). This request was employed as a concrete clarification of what is
meant by “closed-form,” as pilot testing indicated (1) that many students would not
comprehend the instructions without this concrete guide, and (2) that even the most
determined participants would not attempt to generate £(1000) with a recursive rule.

Both functions to be discovered were quadratics involving three operations, but
participants did not know this. Figure 4 shows the functions used and a representative
sample of corresponding data. All participants provided concurrent verbal protocols
(Ericsson & Simon, 1993).

/

Procedure

. 4o . . . .
All participants practiced talking aloud while solving some basic arithmetic tasks (Eric-
sson & Simon, 1993). They were then given written instructions about how to proceed in

X Y
Function 1 (Fl) 3 0
y = x(x-3)/2 4 2
) 5
£(1000) = 498.500 6 9
3 operations: -. *. ¥ 7 14
Function 2 (F2) X Y %
y=x(2x+1) 1 3
2 10
£(1000) = 2.001.000 3 21
3 operations: +. *. * 4 36
5 55

Figure 4.  Functions participants were asked to discover, with corresponding data.

o
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generating data from the interface and about what they were to find. Participants were told
“You will be asked to look for a relationship between two sets of numbers. . . When you
find this relationship, you will be able to find out what y is whenever you know what x
is. Your task is to find what y is when x equals 1000. The way to do this is to find a general
rule, so that if I give you x, you can tell me what y is.” The interface was then presented,
ready with the data for the first problem. The experimenter was available at all times for
questions or clarification. After 25 minutes, participants were asked to stop working on the
current problem, any papers used were collected, and the participant was asked to begin
the second problem in the same format. The order of the problems was counterbalanced
across participants. Participants were corrected if they made any arithmetic errors in the
course of solving a problem, as arithmetic ability was not the focus of this investigation.
At the end of the hour-long session, participants were asked a number of questions about
their mathematical education. No feedback was provided about the correct answer of
about whether the answers given were correct.

Coding of Protocols

The verbal protocols were transcribed from the audio tapes and segmented according to
a combination of breath pauses and syntactic criteria. The 15 protocols for F1 yielded
6331 lines, or segments. These segments were combined into meaningful episodes that
were defined to represent completed thoughts or actions, or attempted complete thoughts
or actions.

These protocols and their accompanying written work were originally coded at an
extremely fine level of detail according to the activity or process occurring during the
episode. This fine-level coding scheme consisted of 176 different codes that captured the
exact nature of the mathematical processes occurring at each step of the problem solving.
Once the protocols were understood at this fine level of detail, a broader coding scheme
was applied, which grouped the fine-level codes into 16 broad categories. These 16 broad
codes fall under three major categories of activity: Data Gathering, Pattern Finding, and
Hypothesis Generation. These three activity groups and the 16 broad codes are listed in
Appendix A, along with some examples of the fine-level codes that were categorized into
them. The results discussed herein are based on this broader coding scheme, which
provides a more manageable level of description for the data set.

III. RESULTS

Only closed-form functions, as described in the Method section, were coded as dorrect
solutions to the problem. We expected F1 to be more difficult to discover than F2 because
it included division (see Figure 4), which was identified by Huesmann and Cheng (1973)
as an operation that makes discovery of a rule more difficult. F1 was indéed more difficult
" to discover than F2. Fifteen out of 16 participants discovered F2, whereas only 9 of the
16 participants discovered F1 (Fisher’s Exact, p = .02). Problem order did not signifi-

cantly affect performance. Our analyses focus on the protocols for Fl, which better
. Cort
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differentiated between participants and which therefore allow for examination of differ-
ences between successful and unsuccessful participants.*

Before discussing the activities observed in the protocols, we address the possibility of
a correlation between success and mathematics achievement. We used self-reported Math
SAT scores as an indicator of mathematics background. The four participants with the
lowest Math SAT scores (450—610) were unsuccessful. Furthermore, the mean SAT score
of the successful participants was higher than that of the unsuccessful participants,
F(1,14) = 403, p = .07.

It is possible that unsuccessful participants failed only because they did not suspect that
something as “complicated” as a quadratic function would be necessary to solve these
problems. To address this possibility, we examined whether participants showed evidence
of having considered quadratic formulas. The successful participants, by definition of
having succeeded, necessarily “considered” quadratic functions. Among the six partici-
pants who failed to solve F1, only three ever created quadratic quantities in the course of
searching for a solution to F1. (This difference between successful (9/9) and unsuccessful
(3/6) participants is statistically significant, p = .04, Fisher’s Exact.) However, 15 of the
total 16 participants succeeded at solving F2, which is also quadratic. These figures
indicate that the participants did consider quadratic functions to be “fair game” when
looking for solutions to these problems.

The remaining empirical results are presented in two sections. We first consider the
types of activities the participants used and how they are coordinated. We then consider
the different strategies the participants used to solve the problem successfully. Finally, we
present a cognitive model that instantiates the processes observed in the protocols.

Types of Activity Qbserved

Based on a protocol analysis of participants solving problem F1, we identified three
fundamental types of inductive reasoning activity: Data Gathering (DG), Pattern Finding
(PF), and Hypothesis Generation (HG). Data Gatt{ering is defined to include both data
collection activities and the organization and representation of that data (such as making
a graph or a table). Pattern Finding, by contrast, includes activities associated with
investigation and analysis of that data, such as examination, modification, or manipulation
of numerical instances for the purpose of understanding the quantity in question or for the
purpose of creating a new quantity for examination. Examples of PF activity include the
following: (1) Compute the differences between successive y values, for example, for
instances (3,0), (4,2), and (5,5), the successive y differences are 2-0=2and5—-2=
3; (2) Compute the differences between x and y values, for example, for the instances (3,0)
and (4,2), the x — y differences are 3 — 0 =3 and 4 — 2 = 2; (3) Compute a quantity
from previously existing quantities, for example, for instances (3,0) and (4,2), y/x & 0 and
1/2, respectively. Finally, Hypothesis Generation encompasses the activities of construct-
ing, proposing, and testing hypotheses that might fit the data. HG activities utilize
information culled from DG and PF activities, but this flow of information is not
unidirectional. PF and DG may utilize information from HG and from each other: the
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discovery of ‘a-pattcm in the data (PF) might lead to the collection of a specific data
instance (DG) to test whether the pattern holds more generally; a hypothesis that when
tested does not fully. account for the data (HG) might spark a round of PF activity to

“determine whether some pattern is apparent in the discrepancy between the actual data and

the data produced by the hypothesis.

Data Gathering

Collection. Our design permitted a unique opportunity for investigation of DG activ-
ities. We describe notable features of the DG observed in the protocols and then briefly
discuss the differences observed between the DG of successful versus unsuccessful
participants. Participants collected between 5 and 10 data instances, with an average of
8.6.5 Participants tended to collect instances for small values of x (i.e., numbers from 1 to
10), and most participants (13 out of 16) collected x = 3,x =4,x =5, x = 7,and x =
10.° The collection of data instances above x = 10 was idiosyncratic; however, partici-
pants exhibited a preference for collecting multiples of 5 and 10 (10 itself being widely
popular, and 15, 20, 25, and 30 being the only instances larger than 12 that were collected
by more than 1 participant.) Participants did not collect instances in strict order, such as
x=13,x=4,x =5, x = 6, as one might expect. However, participants did create
unbroken sequences of instances by choosing x-values that filled gaps in a data set. For
example, if the instances x = 3, x = 6, and x = 5 had been collected, a participant would
likely collect x = 4 to complete the sequence. Most participants (15 out of 16) did
eventually possess an uninterrupted sequence of instances with x-values in the range of 3
to 10. (One participant chose instead to have a seq'uence with intervals of 10 and collected
the instances x = 10, x = 20, x = 30 for a sequence.) These uninterrupted sequences
ranged from 3 to 9 instances in length, with an average longest sequence of length 6.

Organization. Contrary to what might be expected, participants did not organize all
their data into ordered lists or tables, with x-values listed in ascending or descending
order. The length of the longest such representation for each participant ranged from 2 to
8 instances in length, with a mean of 5. Few participants attempted to graph or otherwise
pictorially represent the data for F1 or F2, in contrast to the participants from the Qin and
Simon study. There was one attempt to graph the data for F1, which was not completed,
and one other participant favored number lines as a way of examining the data, but these
were the only two occurrences of pictorial representations. Thus, such strategies will not
be discussed further in this paper.

In terms of distinguishing successful from unsuccessful participants, DG aktivities
reveal no notable distinctions. Unsuccessful participants collected slightly more data
instances than successful participants (mean: 9.4 for unsuccessful, 8 for successful,
F(1,14) = 474, p = .05), and also made slightly longer ordered tables than sucéessful
participants (mean: 5.7 for unsuccessful, 4.6 for successful, F(1,14) = 1.09, p = .31),
which may reflect compensation by unsuccessful participants for a lack of progress in

hypothesis-formation (in other words, they may have collected or organized data instances
) e
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TABLE 4
Quantities Created by Participants on F1, in Order of Popularlty
Quantity X ylyx y-x x—3 ydiffs yfactors y— xdiffs x diffs y/x diffs
3 0] o -3 0 — —_ — — —
4 2112 =2 1 2 2:2*1 1 1 12
Data Values 5 5 1 0 2 3 5:5*1 2 ! 172
6 9132 3 3 4 9:3*3 3 1 172
7 14 2 7 4 5 14: 7*2 4 1 12
Of 15 participants 8 7 5 5 4 3 3 2

Note. The abbreviation “diffs”’ refers to “differences”.

when they could think of nothing else to do). However, unsuccessful participants collected
essentially the same information as the successful participants (there are no differences of
statistical significance in the exact instances that were collected by-successful vs. unsuc-
cessful participants.) Note, however, that these results do not suggest that all participants
were at “ceiling” with respect to data organization skills. To the contrary, the nonsignif-
icant results indicate that successful and unsuccessful participants performed similarly at
organizing data and at collecting data, and the protocols and written materials indicate that
the data organization skills displayed were less than exemplary (see Appendix C for the
written work of one successful participant). Apparently, nicely-ordered tables of data are
not necessary for discovering rules from that data, as might be expected.

Pattern Finding

Pattern Finding for the x and y quantities genera'Ily resulted in the creation of new
quantities from these two original quantities. Participants created between 1 and 8 new
quantities overall, with an average of 3.4. A common éxample of a newly created quantity
is “y — x.” A participant examining the functional relationship between x and y might
create this quantity to determine the difference between the corresponding values of x and
y. Another method of assessing the discrepancy between x and y is to take their ratio. In
fact, forms of y/x and y — x were the most popular quantities computed by participants
(8 out of 15 participants created either y/x or x/y, and 7 out of 15 created either x — y or
y — x. In this paper, we use “y/x” and “y — x” as shorthand for the quotient and difference
of x and y in either order). Other popular quantities are listed in Table 4 in order of
frequency among participants.

To clarify the nature of these quantities, we provide two examples. Given a column of
y data containing the values (0 2 5 9 14) as in Fl, a participant would computg “y
differences™ by determining the difference between each pair of consecutive values in the
column. Thus,2 —0=2;5—-2=3;9 — 5 = 4; and 14 — 9 = 5. Therefore, the colu&mn
for the quantity “y differences” contains these values: (2 3 4 5). Given that same original
column of y values, a participant would compute “y factors™ by listing any factor pairs that

, wwould produce the given y value. Thus, fory = 9, 3 * 3 is a factor pair. For y = 14, 2
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* 7 is a factor pair. If there were a y=20, it would have multiple factor pairs: 2 * 10, 4
* 5.

The quantities in Table 4 are all reasonably useful and informative to the participants.

‘ We have provided some motivation for why “y/x” and “y — x” would be common

quantities. The other quantities in Table 4 are informative as well. Computing the

“differences” within any quantity is useful because it reveals how quickly the quantity is

* increasing or decreasing. The quantity x — 3 is informative in this particular problem

because x — 3 yields y for the first instance in the problem: instance (3,0). Of course it

is also the case that by computing x — 3, one translates the x values so that they begin at

0, which was aesthetically pleasing to some participants. As for *“y factors,” it seems that

this computation becomes salient whenever there is a y value present that “lends itself” to

factoring; in other words, when there is a y value present for which the participant readily

perceives a factorization, such-as for y = 14 or y = 9. This information can be very

valuable if a pattern emerges from the factors of a sequence of y values. Thus, participants
found many ways to manipulate the original data to make sense of it.

As important as PF is, successful and unsuccessful participants are not distinguished by
their use of PF. In fact, the basic PF processes used by both groups were virtually
identical. What does distinguish the two groups is the activity that follows the creation of
a quantity. Successful participants do not merely compute quantities; they analyze them.
Having computed some quantity q, the successful participant seeks to learn something
about q. Is there anything of interest or of value about this new quantity? Can it shed any
light on the investigation underway if it is probed a little? Successful participants use
pattern recognition knowledge to make good decisions about which intermediate quanti-
ties are worthwhile objects of pursuit. We define the construct of “pursuit” to characterize
this crucial process. The essence of pursuit is to teat a newly created quantity as one
would y, the original quantity. In other words, subject the new quantity to analyses; take
the differences between its values; form new quantities from it, and so forth. Each of the
successful participants actively pursued intermediate quantities. We return to this con-
struct when we consider the strategies participants used to succeed at this task. Now we
turn to the third and final type of inductive activity observed in the protocols.

Hypothesis Generation

Participants made use of two methods for generating hypothesis ideas. The first method
involves creating a hypothesis that works for a local (x.y) instance; the second, expressing
an observed pattern in terms of x. Every participant created “local hypotheses,” in which

a single instance is used as the basis for creating a hypothesis (usually a simple,
single-operator hypothesis) that fits that instance. For example, for the instance (3,2),
participants generally produced the local hypotheses {x ~ 2 =y}and {x — 2 = y}. Table

5 lists some common local hypotheses. Although such local hypotheses rarely led directly
to the answer for F1, they often formed the basis of later, more advanced hypotheses. For

- £xample, the local hypotheses {x — 3} and {x/2} can both be considered as elements of
'”'?;{he final solution: {(x/2) * (x — 3)}. In a later section we will characterize these particular
¢
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TABLE 5
Sample of Common Local Hypotheses for
Single Instances

Instance Local hypotheses
(3,0 x—3
4,2) : X2, x—2
(7,14) -~ _ x+7,2x
(8, 20) x+ 12
9, 27) 3x,x + 18
(10, 35) 3.5%,3x+5,x+ 25
(15, 90) x + 75, 6x

local hypotheses in terms of pieces of a puzzle, because they are the elements that must
be put together in just the right way to reveal the final function.

Once a participant generates a local hypothesis, the next step is to apply the hypothesis
to other instances to see if it approximates the desired y values. The basic types of local
hypotheses listed in Table 5 do not yield y for any instance other than the one for which
they were created. However, a determined participant could test the hypothesis on other
instances to examine the discrepancy between the outcome of the hypothesis and the
desired y value. Participant 11 applied this technique with the local hypothesis {x — 3}
by computing x — 3 for every instance possible. He then compared the resulting quantity
to the desired y-values. This was a helpful exercise because the relation between “x — 3”
and “y” (multiply by x, and divide by 2) is less complicated than that between “x” and “y”
(subtract 3, multiply by x, and divide by 2). By examining the values of “x — 3” in
comparison to “y,” this participant eventually succeeded at discovering the correct
solution (see the section on the Local Hypothesis §trategy.)

The second method of generating hypotheses takes information from the activity of
Pattern Finding, and translates it into an algebraic expression. For example, the quantity
“y differences” in Table 4 can be expressed algebraically as “x — 2.” This process of
expressing patterns in ferms of x allows the participant to use patterns directly in
hypotheses because they are thereby represented in algebraic form. Thus, the pattern
formerly known as (2 3 4 5) is now equal to x —~ 2, and can be easily included in a
hypothesis, for example, 3 * (x — 2) = y.

Although most hypotheses were generated by one of the two methods just described,
occasionally a participant would propose a hypothesis that appeared “in the ballpark” for
some reason or other, but which was not otherwise on target. For instance, a participant
may have a general theory that the desired function is a quadratic and might therefore
propose quadratic functions, one after the other, for testing against the data. This method
was not generally successful (indeed, no participant succeeded in solving the probleip via
this strategy), which is not surprising given the relatively poor use of the data for
guidance. ‘

One final point about HG is that we did observe in the participants’ protocols the'use

_of a technique known as “discrepancy analysis.” For example, Participant 11 used
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TABLE 6

. Proportion of Episodes Devoted to Each Activity
‘ Mean proportion of epis@es (SD)
Type of activity Al participants (15) Unsuccessful (6) Successful (9)

. Data Gathering .25 (.08) .21 (.05) .28 (.09)

Pattem Finding .33(.18) .38 (.23) 29(.15)

Hypothesis Generation .35(.18) .36 (.25) 34 (.13)

Other _ .09(.04) .06 (.06) .09 (.04)

Mean number of episodes 113 129 102

Range 40-214 85-179 40-214

discrepancy analysis when he tested a hypothesis and then compared its results to the
desired y values. This process was shown to distinguish successful from unsuccessful
participants in the study by Qin and Simon (1990). Certainly the benefits of discrepancy
analysis are straightforward: rather than discarding an incorrect hypothesis and losing
whatever information it may embody about the nature of the data and the function being
sought, one analyzes the discrepancy between the desired y value and the output of the
hypothesis to see how close it comes to the goal. If a participant analyzes a discrepancy
as a quantity unto itself and then determines a way to express that quantity in terms of x,
the final solution is found. Adding the expression for the discrepancy to the original
hypothesis produces the full, final function. In our study we found that both successful and
unsuccessful participants used discrepancy analysis, and that the difference in their
frequency of use of discrepancy analysis did not reach statistical significance.

'
The Coordination of DG, PF, and HG

With the identification of these three distinct areasbof inductive activity, we have the basis
for a comprehensive model of inductive reasoning. To further understand how these three
types of activity contribute to the inductive process, we analyzed the proportion of total
protocol episodes devoted to each of the three categories of activity. The figures in Table
6 demonstrate that DG and PF do constitute appreciable portions of the inductive process,
for both successful and unsuccessful participants. Participants varied greatly in the timing
and ordering of their DG activities. However, all participants collected and organized data
to test hypotheses, to test that pattern completions were carried out correctly, or to provide
more data for analysis. Thus, participants used DG to inform and check PF and HG.
The links between PF and HG, however, are more complex. It is critical to balance
efforts between these two areas. Students who focus on HG to the exclusion of P¥ falter
because extreme HG is not effective for inductive reasoning. HG requires the results of PF
to inform it, and at the very least (in the case of generate-and-test) to revise it intelligently.
Similarly, students who focus too heavily on PF also flounder, because extrethe PF
amounts to making local sense of the data, but never using that information to form a
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global hypothesis. The problem can therefore never be finished because the knowledge
gleaned is never expressed algebraically.

Based on these considerations, we hypothesized that successful participants would
atlocate their effort evenly between PF and HG, whereas unsuccessful participants might
allocate their effort in a more lopsided way—either emphasizing PF at the expense of HG,
or emphasizing HG at the expense of PF. To test this hypothesis, we calculated a balance

“score for each participant, by taking the absolute value of the difference between the
proportion of episodes spent in PF and the proportion of episodes spent in HG. Low scores
on this measure reflect balanced allocation of effort across PF and HG, whereas high
scores reflect lopsided allocation.

As predicted, we found that successful participants tended to allocate their effort fairly
equally between PF and HG, whereas unsuccessful participants allocated their effort more
unequally (Means = 21.2 successful, 39.5 unsuccessful, 7(13) = 2.17, p < .05, 2-tailed).
Among the six unsuccessful participants, two spent more than half of their effort in HG,
and three participants spent more than half their effort in PF. Of the nine successful
participants, only two spent more than half their effort in either HG or PE.” Thus, students
who focused on one process at the expense of the other tended to be unsuccessful. These
students are reminiscent of novice problem-solvers who repeatedly employed an unsuc-
cessful problem-solving procedure in a study by Novick (1988). Presumably students
perseverate at these unsuccessful strategies either because they do not know any other
strategies to employ, or because they do not have the necessary information with which
to employ any other strategies. In contrast, successful participants do not perseverate in a
single activity, but achieve a kind of ideal: a balance of PF and HG. We turn now to an
analysis of these successful participants’ solution stra}tegies.

Observed Paths to Success

A total of 3 different paths to solution for F1 and F2 were employed by participants in this
study. We discuss them in order of increasing prevalence. Note that the use of the term
“strategy” does not necessarily imply here an explicit choice among options.

Recursive Strategy

The least common solution strategy was the Recursive strategy, for which participants
translated a method for computing y values recursively into the correct closed-form
function hypothesis. The y values for F1 (0, 2, 5, 9, 14, as listed in Figure 4) can be
generated using a very simple recursive method. Observe that the difference between the
first 2 y values listed (0 and 2) is 2; the difference between the next pair (2 and 5) is 3;
and so on. We can thus generate the value for y when x = 8 by determining the difference
between the y values for x = 6 and x = 7, which is 14 minus 9, or 5. We_increment tlgis
__ value by 1 to get 6, and add 6 to the y value for x = 7 to get the y value for x = 8. Thus,
| % “when x = 8, y must be 14 + 6 = 20. Similarly, when x = 9,y must be 20 + 7 = 27,
: and when x = 10,y is 27 + 8 = 35.

o N - "('v';
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This method . of computing y values is a recursive method because it relies on
knowledge of prior y values to generate the current y value. A closed-form method, on the
other hand, requires the current value of x, but not any previous values of y. Thus, with
a closed-form solution one can generate y values for any x value, no matter how high,
without resorting to calculating all of the y values that preceded it.

The two participants who solved F1 via the Recursive strategy began by noting the
recursive formula just described. In fact, several participants discovered this piece of
knowledge (3 successful and 3 unsuccessful), but then also discovered that they could not
use it in the way they wished. The hypothesis that results from this recursive formula is:
y = the previous y + “x — 2.” To compute f(1000) using this rule, one needs to know the
value for £(999). Not even the most desperate participant attempted this extended calcu-
lation. Indeed, at this point most participants abandoned this line of inquiry. Two
participants, however, were able to convert this recursive algorithm into a closed-form
rule. These two noted that any given y value is the sum of all the y differences that went
before it. In other words, the y value when x = 7 is equal to 2 + 3 + 4 + 5 = 14. This
sum series always begins at 2 and always ends at x — 2 (again, recall the recursive
formula). Thus, the problem is simply one of expressing the sum from 2 to x — 2. These
two participants posed this simpler problem to themselves and were able to retrieve (in
one case) or to rederive (in the other) the same formula that Gauss used for the sum of the
numbers from 1 to n: namely, n * (n + 1) + 2 = the sum of the numbers from 1 to n. The
two participants applied this formula to the sum from 2 to x ~ 2, and eventually arrived
at an algebraic equivalent of x * (x — 3) + 2.8 These participants had specialized
knowledge that helped them to succeed at this problem and that most likely set them apart
from the unsuccessful participants. Indeed, the math background of these two participants
was high in relation to the rest of the participants’(they reported Math SAT scores of 780
and 710), indicating a likelihood that they would have familiarity with this summation
formula and have the algebraic skills to deploy it/

Local Hypothesis Strategy

The Local Hypothesis strategy was used by two participants on F1 and by two participants
to solve F2. Thus, it was slightly more common than the Recursive strategy. Every
participant, successful or unsuccessful, engaged in the behavior of creating “local hypoth-
eses” to fit a solitary data instance; however, most participants did not rely solely on this
strategy to reach the final solution. An example of generating local hypotheses is the
following. Suppose that, given an x value of 7 and a y value of 14, we encounter a
participant who proposes {x + 7 = y} and {x * 2 = y} as local hypotheses that work for
the particular values of x =7 and y = 14. This information, that adding 7 to 7 wi | result
in the desired y value of 14, did not have to be represented in terms of x and y. The
participant could merely record that 7 + 7 = 14, or that 2 * 7 = 14. In framiné these
relations in terms of x and y, however, the participant is prepared to test whether this
relation holds for other instances. It is this generic capability to apply to other instances
that establishes the observed relation as a local hypothesis. _
oo
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- Participant 11 (P11) exemplifies the strategy of producing local hypotheses to generate
a promising global hypothesis. When he closely examined the instance (7,14), he already
had in mind the notion that x — 3 might be involved somewhere [from examining instance
- (3,0)]. Applying this “minus 3” idea to (7,14) he said:

X equals 7 gives us, Y equals 14. hm. Let’s see, now if we think about that, 7 minus
3 equals 4, right? That’s if there's minus 3, I might have to drop that idea, but anyways,
if there is, multiply that by, so you take, uh, X minus 3, divided by, X times X minus
3, divided by 27 (emphasis added).

The correct rule seems to appear almost effortlessly in a flash of insight. P11 knows
that he needs to use x (7), and that he might also use x — 3 (4), to produce y (14). He
recognizes that 14 factors into 7 * 2 and he further recognizes that this can be achieved
by multiplying 7 and 4, divided by 2. His solution comes largely from examination of this
single instance, though it was critical that his prior local hypothesis for instance (3,0) led
to the investigation of x — 3.

Consider the wide range of possibilities that might otherwise have been proposed!
Given the numbers 4 and 14, many avenues exist for relating the twe: 4 plus 10 = 14; 4
times 2 plus 6 = 14; 4 plus 7 plus 3 = 14; 4 times 4 minus 2 = 14. Reasonable
closed-form rules could have been proposed to correspond with each of these relations:
(x-—3)+10=y;(x-—3)*2+6=y;(x—3)+x+3=y;(x—3)2—2=y;
respectively. P11 either avoided considering all these possibilities, or he discarded them
instantly, without even having time to verbalize his consideration of them. Why when
there are so many equally likely possibilities does he stumble directly onto the correct
one? The answer lies in his immediate retrieval of the fact that 14 factors into 7 and 2, and
his subsequent, probably automatic, retrieval df the fact that 2 is half of 4. With these
powerful facts already in-mind, the solution that he proposed is more attractive than any
others expressly because with these facts, he can,express every necessary step in terms of
x, without any need for further “adjustments™ by addition or subtraction. In short, he
already has 4 expressed in terms of x: (x = 3). But, as one of the factors of 14, he needs
2 instead of 4, thus, (x — 3) = 2. The other factor, 7, is already set equal to x. Thus, 14 =
T*2=x*(x=-3)+2=y.

With respect to P11’s solution path, it is difficult to overstate the essential role played
by the accessibility of arithmetic facts. Without the speedy retrieval of the fact that 14 =
7 * 2, P11 might have encountered great difficulty in choosing between the many
alternatives for relating 4 to 14. Had he chosen a different relation, for example, 14 = 4
* 4 — 2, then his resulting full formula, y = (x — 3)? — 2, would not have held for other
instances, and he may never have found his way back to the correct relation tt{at he did,
in fact, discover. )

Participant 15 had to work a little bit harder to produce his Local Hypothesis success
story. He actually collected Instance 100: (100, 4850). He was in the habit of facgpring the
y values for the instances he collected, and did so with this one as well. He broke 4850
down into its prime factors: 2, 5, 5, 97. He then noticed that 97 just so happened to be 100
minus 3 (thus, x — 3), so he combined the remaining factors to see how he might also

¢ "
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express them in terms of x. Note that not just any participant would have succeeded with
this information. This participant is special, as are all the successful participants, in that
he perseveres in attempting to express relations in terms of x. He computes 2 * 5 * 5 =
50 and notes that 50 is half of 100; thus, x + 2. He combines these expressions together,
and voila: (x — 3) * (x + 2), he has the answer. '

Like the, participants who succeeded via the Recursive strategy, the Local Hypothesis
participants also drew on particular background knowiedge. However, unlike the Recur-
sive strategy, the knowledge required for the Local Hypothesis strategy is available to the
general population: the participants simply required knowledge of arithmetic facts (e.g.,
97 = 100 — 3) and factors (e.g., 14 =7 *2;2 =4 + 2;4850 = 97 * 5 * 2 * 2). What
may differ between the participants who succeeded via this strategy and others is the
swiftness of their access to these facts. Given the speed of certain decisions, it seems that
their access to these facts may even have been automatic in-certain cases. Thus, speed of
access to and accurate retrieval and computation of number facts may have set these
participants apart from the others.

Pursuit Strategy

By far, the most common strategy was to reduce the problem to a quantity with an easily
recognizable pattern. We call this the Pursuit strategy because it requires that the
participant pursue a line of inquiry through several steps: (1) identification of a pattern in
a quantity g; (2) pursuit of q as a subgoal to understanding y; (3) expression of q in terms
of x; (4) combination of expressions into a global formula. For F1, the specifics are as
follows. In the course of standard Pattern I;inding procedures, the participant looks for a
number to answer the query, “x times what equals y?”’ If the participant answers this
question for enough instances, then she may be able to detect the fact that this quantity (q)
increases by 1/2 with each increase in the vhlue of x. Having identified this pattern, the
participant must make the decision whether or not to pursue this line of inquiry further.
If she decides to do so, the next step is to try to understand the relationship between x and
this new quantity q. Ideally, this attempt will eventually result in the discovery of an
algebraic expression that concretely specifies the relation between x and q (e, (x -
3)/2 = q). With such an expression in hand, the participant now has the answer to the
question ‘‘x times what equals y?,”” and can thus multiply by x to complete the full
formula: x * (x — 3)/2 = y.

Five of the 9 successful participants on F1 employed this strategy, as did 13 of the 15
successful participants on F2, for a total of 18 out of 24 successes (75%), or 18 out of a
total of 32 attempts (56%). Because it was the most common strategy, We provide a
walk-through example of this strategy, with highlights from one successful participant’s
protocol. \

One Student’s Solution to FI1. What follows is a detailed exa;mination of the critical
steps taken by one successful participant, “Ace.” (The full text of Ace’s verbal protocol,
divided into segments by carriage returns, appears in Appendix B. His written work

S
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TABLE 7 ;
Data Instances in Order Collected by Ace
Instance number ;
Variable Ist 2nd 3rd 4th Sth 6th 7th 8th 9th 10th
X 10 2 3 S0 S 25 4 6 7 15
y 35 — 0 1175 S 275 2 9 14 90

appears in Appendix C.) Ace does not begin by generating instances in any regular
sequence. He collects them in the order shown in Table 7.

Ace reorganizes this data before collecting x = 6, so that the smaller x values (3, 4, 5)
are sequential, and then collects x = 6 and x = 7 and records them into a table like that
'seen in Figure 5.1. Figure 5 displays an overview of Ace’s solution path from this point
forward. Each step is numbered (step numbers are circled) and outlined by a box. Where
one quantity has been computed in two different steps, inner boxes are used to denote the
separate steps.

1. After some initial struggling (see protocol, Appendix B, lines 1-107), Ace reorga-
nizes the data so that it looks like the table seen in Figure 5.1.
2. Ace then computes the differences between the successive values of y (lines 109—
112):
“0to 2, is jump of 2,
; 2 to 5, jump of 3,
{ 5109, jump of 4,
9to 14 is a jump of 5’
In examining these “y differences,” Ace noticg,s a relation between the column of x
values and the y differences (lines 115-118):
“X, .... X minus 2

o .

X Y Y Diff X* =Y q Diff in terms of X
3 0
4 2 2 1 5 12 (4-3)= |
5 5 3 1 A 172 (5-3)2=1
6 9 4 n 3
7 13 5 2 \ 17 (x-3)2 @
8 20 23 @ 8312225
9 27 x-2 3 S—
10 35 :
@ X* x3)2 =y \

Figure 5.

Overview of Ace’s solution path.

Y
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e is the increment of that jump.
3 o R from the number before.”’

e ) The formula “x — 2” characte;izés the increment from one y value to the next. Thus
e e 1 when x equals 6, x — 2 = 4, which is indeed the difference between the correspondin;
- ‘ y value of 9 and the previous y value of 5.

4. Using this recursive rule (computationally equivalent to y, =y, , + (x, — 2)) Ac:
extrapolates to the instances where x = 8 and x = 9, and finally confirms the formul:
by producing from it the correct y value to correspond with x = 10 (an instance h
had already collected) (lines 121-130).

“ X minus 2 is the increment
wouldbe...6...8

make it 20

so there’s 9

make it 27

there’s 10

you make 35.

figured that out.”

5. Ace realizes the limitations of his recursive formula. To find the value of this functior
when x = 1000, he would need to know the value of the function when x = 999, and
so on (lines 131--150). He thus tries to find a way to predict y from x that does not
require knowledge of the previous y value (lines 151-162). (This is the point at which
the Recursive strategy diverges.) He is searching for a relation between x and y that
remains true for several instances. He notes that for the instances S, 7, and 9, x can
be multiplied by an integer to prodlfyce the appropriate value of y (lines 163-165).

“7 times 2 is 14.
9 times 3 is 27
5times 1is 5.” ;

6. Ace notices that the quantity being multiplied (1, 2, 3), called g here, is increasing by

1. (He tests this with the pair (11,14).) However, he is only looking at every other x
~ value (5, 7,9, 11). Given this information, he guesses that ¢ when x = 8 might be 2.5,

the number exactly between the values of ¢ for 7 and 9 (lines 179-185). After testing
that 8 times 2.5 does equal the desired y value of 20, Ace also notes that g = 0.5
works when x = 4 (lines 179-200).

“ 8 times 2.5,

what’s that equal?. . .

yeah that’s it. . . ..

yeah, because 4 times 0.5 is 27

¥

%
The value g that Ace has discovered is actually equal to y/x. Use of this new quantity is

a critical step in the solution. \

7. Having written down instances of this intermediate quantity ¢, Ace notices that they
o increase by 0.5 with each increase of 1 in the value of x (lines 202-211).
T “Y equals X times 0.5 for 4
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Y equals X times 1 for 5

and goes up by 0.5 each time. . . .

after 3 it goes up by 0.5 each time.”’ :
8. Ace now tries to find a relation that will “generically” specify how q increases by 0.5

with each increase of x (lines 217-235):

“trying to see

how you move the 0.5 up every time, generically. . ..

I can’t figure out a way to make it go up with the X.

Y equals . ... X times,

how do I get that 0.5

would be . ... 4 minus 3"’

i A

The relation that Ace discovers between x and g (“would be . . . 4 minus 3") is actually
a relation between x and the numerator of q, which we call g2. The value of g for x = 4
is 0.5, or 1/2. Subtracting 3 from x we get 4 — 3 = 1, which is ¢2: the numerator of 1/2.

9. Ace examines another instance (x = 5) and determines that the relation between x —
3 and ¢2 continues to hold. For this instance, he goes a step further, and divides the
numerator by 2 to get the actual g value of 1 (lines 238-241): '

“ 5 minus 3 divided by 2
get us the 1

so that would be

X minus 3 divided by 2"’

Ace has taken the crucial step at this point of expressing in terms of x the relationship
between the quantities x and g that he has found to Fold for the single instance x = 5. This
general expression (x — 3) + 2 will allow him to apply his new discovery to many other
instances. ’

He tests this new formula with other instances (lines 242-246):

“try 4 minus 3 divided by 2
that’s... 0.5

try 8 minus 3 divided by 2

that equals the 2.5 that we need’’

A i B

10. Finally satisfied that his partial formula (x — 3) + 2 for yielding q is accurate, Ace
multiplies this partial formula by x to produce a full hypothesis (lines 247-250):
“so we have
Y equals X times
X minus 3 5
divided by 2.”

Ace’s solution can be summarized as follows: find for several instances the valuesithat,
when multiplied by x, yield y (step 5, Figure 5). We call these new values q. Look for a
% . . pattern within ¢ and discover that g increases by 1/2 for each increment of 1 in x (step 7,
C Figure 5). Having discovered a pattern that holds for all values of x, aim to express q

'
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solely in terms of x. In this way the new quantity is viewed as something to be investigated
in its own right, or to be pursued. The original goal was to express y in terms of x. A
subgoal has now been established to express ¢ in terms of x. Pursue this subgoal by
looking for patterns in (x,q) instances. Ace pursues a further subgoal (step 8, Figure 5) by
determining the relationship between x and ¢2, the numerator of q. Having determined this
relationship, he returns to the prior subgoal of expressing the pattern in g in terms of x
(ie., (x — 3)/2 = q) (step 9, Figure 5). Recall that g was created because it could be
multiplied by x to produce y. Thus, we multiply the formula for q by x, and thereby
produce a full formula for expressing y in terms of x (step 10, Figure 5).

In focusing on the relation between x and certain intermediate quantities related to y
(i.e., g and ¢2), Ace reduced the complexity of the problem he was solving: the relation
between x and y/x (subtract 3, and divide by 2) is less complicated than that between x
and y (subtract 3, multiply by x, and divide by 2); and the relationship between x and ¢2
(subtract 3) is less complicated than that between x and ¢ (subtract 3, and divide by 2). In
fact, Ace reduced the problem to such an extent that he determined the nature of a
one-operator relationship between x and another variable before he began to build back up
to the full hypothesis. It is useful to note here that Ace went beyond reducing the problem
to one of a linear relationship between x and another variable (which is the nature of the
relationship between x and g). F1 is a quadratic function, whereas q is a linear function
of x (albeit a nonprototypical one: (x — 3)/2). Discovery of this linear relation would have
been sufficient cause for the BacoN model to finish this problem. However, Ace’s pursuit
of the relation between g and x (which is linear, but encompasses fwo operators) led to
examination of the relationship between x and the numerator of q (which is linear'and has
only one operator). Thus, the virtue of pursuing intermediate quantities, like g and g2, is
not specifically about reducing a quadratic function to a linear one, but more generally
about reducing the complexity of the problem to the point where a pattern becomes
recognizable and is simple enough to be readily expressed in terms of x.

The Importance of Pursuit

Pursuit encompasses the following five activities. (1) Detect a pattern in a quantity q. (2)
Decide that this pattern is worth pursuing. (3) Investigate the quantity q as you would y,
applying DG, PF, and HG tools. (4) Express q in terms of x. (5) Build on the algebraic
expression for q to propose a full hypothesis. Note that step 2 promotes recursion. In other
words, in the process of investigating g, the participant may happen upon an additional
quantity, say q2, that further simplifies the problem and that itself then merits Pursuit (e.g.,
in Ace’s solution path, the numerator of the quantity y/x). This g2 would thus ?e expressed
in terms of x (just as Ace found the expression x — 3 was equal to the numerator of y/x)
as a stepping stone to expressing q in terms of x. Expressing q in terms of x would, in turn,
be a stepping stone to expressing the full rule in terms of x. Successful participants did all
of these steps of Pursuit. Unsuccessful participants who took the first steps of the Pursuit
_strategy did not see it through all of these steps. In this section we discuss how
unsuccessful participants failed in their Pursuit.
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TABLE 8
Comparison of Unsuccessful and Successful Pursuit on F1
Step achieved Unsuccessful " Successful Fisher's exact p-value
Computed q 4/6 69 42
For at least 3 instances 3/4 616 40
At regulor intervals 2/4 6/6 A3
Detected q pattern 1/4 5/6 Al
Tried to express q in terms of x 0/4 5/6 .02
Solved the problem via Pursuit NA 5 —

The Pursuit strategy for F1 involved the quantity g = y/x. Ten participants created this
quantity: 6 successful and 4 unsuccessful. (T able 8 lists the number of unsuccessful and
successful participants who made it to each step of the Pursuit process. Also included are
the p-values for whether or not the difference between the number of unsuccessful and the
number of successful participants reaching each step is statistically significant.) Nine of
these participants computed q for enough instances to distinguish a linear pattern in the
quaatity. The one participant who did not was unsuccessful. Eight participants computed
q for instances that were equidistant from one another, and which therefore facilitated the
detection of the linear pattern in g. The participants who did not were unsuccessful.

To look for a pattern within g, or t0 produce any new quantities deriving from g, a
participant has to regard q as a new problem unto itself: a new “y” to subject to analysis
with all the tools in their inductive, pattern-finding toolbox. The heuristic of investigating
and analyzing a newly created quantity in its own right is the cornerstone of Pursuit. Ace
pursued g. He: (1) detected and investigated a pattern in g which eventually allowed him
to (2) express g solely in terms of x. Of the 8 pfrticipants who computed g for enough
instances in F1, only 6 of them detected the pattern in g that Ace did (Figure 5, step 7.°
Of the two participants who did not detect this pattern, one was unsuccessful, and one
eventually went on to solve the problem via the Recursive strategy.

Finally, g cannot contribute to a participants’ final solution unless it is expressible
solely in terms of x and can thereby be used as part of a formal algebraic formula. Of the
6 participants remaining in the Pursuit game at this point, only one did not attempt to
express that pattern in terms of x. This participant was unsuccessful. All 5 remaining
participants did attempt and succeed at expressing this pattern in terms of x, and from
there proceeded to solve the problem.

Thus, at each step of the way, unsuccessful participants could and did abandon the
Pursuit strategy. In fact, every unsuccessful participant failed to persevere to the point of
even expressing g in terms of x, and did not even encounter the problem of constructing
a final hypothesis based on the algebraic expression for g. \

Puzzle Pieces and Expression in Terms of X

The final step of Pursuit is to build a full hypothesis based on the fruits of one’s prior
investigations. These algebraic expressions of patterns are like puzzle pieces: each must

YR
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TABLE 9
Acquisition of Puzzle Pieces
Puzzle piece Unsuccessful Successful Fisher’s exact p-value
x=3 6/6 99 - 1.0
x* 4/6 99 14
+2 1/6 99 <.01
(x—-3)2 /6 99 <.01
x/2 2/6 99 .01
x(x — 3) 1/6 9/9 <.01

be fit into the final formula in just the right way to produce the final product. The algebraic
formula that expresses g in terms of x, namely, ¢ = (x ~ 3)/2, is composed of two puzzie
pieces that have been pieced together. Recall how Ace constructed his final hypothesis one
piece at a time. He first reduced the problem to the discovery of the relation between x and
q, and thus introduced the notion that “*x” would be a component of the final function
(because x * g would equal y). He then-discovered the relation between x and the
numerator of ¢: “x — 3.” Finally he included the component of dividing x — 3 by 2, and,
in combining all these pieces together: “*x,” “x — 3,” and “+ 2,” he produced his final
hypothesis. These individual components of F1 could be thought of as puzzle pieces that
need to be fit together to construct the correct rule.

Could it be that one or another of these pieces was particularly elusive to the
unsuccessful participants? Or was it the composition of the pieces that posed the real
challenge? For each unsuccessful participant, we coded whether each of these 3 pieces of
the F1 “puzzle” or any of their 2-piece combinations were considered at any point during
the protocol (see Table 9). All but the’“x — 3” and the “x*” puzzle pieces reveal
statistically significant differences between successful and unsuccessful participants.
Thus, unsuccessful participants did not disgover individual necessary components of the
function. This result leaves open the poésibility that unsuccessful participants are as
capable as successful participants at recombining the puzzle piece elements to form the
final function, if only they have these elements on hand. Achieving these puzzle pieces,
of course, requires expressing a quantity in terms of x.

As seen in Table 8, expressing a pattern in terms of x seems to have been a major
stumbling block for unsuccessful participants. It is a step of Pursuit that no unsuccessful
participant completed. Furthermore, expressing a pattern in terms of x is the process by
which participants create puzzle pieces for fitting the final hypothesis together. Thus, it is
not terribly surprising that Table 9 shows that unsuccessful participants also had difficulty

“with discovering the correct puzzle pieces.

How did successful participants express patterns in terms of x? Ade provides an
example in his step 9. Here is an example from another successful participant:

P7:  “let’s see how can we relate the number, the initial number to the den(;‘minator.
... 8 goes to 5, that’s minus 3, 10 goes to 7, that’s minus 3, . . . alright, so maybe the
denominator is [x] minus 3.” (lines 735-750; note: this participant was trying to
express x/y, the reciprocal of q.)
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By contrast, here is the excerpt from the protocol of the one unsuccessful participant
who did get as far as detecting the pattern in g, but who did not succeed in expressing q
in terms of x. This excerpt begins with the participant listing the values of (y — x)/x for
instances 10, 9, 8, 7, and 6, respectively. (This participant was trying to express (y — x)/x,
rather than y/x.): ‘

P8: 25,2, 15,1,0.5, um, 0.5 um, x plus 0.5x, x plus x, x plus 1.5x, x um, s0 if x
every time, add 0.5, x, plus 3, times, X plus, 3, 3x, um, 1.0x, um, x plus 0.5x, x plus
1.0, y, um, y, y plus 3, y, y minus, divided by 32, um, 6 plus 3 is 9, x plus, 7 plus
7is 14, is 2, 2.5, 1.5, um, x plus 0.5, x, 1, 1.5, x plus 0x?, x plus negative 0.5x. . ...

Note that although P8 detects the pattern that (y —~ x)/x is increasing by 0.5, she does
not attempt to express the sequence of numbers 0.5, 1, 1.5, 2, 2.5 in terms of x'® (which
would result in the expression (x — 5)/2), but instead simply inserts these y-derived values
into instance-specific formulas: for Instance 6: x + 0.5x =y, for Instance 7: x + 1x =
y, and so forth. Without a general characterization of the values 0.5, 1, 1.5, 2, 2.5 to insert
into these instance-specific formulas, she cannot move closer to her goal of finding a
general hypothesis. She soon returns to expressing these instance-specific formulas in their
original, number-specific forms: 6 +3=9,7 + 7 = 14, only to return again to the futile
effort of expressing these individual formulas in terms of x: for Instances 5 and 6: “x plus
0x?, x plus negative 0.5x.”

Summary of Successful Strategies

The three strategies to success, Recursive, Local Hypothesis, and Pursuit, share certain
elements. Perseverance and the goal to express relations in terms of x are essential to all.
Further, each strategy relied on mathematical back'ground knowledge, particularly pattern
recognition knowledge for relations between particular numbers. In our computer model
of inductive problem solving, we have tried to gapture the essential elements of the
successful Pursuit strategy.

The pursuir Model

Based on the protocol data described above, we developed a cognitive model of partici-
pants’ performance, to further articulate our theory of inductive reasoning. We chose to
simulate the Pursuit strategy because it was the strategy used most often. Our theory of the
cognitive processes involved in Pursuit includes the following activities: (1) Detect
patterns by examining the data; (2) Create new quantities; (3) Express patterns in terms of
x; (4) Construct hypotheses; and (5) Test hypotheses. We developed a production\system
model called pursur, based in ACT (Anderson, 1993), to simulate these processes. Data
collection and organization strategies are not addressed in the pursurt model (the data are
already “collected” and organized into an ordered table when pursuIT begins the problem.)

In the pursuIT model, quantities are represented as lists of values, and hypotheses store
a conjectured algebraic relationship between two quantities. The model starts with the
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TABLE 10
PURSUIT Productions
Area of activity Process PURSUIT productions
Pattern Finding Detect a pattem Recognize-pattem, Examine-numerator
Create a new quantity Relate-by-addition, Relate-by-subtraction,
Relate-by-multiplication, Find-differences-
within-quantity
Hypothesis Generation  Express pattern in terms of x  Express-in-terms-of-X
Construct hypothesis Unwind-multiplication, Unwind-subtraction,
Unwind-division
Test hypothesis Test-hypothesis, Finish

quantities x and y, corresponding to the list of x and y values given in the problem, and
without any hypotheses. During problem solving, the pursurr model creates new inter-
mediate quantities, like ¢ and ¢2 in the example of Ace above, and generates new
hypotheses. :

The procedural knowledge in pursurr is represented in if-then production rules. For
example, the following is an English version of pursurr’s knowledge of how to find the
multiplicative relation between two quantities: “If the goal is to find a relationship
between the source quantity, S, and the pursuit quantity, P, Then for each instance of S and
P find the value you need to multiply S by to get P, and create a new quantity that contains
these values.” For a complete list of the English versions of pursurr’s productions, see
Appendix D.

In the pursuiT model, x is designated as the original “source” quantity from which we
want to be able to compute y, and y is designated as the original “pursuit” quantity, which
we want to be able to compute, given x. Befbre it pursues any quantity other than y, the
pURsUIT model establishes that said quantity is worthy of pursuit by assessing whether the
quantity contains a recognizable pattern. When the model encounters a quantity that does
not contain a pattern that it recognizes, the model returns to focusing on previous pursuit
quantities.

Pattern Finding Productions

Pursurr has productions for both Pattern Finding and Hypothesis Generation activities
(see Table 10). The PF activities observed in the protocols of all participants are
encapsulated in the following pursurt productions: Relate-by-addition, Relate-by-subtrac-
tion, Relate-by-multiplication, Find-differences-within-quantity, Examine-numerator, and
Recognize-pattern. The “Relate-by” productions examine the arithmetical relations be-
tween the source quantity (i.e., x) and the pursuit quantity (e.g., y). These procfuctions can
be thought of as a kind of discrepancy analysis (Qin & Simon, 1990), or as a way to
compute the difference between a pursuit quantity, such as y/x, and x itself when
searching for a way to express a quantity in terms of x. Thus, Relate-by-subtraction would
compute the difference between the x value and y value in each (x,y) pair. The Find-
differences-within-
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quantity production creates the “y differences” quantity that we encountered in Table 4
and in Ace’s step 2, and the Examine-numerator production allows the model to.examine
the top half of a series of fractions, something that the human eye can do with relative
ease. The ultimate goal of PF, of course, is to actually detect a pattern. This crucial
step is accomplished (or not) by the Recognize-pattern production. This production is
supplied with a small list of patterns that it recognizes instantly:- the counting
numbers, the odd numbers, and the even numbers. With these PF productions, the
PURSUIT model can create all of the quantities created by participants on F1, as listed
in Table 4.

Hypothesis Generation Productions

Pursurr’s HG productions are: Express-in-terms-of-X, Unwind-subtraction, Unwind-mul-
tiplication, Unwind-division, Test-hypothesis, and Finish. The most crucial of these HG
productions is Express-in-terms-of-X. This production fires whenever a relationship
between the source quantity (i.e., x) and the pursuit quantity, P, has been found which
requires only the adding, subtracting, multiplying, or dividing of some constant to produce
P from x (e.g., x — 3 = P). In other words, this production fires when the relationship
being pursued is a single-operator relationship. It is with this production that the process
of building a hypothesis arises from the fruits of Pattern Finding. Once an initial algebraic
expression has been created from this production, the other HG productions can fire. The
“Unwind” productions reverse the PF computations that produced the final pursuit
quantity, recombining the puzzle pieces found along the way so that the hypothesis will
eventually yield the original pursuit quantity, y. Finally, the Test-hypothesis and Finish
productions test that the final hypothesis holds for sdveral instances and then declare the
problem solved.

Pursuit’s Successful Performance on F1

For F1, pursurr is provided with the quantities x (34 5 6 7) and y (02509 14). Table 11
summarizes the sequence of productions used by the pursurr model to solve F1, as well
as the corresponding changes to the model’s knowledge. A possible first step the model
can take is to fire the “Relate-by-multiplication” production. This production produces a
new quantity that we called g in Ace’s protocol, but that we will refer to here as A = y/x
to indicate how it relates to x and y. In the second step (#2 in Table 11), the Recognize-
pattern production examines A to determine whether it matches any patterns in the
model’s repertoire of pattern recognition. If the quantity matches a known pattern, W is
designated worthy of further pursuit. It is at this crucial point in the problem that the
PURSUIT model uses its repertoire of pattern knowledge to decide that the quantity A is
worthy of further pursuit. For the model to make this decision, as did the successful

. participants, we have included in its pattern recognition repertoire the knowledge to
‘ﬁ’-‘ﬁ‘pcognizc the pattern in A, which is that the quantity increases by 1/2 with each successive
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[ . TABLE11 ..

PURSUIT Productions for Succeeding at F1
- -Production ~+ - Action -- New knowledge ~. * .-  Quantities Compare to
1. Relate-by-multiplication S* _=P .. A=(0121322) A=YX v Ace's step 5.
2. Recognize-pattemn:
differs-by-halves Pursue A Ace'’s step 7.
3. Examine-numerator B=(01234) B = 2A = 2*Y/X
) e 4. Recognize-pattem: :
st S counting-numbers Pursue B
Y ; 5. Relate-by-subtraction S—-_= X-B=(33333)
Ll 6. Express-in-terms-of-X Hypo>P (X-3)=8B Ace’s step 8.
7. Unwind-multiplication Hypo/2 X-32=A B2=A Ace’s step 9.
. 8. Unwind-division - (Hypo)*X X*(X—-3¥2)=Y A*X =Y Ace’s step 10.
9. Test-hypothesis ] XX -3)/2)=Y
10. Finish Problem F1:
Status = solved.

value of x. Thus, the Recognize-pattern production recognizes the pattern in A and
designates A for further pursuit.

“In Step 3, the Examine-numerator production multiplies A by its constant denominator
so that the model may investigate the numerator alone (the quantity which we referred to
as g2 in Ace’s protocol, but which we refer to here as B). At this point (step 4), the model
recognizes a pattern in B: the values (0 1 2 3 4) match the production’s template for the
counting-numbers. Thus, the quantity B, iny = x * B/2, is designated as the new pursuit
quantity. As such, the model now begins to investigate ways in which the source quantity,
x, might be related to this new pursuit quantity, B. The model succeeds in relating these
two quantities by subtraction (step 5) and the result is a constant difference of 3. At this
point, the Express-in-terms-of-X production fires because the source quantity x and the
pursuit quantity P differ by only a constant. The model thus produces its first algebraic
expression: x — 3 = B.

A pursuit quantity, B, has now been expressed in terms of the source quantity, x. The
connection from x to y has been made. What remains is to reconstruct the steps taken to
get to B so that we may express y in terms of x. B was created by dividing the previous
pursuit quantity, A, by 2. The Unwind-multiplication production (step 7) reverses this step
and divides the new algebraic expression {x — 3} by 2. The model now has an algebraic
expression {(x — 3)/2} for the pursuit quantity A. However, A was created to yield y when
multiplied by x. Thus, the Unwind-division production fires and multiplies by x our
expression for A, thus creating a full expression for y. Finally, the Test-hypothesis
production fires and determines that this algebraic expression for y does hold for several
instances, and the Finish production fires, declaring the problem solved.

We already noted the important role played by the Recognize-pattern production in this
solution. For this production to recognize. the counting numbers (i.e., recognize Any

L ;";portion of the sequence 1234 5....) is not terribly controversial, as even the most
" A rudimentary math education allows for this competence. The ability to recognize differs-
by-halves, however, is more subtie, especially because participants’ initial representations
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: : © TABLE 12 . ..
. PURSUIT Productions for Failing at F1

" Production Action - New knowledge Quantities Compare to
1. Relate-by-multiplication S*_ =P A=(0121322) - A=Y Ace’s step 5
Cannot fire "Recognize-pattem’’ :
2. Relate-by-subtraction S—-_=P C=(-3-2037) C=Y-X
Cannot fire "‘Recognize-pattem”’
3. Find-differences-within-quantity D=(2345) D = Ydiff Ace's step 2
4. Recognize-pattemn:

counting-numbers Pursue D

5. Relate-by-subtraction S- _=P X-D=(2222)
6. Express-in-terms-of-X Hypo = P (X-2)=D Ace’s step 3
Cannot fire "Unwind’’ productions _ Ace’s step 5

IMPASSE

of the quantity A are generally 1, 1.5, 2, 2.5,...0r 1, 1%, 2, 2%,. .., rather than 1.0, L.5,
2.0, 2.5,...0r 2/2, 312, 412, 5/2,. . . . Recall that some unsuccessful participants did have
the data for y/x, yet they did not pursue this useful quantity. Our theory is that the
unsuccessful participants did not pursue y/x because they did not recognize the pattern
within it and, therefore, did not recognize the quantity as simpler than y itself. ! Thus, they
abandoned this path as not likely to be productive.

Pursuit Unsuccessful Performance on F1

If the pursuir model has an appropriate and accufate decomposition of knowledge it
should be able to capture individual differences in participant performance. We demon-
strate PURSUIT’s accuracy by showing how the model captures the performance of unsuc-
cessful participants. To simulate unsuccessful performance on Fl, the differs-by-halves
pattern is removed from the list of familiar patterns for the Recognize-pattern production.
Impaired in this way, the pursurT model computes several quantities that compare x and
y, including Relate-by-multiplication (which yields A = y/x), Relate-by-subtraction
(which yields C = y — x), and Find-differences-within-quantity (which yields D =y
differences). One possible path is shown in Table 12. The only one of these new quantities
that is recognized by the Recognize-pattern production is D, which has the values (2, 3,
4, 5): the counting numbers. The model recognizes these y differences as a pursuit
quantity, and therefore may apply Find-differences-within-quantity again, or Relate-by-
subtraction, with x as the source quantity and D as the pursuit quantity.

Pursurr does apply Relate-by-subtraction (step S in Table 12) with the result that k and
D differ by a constant value of 2. At this point, the Express-in-terms-of-X production fires
and produces the algebraic expression that (x — 2) = y differences. Pursuir would pow
apply further HG productions if any of them applied, but the within—quéntity difference

", operation that produced the y differences quantity is not reversible algebraically. Thus,
* PURSUIT reaches an impasse.
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Note that our successful participant Ace also reached this impasse. The steps taken by
the unsuccessful pursurr model are mirrored in Ace’s steps 2 and 3. Howevcr, the only
formula that could arise out of this (x — 2) = y differences expression is a recursive one:

fx) = (x — 2) + the previous y value.

This is not a closed-form algebraic function, and, like Ace and like most participants,
the pursurr model cannot produce a closed-form solution from the recursive formula.
When participants, both successful and unsuccessful, arrived at this impasse (in total, 6
participants: 3 successful and 3 unsuccessful) they generally scrapped what they had
found and began again with the original x and y (with the exception of the two participants
who succeeded with the Recursive strategy, as previously described).

Thus, the model arrives at an impasse when it attempts to solve FI without the ability
to recognize the differs-by-halves pattern in y/x. As such, we do not need to assume that
unsuccessful participants are incapable of producing y/x to explain their failure at
discovering F1. This is an important point. Prior work in this domain (Huesmann &
Cheng, 1973; Gerwin & Newsted, 1977) maintained that functions involving division pose
particular difficulty for students trying to induce them. Our model suggests that this
difficulty is not due to an inability to use or to conceive of using division, but rather to a
failure to recognize when division has led to a simplification of the problem. Quantities
resulting from division often involve fractions or decimals, rather than whole numbers,
and such quantities may be difficult to recognize as problem simplifications. Our data
show that unsuccessful participants did consider division and were capable of performing
division, and these skills are thus intact ig the unsuccessful model. The thing that is
impaired is the ability to recognize a certain pattern. Note that the pursurr model’s
simulation of unsuccessful performance also does not necessitate the removal of the
fundamental idea of pursuing and analyzing 4 new quantity just as if it were the original
y quantity. It is knowing what to pursue that differentiates the successful and unsuccessful
outcomes. Indeed, our model indicates that limited numerical pattern recognition knowl-
edge is the critical distinguishing feature of unsuccessful performance.

Pursuit’s Successful Performance on F2

Given that the pursurT model accounts for both successful and unsuccessful performance
on F1, can both these versions of the modei also succeed at F2? It is a crucial test for the
validity of our model to determine whether it can account for the failure of unsuccessful
participants on F1 as well as their overwhelming success in finding F2. Fifteen of the 16
participants succeeded at finding F2; only one participant failed, and this one also failed
at F1. Of those who succeeded on F2, 13 did so via the Pursuit strategy and,calculation
of y/x (the other two, both of whom were successful on F1, succeeded via the Local
Hypothesis strategy). The pursuit model simulates this common Pursuit strategy for
solving F2 via the computation of y/x. Table 13 lists the productions that fire to solve F2.

Loe N



i)

INDUCTIVE REASONING IN MATHEMATICS 281

CTABLE13

PURSUIT Productions for Solving F2
Production Action New knowledge ’ Quantities
1. Relate-by-multiplication S*_=9p - A=(357911) A =YX )
2. Recognize-pattemn:
odd-numbers Pursue A
3. Relate-by-addition S+_=P B=(23456) B=A-X=YX-X
4. Recognize-pattern: : A
counting-numbers Pursue B
5. Relate-by-addition S+__=P B-X=(11111)
6. Express-in-terms-of-X Hypo > P X+hH=8
7. Unwind-subtraction Hypo + X X+X+1)=A B+X=A
8. Unwind-division (Hypo)*X X*(2X + 1))=Y .
9. Test-hypothesis X*2X+ 1))=Y
10. Finish Problem F2:

Status = solved.

For F2, pursurr is provided with the quantities x (123 4 5) and y (3 10 21 36 55). The
Relate-by-multiplication production fires first. This production produces the quantity A =
y/x. In step 2 the Recognize-pattern production examines A (3, 5, 7,. .. ) and finds that it
matches the odd-numbers template. A is thus marked a pursuit quantity and the model
begins to investigate patterns and relations between x and A. In the third step, the model
relates x and A by addition, so that the quantity B = A — x is created. Once again, the
Recognize-pattern production fires, this time recognizing the quantity B (2, 3, 4,...) as
matching the counting numbers. Pursurr now looks fgr a relation between x and the new
pursuit quantity, B. The Relate-by-addition production finds that the corresponding values
for B and x differ by a constant vatue of 1. At this point, Express-in-terms-of-X fires and
produces the algebraic expression: x + 1 = B. To recohstruct the steps taken to get to B,
the Unwind-subtraction and Unwind-division productions fire (steps 7 and 8). The
resulting hypothesis is x * (2x + 1) = y, and the problem has been solved.

Although this solution path is very similar to the solution for F1, participants who used
this strategy successfully on F2 did not succeed in following the same strategy to solution
for F1. For the model, the only difference between successful and unsuccessful perfor-
mance on F1 is the ability to detect the differs-by-halves pattern in y/x. For the solution
to F2, this pattern does not play a role, and so the full and the impaired versions of PursuIT
from F1 perform identically to solve F2.

Model Summary ¥
Thus, the pursurt model, endowed with Pattern Finding and Hypothesis Generating
productions, accounts for both successful and unsuccessful performance on'Fl, as well s
- success on F2. One key finding is that the adjustment needed to produce success versus
" Failure on F1 is not an adjustment of procedural knowledge. Pursurr’s model of unsuc-
. cessful performance contains all the same productions as the successful model, just-as,ti\lei

suiwi
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unsuccessful participants in this study engaged in the same PF and HG behaviors as did
the successful participants. Instead, it is pattern recognition knowledge that differentiates
the full and impaired versions of the pursurT model. ’

The difference in declarative knowledge between the successful and impaired model
was a difference in the types of patterns that the model recognized. The successful version
recognizes that successive values of a particular quantity increase by one-half. It pursues
the quantity containing that pattern, and ultimately discovers the complete hypothesis. The
impaired version of the model does not recognize this pattern, and consequently does not
pursue the simpler quantity, and is unable to construct the final hypothesis. Thus, a small
difference in pattern finding accounts for the difference between success and failure on F1.
In this way, the model demonstrates that pattern finding plays an essential role in inductive
reasoning.

IV.  DISCUSSION

This study has revealed some crucial processes involved in inductive reasoning, a skill
which is required in both mathematics and science, and which plays a role in problem-
solving performance, learning, and the development of expertise (Holland et al., 1986;
Pellegrino & Glaser, 1982; Simon & Lea, 1974; Egan & Greeno, 1974; Chi et al., 1982).
Indeed, inductive learning methods aid the acquisition of problem-solving knowledge
even in problem domains that appear deductive on the surface (Johnson-Laird, 1983;
Koedinger & Anderson, 1989, 1998). Furthermore, induction has recently been targeted as
an important educational objective in math education (NCTM, 1989; Serra, 1989):
although a detailed understanding of the cognitive processes that support inductive
reasoning is still lacking. The current investigation was designed to advance our under-
standing of the cognuitive skills required for indyctive reasoning in mathematics.

In this investigation, we assessed inductive reasoning using function-finding tasks.
These tasks are representative of inductive reasoning tasks in that they require several of
the processes identified by Klauer (1996) as central to inductive reasoning. Specifically,
function-finding tasks require detecting and characterizing both similarities and differ-
ences in the relationships between successive pairs of numbers. The function-finding task
is also representative of inductive reasoning in mathematics, because the problem of
finding functions from data is fundamental to many areas of mathematics. Mathematicians
and scientists use function finding when searching for a rule or theory to describe a set of
data. Function-finding problems are also embedded in domains in which numbers do not
appear on the surface (e.g., the geometry example in Figure 2), and can also ariye to aid
in the recall of formulas or procedures (e.g., the combinatorics example in Table 3). Thus,
function finding is important in a wide variety of mathematical endeavors.

We wished to investigate the inductive reasoning processes used by nonexpert but
intelligent problem solvers, so we chose undergraduate students as our participant popu-
lation. By presenting function-finding problems to intelligent novices — nonexperts who
nevertheless have the general strategies and knowledge to be successful in novel situations
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— we attempted to ensure that the reasoning processes we observed would indeed be
inductive.

Empirical Summary

This study identified three basic activities involved in inductive reasoning that students
engage in to solve function-finding problems: Data Gathering, Pattern Finding, and
Hypothesis Generation. We identified DG as an important process that is more variable
and less structured than has been implied in the literature, and we demonstrated that
successful and unsuccessful students collect comparable data instances and organize data
with comparable skill. In this study, DG did not differentiate successful from unsuc-
cessful performance. Successful and unsuccessful students did differ in how they used
PF and HG. Students who did not succeed at solving the problems tended to allocate
the majority of their effort to either PF or to HG, and did not use PF to inform HG or
vice versa. In contrast, successful students allocated their effort evenly across PF and
HG and integrated these two activities throughout the course of their problem solving.
This integration was apparent in all of the successful protocols, regardless of the
particular solution path followed.

Three different solution paths were followed by successful students in this study: the
Local Hypothesis solution path, the Recursive solution path, and the Pursuit solution path.
In both the Recursive and the Local Hypothesis paths, students translated observed
patterns and relationships into algebraic expressions that eventually produced the final
hypothesis. In the Pursuit path, which is instantiated in our cognitive model, students
detected patterns and expressed them generally, in terms of x, and then constructed the
final hypothesis by combining smaller hypothesis pieces together.

The Pursuit strategy was the most common strategy used for both of the problems in
this study. The frequent use of this strategy suggests that the activity of pursuit is often
necessary in inductive reasoning. Indeed, inductive problem solving is seldom accom-
plished in a single flash of insight, especially when the rule to be discovered is complex.
In the case of function finding for undergraduates, quadratic polynomial rules were
sufficiently complex that students did not solve the problems in a single step. In such
situations it becomes necessary to find ways to simplify the problem. In the Pursuit
strategy, students simplify problems by identifying and pursuing quantities that are less
complex than the original y. ,

It is important to note here that the solution paths foliowed by undergraduates are not
generally optimal in terms of reaching a solution quickly and efficiently. However, our
purpose in this study was not to examine mature, optimal strategies for solving funcition-
finding problems. Instead, we chose function finding as a representative inductive rea-
soning and mathematics task, and we chose to examine and model the problem-solving
activities of nonexperts because we wanted to tap inductive processes—not proyen,
deductive strategies. It is easy enough to solve a polynomial function-finding problem

4, in a noninductive way.'? If we had examined expert performance on function-finding
 problems they might well have used formal, noninductive strategies, and we would not
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have -any inductive processes to -study’or :to Amodql.f;;We_gpurposcly examined the
activities of bright students in a relatively unfamiliar- inductive domain so that we

.could examine how people without domain-specific strategies would approach the

problems. It is because we attempted to identify relatively domain-general strategies
that these results are applicable to more areas of mathematics than just function-
finding problems.

Modél Summary

The pursurr cognitive model instantiates the Pursuit solution path. As such, it demon-
strates that induction of the final hypothesis is not accomplished all at once. Instead, the
hypothesis is constructed step by step, out of what we have called puzzle pieces. Each
separate algebraic piece is expressed in terms of x and then incorporated into the final
solution. The model’s highlighting of this process is an important contribution to our
understanding of “system construction” inductive reasoning problems (see Klauer, 1996).
It would be incredibly difficult to recognize the rule for any complex set of data without
first decomposing the problem into simpler components. People do not typically look at
thedata ¥3335/, and simply produce the full hypothesis: y = x(x — 3)/2. Not even
our fastest successful participant approached such sophistication. Accordingly, the pursurr
model must engage in three full cycles of relating variables and recognizing patterns
before it can compose the pieces required to solve this problem. For more simple functions,
however, the story is quite different. People can and do look at the data X3¢ 3¢7 and
very quickly produce the hypothesis that y = x — 3 (at least in this participant population).
Similarly, our model requires only two productions to solve this single-operator problem. Our
model, like our participants, does not solve F1 (the more difficult function) by inspection, but
breaks the problem into subproblems and then builds back up to the full hypothesis. Thus, the
PURsuIT model emphasizes the importance of redycing a complex problem to a set of simpler
problems.

Note that for both the students and the model, the simpler subproblems seem to be
inducible almost by inspection. Note also that all of these subproblems require only
single-operator relations (e.g., x — 3). Indeed, in our model, the “Express-in-terms-of-x”
production fires only for single-operator relations. Although this result does not mean that
people cannot induce relations that involve more than one operation, it is certainly
suggestive.

One final contribution of our model is that it identifies a critical difference between the
successful inductive reasoning of our successful participants and the failed attempts of the
unsuccessful inducers. Both the successful and the impaired versions of our, cognitive
model have the necessary procedures to carry out the Pursuit strategy. Both are equipped
to recognize patterns and to pursue promising quantities. However, the capacity of each
model to recognize patterns is dependent on the repertoire of patterns that we ertabled the
model to recognize. The successful version is provided with a larger repertoire of number
patterns than the impaired version, and is thus capable of succeeding when the impaired
model does not. This dependence on pattern recognition enables the pursurr model, unlike
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prior models of discovery and inductive reasoning (e.g., Qin & Simon, 1990; Huesmann
& Cheng, 1973; Gerwin & Newsted, 1977) to account for the fact that the same students
who failed at discovering one quadratic function in this study succeeded at solving the
other (for which the impaired model did have the necessary pattern in its repertoire). Thus,
the model mimics the performance of students who succeed at solving problems that
require patterns that they have in their repertoires, and fail at solving problems that require
patterns that they do not recognize.

The pursurr model instantiates the inductive, nonexpert solution path most commonly
exhibited by participants in this study. In doing so, it highlights the importance to
inductive reasoning of pattern recognition knowledge as well as the importance of
breaking problems down into simpler, “inducible” components that require only one
operation to be expressed generally.

Importance of Pattern Recognition

Our model highlights the detection of patterns as crucial to inductive reasoning. Indeed,
the pursuit process, which simplifies complex problems, can only occur when pattern
detection skills are sufficient to identify quantities that are less complex than the original
y. The process of pursuit is thus dependent upon the student’s ability to recognize useful
patterns and to thereby make informed, intelligent pursuit decisions. If a student fails to
recognize the pattern in a useful quantity, that student may incorrectly conclude that the
path represented by that quantity is unproductive, and thus abandon that line of pursuit.
Students who lack pattern recognition knowledge age thus more likely to follow unpro-
ductive paths, or to abandon paths that would ultimately be productive. In other words, it
is not because students do not know to look for patterns, but because they do not find any
patterns that they fail at pursuit. We conclude that the ability to recognize a repertoire of
possible patterns (and not just the particular pattern emphasized for the problem in this
study) is crucial to inductive reasoning in mathematics.

There is extensive support in the literature for the idea that pattern recognition is
important in problem solving. Many studies have shown, for example, that pattern
recognition knowledge is a major difference between experts and novices (e.g., Chase &
Simon, 1973; Koedinger & Anderson, 1990; Chi et al., 1982). Such pattern recognition
necessarily requires domain knowledge, which experts have in abundance. Indeed, in their
study of physics problem solving and expertise, Chi et al. (1982) noted that “the
problem-solving difficulties of novices can be attributed mainly to inadequacies of their
knowledge bases and not to limitations in. . . [their] processing capabilities™ (p. V1).
Similarly, Simon & Kotovsky (1963) found that, although problem solving procedures are
necessary, they are not sufficient for solving serial pattern completion problems;
domain knowledge is required as well. Consider the following example. If,%in
attempting to complete the pattern ABMABN _ _ _, one does not know that N follows

. ,;M in the alphabet, and that O subsequently follows N, the problem will not be solved,

}egardless of the inductive skills at hand. One needs to be familiar with the relevant
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alphabet to succeed at such problems. In mathematics, and particularly in these
inductive reasoning problems, the relevant “alphabet” or “knowledge base” is the
number system.

This knowledge base of numbers must encompass knowledge of relationships between
numbers. For a student to be able to recognize a repertoire of patterns, she must be able
to recognize relationships between successive pairs of numerals in a sequence of numbers.
The advantage of possessing such knowledge of numerical relations has been noted by
Novick and Holyoak (1991), who found that “the best predictors of analogical transfer for
[their] problems were mathematical expertise and knowledge of the numerical correspon-
dences required for spccessful procedure adaptation” (p. 412, empbhasis added). Pellegrino
and Glaser (1982) have also noted the importance of recognizing numerical relationships:
“The solution of numerical analogy problems. . . requires a consideration of the knowl-
edge base necessary to represent both the individual numerical stimuli and the relations
between pairs of numbers” (p. 302). Other studies of number analogy problems (which,
incidentally, are virtually identical to function-finding problems, except that they do not
require explicit generalization of the rule in terms of x) have similarly concluded that
knowledge of the number system and of numerical relations is critical (Corsale &
Gitomer, 1979; Holzman, 1979). Thus, the literature supports the claim that success at
inductive reasoning in mathematics necessitates successful pattern finding, and that
pattern finding requires facile knowledge of numerical relations.

Educational Implications and Future Work

The results of this study suggest that knowltdge of numerical relations may play a more
important role in “higher-order” problem solving than is commonly acknowledged. We
propose that the ability to detect patterns (and, therefore, the ability to solve problems
inductively) is directly related to a'participant’s numerical knowledge and speed of access
to that knowledge (i.e., recognition rather than computation). This type of knowledge may
be related to the concept of “number sense,” which has been characterized as “an intuitive
feeling for numbers and their various uses and interpretations” (NCTM, 1991, p. 3).
Recently, a number of researchers have targeted number sense as a concept that needs
further explication (cf., Case & Moss, 1997; Greeno, 1991; Griffin, Case, & Siegler,
1994), and educators have called for the development of curricula that instruct and/or
nurture number sense in students (NCTM, 1989, 1991). We posit that the knowledge of
numerical relations identified as useful for our function-finding problems is a component
of this number sense. Indeed, knowledge of multiple relationships among, numbers is
explicitly identified by NCTM in its working definition of number sense (NCTM, 1991).
As such, we applaud these efforts to enhance the number sense of students, as we believe
enhanced number sense will improve students’ pattern finding skills and thereby improve
their higher-order problem-solving abilities.

Our results should also serve as a caution to those who would de-emphasize learning
of number facts and numerical relations in favor of focusing instruction on higher-order
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thinking and problem-solving skills. The findings from this study suggest that the neglect
of number facts might in fact impede progress toward the very goal of improving
higher-order thinking and problem solving in mathematics. Of course, the causal relation
between numerical knowledge and higher-order problem solving ability remains to be
tested directly. This issue is currently being addressed in subsequent work by the first
author.

V. CONCLUSION

In summary, we have identified the ability to detect and to symbolically describe data
patterns as a crucial aspect of inductive reasoning. Our model and the protocols of
participants in our study demonstrate the importance of these activities to solving induc-
tive reasoning problems. We propose that the ability to defect patterns is directly related
to participants’ numerical knowledge base and their speed of access to that knowledge.
Hence, we argue that numerical knowledge is a crucial component of inductive reasoning
in mathematics.

[The universe] cannot be read until we have learnt the language and become familiar
with the characters in which it is written. It is written in mathematical language, . . .
without which means it is humanly impossible to comprehend a single word.

Galilei, Galileo
Opere Il Saggiatore, p. 171
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NOTES

1. Throughout this paper we take care to refer to ‘inductive reasoning’ or to ‘induction in mathematics’ and
not to ‘mathematical induction’, which designates an entirely different process. The phrase “mathematical
induction” labels a formal method for proving certain kinds of mathematical theorems. Readers may refer
to Polya (1945) for an extended explanation of the important difference between this method, which is
actually deductive, and inductive reasoning in mathematics.

IR

.



288 HAVERTY ET AL.

2. Another way to think of this relation is to consider that all the subsets of a set of n clements can be generated
by cither including or excluding each of those n elements (i.c., there arc two choices at each of n decision
points). Thus, multiplying 2 by itself n times yields the number of all possible subsets.

3. This manner of selecting an x-value was designed to prevent participants from generating large instances
i with great ease. Thus, data could not be gencrated by typing in the desired “X” value, which would be
i unrealistic in a real-world setting where one could not generate the data by computer. This restriction places
: an implicit constraint on the size of the data instances that would be generated by participants, as it is

annoying to wait for the clicks to be processed and to listen to their accompanying beeps. We therefore did
not expect that any participant would actually generate f(1000). This design feature was meant to encourage
students to adopt our goal of producing a closed-form rule to solve the problem.

4. One unsuccessful participant’s protocol was lost due to mechanical failure. As a result, several analyses are
based only on the remaining 15 participants.

5.. Recall that 10 was the maximum number of instances that could be collected. Further instances could be
inferred, however, via pattern completion.

6. Most (15 out of 16) participants collected either x = 1 or x = 2 as well, but here the interface, rather than
providing the value of y for these instances, produced the following message. “For this problem, you cannot
generate data for less than 3 clicks.” The problem was designed in this way to avoid the use of negative
numbers in this experiment. Thus, the collection of these instances is interesting only in that we know that
participants were attempting to collect them, and we know that the participants were thus provided with the
information that their data collection could not include x values less than 3. Some participants did form
loose hypotheses about the nature of the sought-after rule based on this information (such as the correct
hypothesis that the y-values of the function would be negative below the point where x = 3). Note that the
request for x = 1 or x = 2 did not count toward the 10 instances allowed to the participant.

7. One solved the problem very quickly, and thus had an extremely short protocol. This participant’s protocol
had only one series of codable episodes before reaching the answer, and this entire episode was coded as
HG and thus accounts for the apparent disproportionate allocation of effort for this participant. The other
participant found the solution to the problem through the use of a recursive formula and Gauss' formula for
the summation of n sequential integers. This approach resulted in an unusual amount of PF for this
participant.

8. An example route: plug in “x — 2" for “n” to produce [x — 2] * ([x — 2]+ 1)+ 2. As the formula is for
a sequence starting at 1 instead of at 2, we subtract 1 from it: ((x — 2] * ([x — 2]+1) = 2) ~ 1. Now reduce:
x=2D*x—-—1D+=2)=1= (U2 - @G2x+ 1)~ 1=~ @32 = (12)(x* = 3x) =
(1/2)x(x — 3). Voila.

9. “Detecting the pattern” means noting in one way or another, and either on paper or verbally, that g increases
by a constant for each sequential value of x. !

10. Discovering that the quantity (y — x)¥x can be expressed in terms of x as (x — 5)/2 will lead to the final
solution as follows: (y — x)x = (X = S)2.(y ~x) = x*(x - S)R.y=x+x*(x - 52 =x + x *
(®2 = 512) = x + (122 = (512)x = (/2)x* — (32)x = (/2)x * (x — 3).

11. A pilot study suggests some support for this notion. In the study, participants were asked to assess how
difficult it would be to have to find the function for each of several sets of x and y data. Participants rated
the data for y/x from F1 (0.5, 1, 1.5, 2,... ) as more difficult to potentially induce than the data for
y itself (2, 5, 9, 14,...), although in actuality this is not the case. In contrast, for F2, they rated y/x
(3.5,7.9,...) as simpler than y itself (3, 10, 21, 36,...).

12. For example, one could take the differences between the successive y values. If these are constant, then that
constant is the coefficient of x, and the function is linear. If these y differences are not constant, but differ
by a constant, then that constant is twice the coefficient of the x? term and the function is quadratic. Similar
algorithms can be used for higher-powered polynomials.
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APPENDIX A: Coding

TABLE 1

Coding of the 6,331 segments of verbal protocol provided for F1 from 15 participants
resulted in a fine-level coding scheme that consists of 176 fine-level codes. These
fine-level codes describe every mathematical process observed in the protocols. These
codes are grouped into 16 broad codes. These 16 codes are listed below. They are grouped
according to three general areas of activity: Data Gathering, Pattern Finding, and Hy-

pothesis Generation.

APPENDIX A, Table 1
Broad-level Coding Scheme

16 Broad-level Codes

Mathematical examples and Excerpts from the
Protocols (in italics)

Data Gathering
1. Reorganize Data
2. Focus on Subset of Instances

3. Focus on Y-values
4. Examine variables other than X & Y

Pattern finding
5. Detect Feature of the Data

6-8. Produce quantities:

6. Compute relations within X or Y

7. Compute relations between X & Y

8. Compute relations involving transformed
X'sorY's

9. Detect Pattern in the Data

10. Test an Expressed Pattern

Hypothesis Generation
11. Build Hypothesis, piece-by-piece

12. Choose hypothesis form/Use standard
technique to construct hypothesis

3. Propose Hypothesis

“let’s just concentrate on the single digit numbers;
let’s just concentrate on 4 through 6; that would
make my life much easier; and then we can work

from there.” (P1, 1393-397)

“the only one that isn’t g; the result isn't divisible by the
initial number minus 3; is the 7” (P7, 289-292)

Compute/differences between successive y values

Computey — x, ory + x

Compute d,i'fference between “x — 3" and “‘y".

"um. let’s see from; by increasing by 1, it increases
by; ok; so as X increases by |; Y increases by; 2,
3, 4" (P2, 50-56)

"7 times 2 is 14, 9 times 3 is 27, 5 times 1 is 5. so
that means 11 times 2; it's Y is going to be; or 11
times 4. this Y is going to be 44; yeoh that’s right;
for 11; it's going to be 44." (P3, 172-181)

Y equals something minus 3; but there’s
something more than that, that's not all. Y equals
X minus 3, but there’s something happens to the
X; and; that something minus 3, . . . so 5; subtract
off; 3; gives us 2; now how do we make 2 eqyal 5;
2 X plus 1?2 (P11, 72-910) )

* “this looks like a series; . . . ok, let’s go back to find

this formula for X. so; it's the integral as it gogs
from 1 to; as X goes from; 3; to-1000; of; you just
keep adding them.”” (P6, 307-329) (P6 attempted
to construct a hypothesis using the technique of
integration.)

92)

“I'm going to see if it could be X squared.” (P3,

v
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y APPENDIX A, Table 1: -
= Continued -+ -
. Mathematical examples and Excerpts from the
B 16 Broad-level Codes Protocols (in italics)
14, Test Hypothesis
15. Discard
16. Impasse "“factoring that gives me; 17 times 5 times 2 | don't
know | don‘t see any pattems there either’” (P15,
88-101)
|
:
TABLE 2

To briefly illustrate the detailed nature of the fine-level coding scheme, we have used a
few of the broad codes listed above (numbers 1, 7, and 11) as examples. For each of these
we have listed the complete set of fine-level codes that belong in that broad code category.

APPENDIX A, Table 2
Samples from Fine-level Coding Scheme

Broad Code Fineﬁevel Codes Included in that Broad Code

1. Reorganize Data Re-record data
Reorganize table
Redraw fable

7. Compute relations between X & Y Compute x * y differences
Compute second-order x — y differences
Factor the x — y differences
Factor pairs of y with x as factor
Compute x* c =y
Compute x/c =y
Compute ratio xfy or y/x
Compute percentage of x/y or y/x

11. Build Hypothesis, piece-by-piece Analyze discrepancies
Isolate specific data feature for explanation
Build local level functions, across instances
Propose function/hypothesis based on single
instance \

Test local hypothesis on other instances

-~




INDUCTIVE REASONING IN MATHEMATICg

APPENDIX B:
Successful Participant (Ace)

VONOANLEWN—

10
1n
12
13

so | push “click here”

and this is my X task here?

how many times | click here is my X thing?
[E: yes]

so if | click it 10 times

that'd give me a good number to start with.

[interface: X = 10, Y = 35]

{E instructs participant to use new sheet of
paper to write on rather than the instructions]
when X equals 10 Y equals 35

5o | now think the formula was Y,

Y equals X times 3.5.

il make X 2

now does this start a new X?

(E: yes]

[Interface: X = 2, fail]

ok.

(€: prompt to speak]

| just feel confused.

ok

so | was thinking Y equals X times 3.5
so now I'm going to use 3 and see what that
does

[Interface: X = 3,y = 0]

zero, huh?

1 don't like that.

so that one was wrong

X equal 10, Y equals 35

X equals 3, Y equals 5.

[ really don‘t want to push this button a
hundred times, do 1?

maybe ! wil.

maybe I'll push it 50 times.

[Interface: X = 50, Y = 1175]

[E: prompt to speak]

| have no idea.

| have no idea.

really confusing me.

ok.

I’m not really thinking a whole ot.

X equals 10, Y equais 35.

I'm trying to decide what Y equals when
X equals 1000, huh?

[E: right]

hm.

so obviously it's not multiplication
try 5.

[interface: X = 5,Y = 5]

[long pause, E: “so what just happened?’]
I just typed in 5 for X and got 5 for Y.

(€ explaining to talk through everything.]
so I'm supposed to say I'm thinking
“1,2,3,4,5°7?

54
55
56
57
S8
59
60
61
62
63
64
65
66
67
-68
69
70
71
72
73
74
75
76
77
78
79
80
8l
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

(E: yes, everything.]
just think out loud.
so I'm thinking how to relate these two
numbers.
I’'m still lost.
[E: it's ok.]
I‘m think I‘'m preoccupied with talking
instead of thinking.
{E: you'll get the hang of it.]
hm. -
{ can see no relationship at this point.
| think this thing’s generating random
numbers,
so |'m going to push X equals 5 again.
{E: it doesn’t do that.)
ok.
so | won’t do that.
so I'm thinking of a new number to try,
and 1 don‘t really know a good one.
"l try 25.
I'm using
because | want to compare 5 and 10 and 25
and 50.
(Interface: X = 25, Y = 275]
7 times
275 times
nope.
3 times X,
Y equals zero.
Il | was thinking it could X times 2 minus
X times 1.5.
that wasn't right either.
I'm foing to see if it could be X squared.
I'm gonna try 4,
just cuz | tried 3 and 5.
[interface: X = 4, Y = 2]
1 got 2.
so as X increases by 1,
Y increases
I'm gonna try 6,
just to see the pattem.
(Interface: X = 6, Y = 9]
1get9.
so I'm thinking.
X divided by
some kind of fraction involved. 4
ok '
1 over X,
I
could be a square root involved
that'd be pretty hard.
oh, Il try 7.
[Interface: X = 7, Y = 14]

kY
Y
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R e ko

107
108

110
111
112
113
114
115
116
1z
118
119
120
121

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

161

APPENDIX B:- ;
Continued = " =7~
14, 162 without doing that.
ok, so I‘m looking for 163 7 times 2is 14.

0 to 2, is jump of 2,

2to 5, jump of 3,

5t0 9, jump of 4,

9to 14 is a jump of 5.

4,5

so

X.

X minus 2

is the increment of that jump.
from the number before.
doesn‘t work for the first number.
SO

X minus 2 is the increment
would be

[

8

make it 20

so there's 9

make it 27

there’s 10

you make 35.

figure that out.

how apply it to 1000

so X minus 2 is the increment of that jump
and when X equals 3, Y equals 0.
so

when X equals 1000.

it increments

gonna be 998

times that number.

how do | figure out that number
so it's Y minus 12

it starts at zero,

go up by increments of

but what is the rule

plus X minus 2

Y equals

the previous Y

plus X minus 2

how do you find the previous Y?
no good formula

previous Y

look at the 2 rows of numbers to see if | can
devise a way to get Y.

now |’'m thinking it has to do with
something with X used to a power.
| can't figure out a way to get Y.
let's see,

when X equals 3,

Y is equal

when Xis 4, Yis 2.

cuz it goes up X minus 2.

but there should be a way to get Y

164 9 times 3is 27

165 5 times 1 is 5.

166 so that means 11 times 2
167 it's Y is going to be
168 or 11 times 4,

169 this Y is going to be 44.
170 yeah, that's right.

171 for 11,

172 it's going to be 44.

173 so

174 Y times 1,

175 Y times 2,

176 Y equals X times

177 Y equals X times 3,
178 so

179 8 times 2.5,

180 what's that equal?

181 4 times

182 not working.

183 that’s not right either.
184 16, 20,

185 yeah that's it.

186 so Y equals Y times 2.5.
187 [E: prompt to speak up}
188 yeah.

Igg I've figured out how to get Y now,
]

191 formula.

192 figured out 2 ways to get Y.

193 /Y equals previous Y plus X minus 2.
194 or

195 Y equals X

196 times .5 of

197 no, plus .5

198 time goes up by .S.

199 how do you do that generically?
200 yeah, because 4 times .5 is 2.
201 so

202 Y equals X times .5 for 4

203 Y equals X times 1 for 5

204 and goes up by .5 each time.

205 so that would be

206 how do you do this %
207 1.5

208 so would be

209 use that 3 number. .
210 so . X

211 after 3 it goes up by .5 each time.
212 isat3

213 and a half
214 4 wasat .5
215 S5was at |
216 6 was at 1.5

but | don‘t know how to make a generic
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) APPENDIX B:
IR SAToon ‘**-: Conhnued : :
217 trymgtosee s ' ' 271 so R
218 howyoumavethe Supeverytlmev‘ 272 if l have - _ Pl
219" genérically:: ===« oo e 21315 '
220 so 6 divided by3 R 274 Vi try 15. .
221 is 2. s - 275 15. )
222 is that right? 276 so my answer should be
223 5 divided by 3, 277 15 minus 3
224 4 divided by 3, : 278 12
225 no don’t want to do that. 279 divided by 2
226 still trying to think of a way to move this up 2806
227 going through all the ones l've alneody 281 15 times 6
i 228 thought of 282 and 90.
3 ondlcontﬁgureoutawoytomokeitgoup 283 so I'm going to try 15 now.
3 © 230 withthe X, 284 and the answeris -
R 231 Y equals 285 [Interface: X = 15, Y = 90]
232 X times o 286 90.
233 how do | get that .5 287 yeah | think that's it.
234 would be : 288 [E: confidence?]
235 4 minus 3 : 289 I'd have to say 7 now.
236 if | have X 290 it's probably wrong.
237 we try 291 [E: It's right.]
238 5mlnus3dlvldedby2 ' 292
239 get us the 1 293 [E: How did you do that?]
240 so that would be 294 | could only think clearly when | wasn’t
241 X — 3 divided by 2 295 talking.
242 try 4 minus 3 divided by 2 296 Cuz | was trying to do two different things
243 that's 1.5 at
244 5 297 once.
245 try 8 minus 3 divided by 2 298 [E: | gotta figure out how you did it though,
246 that equals the 2.5 that we need. 299 so how'd you do it?]
247 so we have 300 um,
248 Y equals X times 301 well first of all,
249 X minus 3 ) 302 1 lookéd in here
250 divided by 2. 303 (E: differences between Y's]
251 right? 304 yeah and | was looking at increment,
252 Y equals 10 times 305 but then | couldn’t
253 10 minus 3 divided by 2. 306 decide on the way, you know, to do that.
254 so minus 3is 7 307 so then '
255 7 divided by 2 308 for some reason
256 is 309 1 don’t know why exactly
257 35 310 but | started looking
258 10 times 3.5 311 | saw how this was 5 times | equals 5,
259 35. 312 and then this was X times 2 equols Y,
260 think | figured it out. 313 this was X times 3 equals Y,
261 [E: ok what do you think it is?] 314 [E: so you factored the Y’s whenever the X
262 Y equals X times X minus 3 over 2. 315 looked like it was one of the factors?] %
263 [E: confidence on a scale of 1 to 77] 316 yech
264 about 6, 7, 317 and that’s when |
265 [E: 6 or 77] 318 1looked at 11 ond 44 . \
266 yeah. 319 after | started looking at these,
. 267 oh wait, 320 and that came out to be 4, too.
- 1.268 | got 2 more tries on this thing. 321 and then ofter that | got stuck again.
269 let me try real quick. 322 [E: 11 ond 44, what?]
270 [E: ok.] 323 it came out to be 11 times 4. o,
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APPENDIX B:
Continued
324 like, it was 9 times 3, 355 it just kind of kicked out of nowhere.
325 it was 11 times 4. 356 cuz I looked at it for like, maybe 5 minutes.
326 [E: oh, so every other one went up by 1, 357 | couldn't figure out how to get that number
327 that's what you noticed.] 358 and then for some reason | just took
328 yech, and I didn’t catch that at first 359 [E: you realized that it was]
329 cuz | was trying to 360 yeah, | took this one.
330 [E: and they were going up by .5. ok.] 361 [E: that for 5, it was 5 minus 3 over 2, and
331 1didn't catch that at first cuz | was trying to 362 so then you tried the minus 3 over 2 for al
332 talk into here. 363 of them?)]
333 [E: ok.] 364 well, see, yeah, the reason 1 picked 5
334 | was thinking. 365 because it was the one where they were
335 and that's when 1 shut up for a while. 366 equal
336 and then 1 realized 367 [E: equal, right.]
337 well, X times .5 was 2. 368 and | knew
338 so then | went through and got that, 369 [E: had to get back to 5]
339 that part of it. 370 yeah.
340 [E: so what did you have at that point? you 371 [E: you had to figure out how to get from 5
341 had that Y equals] 372 to 1, and you did that by doing 5 minus 3
342 X times .5. 373 over 2]
343 | just knew that 374 yeah, that's exactly how | did it.
344 (E: X times that number increasing by .5] 375 | had to figure out how to get from 5 to 1.
345 and |, yeah, 376 [E: and at that point did you just try the
346 [E: and then you had to figure out how} 377 same formula)
347 1 had to figure out how to get that number. 378 yeah, | went down here
348 (E: so how'd you do that?} 379 [E: with 4 and then you tried it with 82 and
349 good question. 380 then you figured it was right?]
350 um, 381 yeah.
351 um, yeah. 382 well, yeah.
352 [E: seemed to me like just all of a sudden 383 and then | did this one because | remember |
353 you had it.] 384 had 2 tries left, yeah.
354 yeah, that's kind of what it is, 385; [E: very good.]

Pt
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. - -APPENDIX:D:
Praductions. of the pursurr Model. ;. - -

" Relate-by-addition .. - ) PF

IF. . . .  have a source-derived quantity, S, and a pursuit quoantity, P, AND have not yet

"o« . computed(S +? =P), .

THEN compute P-S. Identify this quantity as being pursuit-deérived.

Relate-by-subtraction ' PF
IF ~have a source-derived quantity, S, and a pursuit quantity, P, AND have not yet

h computed (S-P), .
THEN,, compute S-P. Identify this quantity as being pursuit-derived.

. Relate-by-mulﬁplicotion PF
IF the goal is to find a relationship between the source quantity, S, and the pursuit
' quantity, P,

THEN for each instance of $ and P find the value you need to multiply S by to get P and create a new
quantity that contains these values. Identify this quantity as being derived from P.

Find-differences-within-quantity : _ PF
IF have a pursuit quantity, P, and have not yet computed P differences,
THEN compute P differences. |dentify this quantity as being pursuit-derived.
Examine-numerator PF
! IF have a pursuit quantity, P, with fraction values and a common denominator of d,
‘ THEN create a new quantity, d*P, to examine the numerator of the quantity P. Identify this
quantity as being pursuit-derived. :
: Recognize-pattern PF :
) IF have a pursuit-derived quantity, P, that fits one of the pattems in the repertoire,
THEN designate P a pursuit quantity.

Patterns: constant
counting-numbers
odd-numbers
even-numbers
differs-by-halves
4

Express-in-terms-of-X (additive) PF, HG
IF x and a pursuit quantity, P, differ by a constant, c,
THEN record x — ¢ as the formula that yields P.
Express-in-terms-of-X {multiplicative) 7 PF, HG
IF x and a pursuit quantity, P, differ by a constant multiple, c,
THEN record x + ¢ as the formula thot yields P.
Unwind-subtraction HG
IF a hypothesis f(x) yields a pursuit quantity, P1, and P1 is the discrepancy between some
other pursuit quantity P2 and x, so that P1 = P2 — x,

THEN propose a new hypothesis that f(x) + x equals P2,
Unwind-muttiplication HG

‘ IF a hypothesis f(x) yields a pursuit quantity, P1, and Pl equals c¢*P2, where P2 is another

i pursuit quantity,
THEN propose the new hypothesis that f(x)/c equals P2.
Unwind-division HG
IF a hypothesis f(x) yields a pursuit quantity, P1, and Pl equals P2/x, where P2 is an earlier

pursuit quantity, A
| THEN propose the new hypothesis that x*f(x) = P2.
: Test-hypothesis HG
h IF have a hypothesis that yields y and has not yet been tested successfully,
, THEN check that hypothesis against some instance and record the result as successful or not.
: 5 Finish HG
IF have a hypothesis that yields y and has been tested successfully,
THEN pronounce the problem solved.
— L
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