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Abstract
Symbolization is the ability to translate a real world
situation into the language of algebra.  We believe

that symbolization is the single most important skill

students learn in high  school algebra.   We present
research on what makes this skill difficult and

report the discovery of a “hidden” skill in
symbolization.  Contrary to past research that has

emphasized that symbolization is difficult due to
both comprehension difficulties and the abstract

nature of variables, we found that symbolization is

difficult because it is the articulation in the
“foreign” language of “algebra”.  We also present

Ms. Lindquist, an Intelligent Tutoring System (ITS)
designed to carry on a tutorial dialog about

symbolization. Ms. Lindquist has a separate tutorial
model  encoding pedagogical content knowledge in

the form of different tutorial strategies, which were

partially developed by observing an experienced
human tutor.  We discuss aspects of this human

tutor’s method that can be modeled well by Ms.
Lindquist.  Finally, we present an early formative

showing that students can learn from the dialogs
Ms. Lindquist is able to engage student in. Ms.

Lindquist has tutored over 600 students at

www.AlgerbaTutor.org.

Introduction
The mission of the Center for Interdisciplinary

Research on Constructive Learning Environments
(CIRCLE) is 1) to study human tutoring and 2) to

build and test a new generation of tutoring systems
that encourage students to construct the target

knowledge instead of telling it to them (VanLehn

et. al., 1998).  CAI (Computer Aided Instruction)

systems were 1st generation tutors. They presented a
page of text or graphics and depending upon the

student’s answer, put up a different page.   Model-
tracing ITSs are 2nd generation tutoring systems that

allow the tutor to follow the line of reasoning of the

student.  ITS have had notable success (Koedinger
et. al., 1997) despite the fact that human tutoring

can look very different  (Moore, 1996).  One way
they are different is that there is a better sense of a

dialog in human tutoring and maybe this is
important.  After analyzing over 100 hours of

untrained tutors in naturalistic tutoring sessions

Graesser et. al. (in press) believe “there is
something about interactive discourse that is

responsible for learning gains.”
The members of CIRCLE are working on

3rd generation tutoring system that are meant to

engage in a dialog with students, using multiple
strategies, to allow students to construct their own

knowledge of the domain.  We have built a new
ITS, called Ms. Lindquist, which not only is able to

model-trace the student’s actions, but can be more
human-like in carrying on a running conversation,

complete with probing questions, positive and

negative feedback, follow-up questions in
embedded sub-dialogs, and requests for explanation

as to why something is correct.  In order to build
Ms. Lindquist we have expanded the model-tracing

paradigm so that Ms. Lindquist not only has a
model of the student, but also has a model of

tutorial reasoning (e.g. Clancey, 1982).  Based on

observation of an experienced tutor and cognitive
research, this tutorial model has multiple tutorial

strategies at its disposal.
The task domain we are working on is

symbolization, which is the task of writing an



algebraic expression given a real-world problem
context, often presented in the form of a word

problem.  Symbolization is important because if
students can’t translate problems into algebra, they

will not be able to apply algebra to solve real world
problems.  This domain makes it easy to avoid

some difficult natural language issues because we

can ask students to write algebraic expressions and
those expressions are easy for the computer to

“understand”.  We take advantage of this property
of the domain to avoid any serious natural language

processing; we also use pull-down menus to allow
students to construct explanations.  Instead, we

focus our energies on modeling tutorial reasoning

which includes capturing the pedagogical content

knowledge (Shulman, 1986) of an experienced

human tutor.  Pedagogical content knowledge is the
knowledge that a good tutor has about how to teach

a specific skill.   A good tutor is not just one who

knows the domain, nor is it simply one who knows
generally tutoring rules.  A good tutor is one who

also has content specific strategies that can help a
student overcome common difficulties.  We have

set out to observe and model some of these
strategies for our specific domain of symbolization.

Lets look at one example of a content-specific

pedagogical strategy for symbolization. The
following was collected and transcribed from a one

hour long one-on-one tutoring session between an
experienced human tutor and an eighth grade

student working on the “bike-trip” problem, which
we use as one of several running examples.

240. Student: [reads problem1] Cathy took a "m"

mile bike ride.  She rode at a speed of "s"
miles per hour.  She stopped for a "b" hour

break.  Write an expression for how long the
trip took.

241. S: uhm [ writes "s/m+b" but should be
“m/s+b”]

242. Tutor: How do you calculate the amount of

time it takes you?  If you’re, if you’re, if
you’re riding at, let’s make it simple.  If you

are riding at 20 miles per hour, OK, and you

                                                            
1 Throughout this paper, text in square brackets are

comments,  and S and T stand for “student” and “tutor”

respectfully.

go 100 miles, how many hours did that take
you?

243. S: Um  5
244. T: 5. And how did you get that 5?  How did

you use the numbers 100 and …
245. S: 100 miles divided by  miles per hour

246. T: So you took the miles and divided it by

the [garbled, but possibly “speed”]
247. S: Miles divided by s  plus b equals time

[writes m/s+b ]
248. T: Right.

The tutor in the above dialog, appears to have done
two things to scaffold this problem. First, the tutor

focused on the problem of calculating the time

actually on the bikes by decomposing what had
been a problem with two operators into a problem

that had only one operator.  Presumably this is
because the student indicated he understood that the

goal quantity was found by adding for the amount

of the break (“b”) to the time actually on the bikes.
The second scaffolding move the tutor did

was to change the problem question from a
symbolization question to a presumably simpler

compute question by asking the student to calculate
the speed using 100 and 20 rather than “m” and “s”.

Then in line 244 the tutor asked for the articulation

step of "How did you get that 5?"  Finally, the
student is prompted for the generalization step of

writing the expression using variables.
Our experienced tutor often invited the

student to use concrete numbers. We call this
strategy the concrete articulation strategy

(Koedinger & Anderson, 19982). McArthur et. al.

(1990) also observed that human tutors often used
what he called curriculum scripts and micro-plans,

which often involved a series of questions designed
to remediate particular difficulties. We call these

scripts knowledge construction dialogs to emphasis
the fact that that we are trying to build a tutor that

encourages students to build their own knowledge

by less often telling them a hint and more often
asking them a question.

The impediments to building a third
generation tutor  is not just technical.   We think

                                                            
2 Then called the inductive support strategy.



that if you want to build a good ITS for a domain
you need to:

•  Study what makes that domain difficult,
including discovering any hidden skills, as well

as determining what types of errors students
make.

• Construct a theory of how students solve these

problem. (We instantiated that theory in a
cognitive model.)

•  Observe experienced human tutors to find out
what pedagogical content knowledge they have

and then build a tutorial model that, with the
help of the theory of domain skills, can capture

and reproduce some of that knowledge.

We look at these each of these steps in turn.

What Makes Symbolization
Difficult?

Symbolization is a difficult task for students. For
instance, only 13% of student correctly answered

the following question “Anne is in a rowboat in a
lake that is 2400 yards wide. She is 800 yards from

the dock.  She rows back towards the dock at a
speed of 40 yards per minute for ‘m’ minutes.  How

far is Ann from the dock?” To determine what

makes symbolization difficult we conducted two
difficulty factors assessments (e.g., Koedinger &

MacLaren,  1997) which are paper and pencil tests
that we gave to groups of 80+ students (Heffernan

& Koedinger, 1997 and 1998).  First, we identified

three hypotheses about what makes symbolization
difficult.

The first of these is the comprehension

hypothesis.  Much of the prior research (e.g., Lewis

& Mayer, 1987) on word problem solving has
focused on students' comprehension abilities.  For

instance, Nathan, Kintsch, & Young (1992) "claim

that [the] symbolization [process] is a highly
reading-oriented one in which poor comprehension

and an inability to access relevant long term
knowledge leads to serious errors.''.  Kintsch (1991)

also states the "the premise of [his work] is that
comprehension failures are central to the difficulty

of word algebra problems."  The general conclusion

from the above research is that comprehension rules

are key knowledge components students must
acquire to become competent problem solvers.

A second hypothesis is the generalization

hypo thes i s . According to this hypothesis,

symbolization is difficult because students must
learn how to use variables to generalize arithmetic

procedures..

More recent research by Koedinger and
Anderson (1998), and which we confirmed

(Heffernan & Koedinger, 1997 and 1998), showed
that students could comprehend  many problems

well enough to find a numerical answer, but they
nevertheless failed to correctly symbolize.

Although this refutes the comprehension hypothesis

it does not refute the generalization hypothesis
because the symbolization problems had variables

in them.  Therefore, we compared students’ ability
to symbolize a problem that contained a variable

(with an answer like “800-40m”) to their ability to

symbolize a problem with just constants.  In the
“constants”  case the students were asked to write

an expression for their answer (i.e. “800-40*3”)
instead of finding a numerical solution (like “680”).

Even if we counted as correct the very few students
who did not follow the directions and evaluated the

answer, we found that the presence of the variable

in the problem did not make problems more
difficult.  Therefore, the generalization hypothesis

was refuted.
So what can explain why symbolization is

so difficult?  We propose the articulation

hypothesis which suggests that there is a  “hidden”

skill that is not obvious to most teachers and

researchers.  The hidden skill is the ability to
produce symbolic sentences in the language of

algebra.  It appears that many students are able to
figure out all the conceptual relations in a problem,

but are not able to express those relationships in
algebra.  If we asked students to translate a story

written in English into Greek we would not be

surprised if many fail because they don’t know
Greek.  But teachers and researchers often fail to

realize that algebra too is a language. And a
language that students have had relatively little

practice in “speaking” By “speaking” we mean

producing sentences of symbols, not verbalizing.



This was demonstrated anecdotally by one of our
students who when asked to symbolize a problem

with the answer of “(72-m)/4” responded  with “72-
m=n/4=”.  Many commentators have noted that

students will incorrectly use an equal sign in a way
that makes sense if “=” means “results in.”  Sfard

et. al. (1993) gives the following example “3*4=12-

5=7.”  Another example is the student who when
working on a problem with an answer of “550/(h-

2)” answered with
h-2  à    h)550

This student means to suggest that first she would
subtract 2 from “h.” The arrow seems to indicate

that this new decremented value of h should be

assigned back to the symbol “h”.  Then 550 should
be divided (indicated with the grade school way of

expressing division)  by this new value of “h.” Both
of these examples indicate students who probably

understand the quantitative structure and the

sequence of operations that should happen, but
nevertheless, failed to express that structure in

normative algebra. What does such a student need
to learn? A computer scientist or linguist might say

that the student needs to learn the correct  grammar
for algebraic expressions.  The novice student

knows how to write one-operator expression like

“5+7” using the following simple grammar:
<expression> = <literal> <operator> <literal>

<literal>  = 1|2|3|4….
<operator>  = “+” | “-“ | “*” | “/”

But the competent student knows how to write
multiple operator expression indicated by these

grammar rules:

<expression> = <expression> <operator>
<expression>

| “(“ <expression> “)” | <literal>
Phrased differently, what the student needs to be

told is that “You can always wrap parentheses
around an expression and substitute an expression

anywhere you normally think a number can go.

There are also rules for when you can leave out the
parenthesis but you can always put them in to be

sure that your expression won’t be misinterpreted.”
We found experimental evidence that supports

the  articulation  hypothesis when we performed the

following manipulation (Heffernan & Koedinger,

1997 and 1998). We started with a two-operator
problem, like

Composed: Ann is in a rowboat in a lake.
She is 800 yards from the dock.  She then

rows for "m" minutes back towards the dock.
Ann rows at a speed of 40 yards per minute.

Write an expression for Ann's distance from

the dock.
and  decomposed the problem into two new

separate questions like the following.  

Decomposed: A) Ann is in a rowboat in a

lake.  She is 800 yards from the dock.  She
then rows "y" yards back towards the dock.

Write an expression for Ann's distance from

the dock.
B) Ann is in a rowboat in a lake.  She then

rows for "m"  minutes back towards the dock.
Ann rows at a speed of 40 yards per minute.

Write an expression for the distance Ann has

rowed.
Then we compared the ability of a student to

answer the composed problem with their ability to
get both decomposed parts correct.  We found that

the composed problems were much harder.  Why?
We speculated that many students could not

compose the two decomposed expressions together;

just because you know that you need to first add
two quantities together and then multiply them by a

number, doesn’t mean you know how to express
this correctly in the language of algebra.  The

following is an example of a student who appeared
to be missing just this skill of composing

expressions together.  This example occurred while

the first author was tutoring a student on the
following “two-jobs” problem:

T: Debbie has two jobs over the summer.  At one
job she bags groceries at Giant Eagle and

gets paid 5 dollars an hour.  At the other job
she delivers newspapers and gets paid 7

dollars an hour.  She works a total of 30

hours a week.  She works "g" hours bagging
groceries.  Write an expression for the total

amount she earns a week. [the correct
answer is “5g+7(30-g)”]

S: A=5*g, B=30-g, C=7*B and D=A+C



This student clearly understands the 4 math
operations that need to be performed, and the order

in which to perform them.   This student
spontaneously introduced new variables (A, B, C,

and D) to stand for the intermediate results.  We
were surprised to find that this student could not

easily put this together and write  “5g+7(30-g)”.

This student appears to be ready for a strategy that
will help him on just one skill;  combining

expressions by substitution. (We also turn this idea
into a tutoring strategy which is presented below in

the section on Tutorial Strategies.)
To see if substitution really is a hidden

component skill in symbolization, we designed the

following transfer experiment. Thirty-nine students
were given one hour of group instruction  on

algebraic substitution problems like the following:
Let  X= 72-m.  Let B= X/4.  Write a new

expression for B that combines these two

steps.
The student were guided in practicing this skill. The

students got better at this skill, but that is not the
interesting part.   By comparing pre-tests and post-

tests, we found statistically significant increases in
the students ability to do symbolization problems,

even though they did not get instruction involving

word problems!  The students transferred
knowledge of the skill of substitution to the skill of

symbolization revealing a shared skill of being able
to “speak” complicated (more than one-operator)

sentences in the foreign language of algebra.  This
is strong supporting evidence for the articulation

hypothesis.

This research has put a new focus on the
production side of the translation process.  This

work also has ramifications for sequencing in the
algebra curriculum. If learning how to do algebraic

substitution involves a sub-skill of symbolization,
perhaps algebraic substitution should be taught

much earlier.  In many curriculums (e.g. Larson,

1995) it is not taught until students get to systems of

equations half-way through the year .

Cognitive Student Model
Our student model is similar to traditional student
models.  We use the Turtle (Anderson & Pelletier,

1991) production system, which is a simplification
of the ACT (Anderson, 1993) Theory of Cognition.

A production system is a group of if-then rules
operating on a set of what are called working

memory elements (wmes).  We use these rules to
model the cognitive steps a student could use to

solve a problem.   Our student model has 68

production rules.  Our production system can solve
a problem by being given a set of wme that encodes

the problem at a high level.
We model the common errors that students

make with a set of “buggy” productions. From our
data, we compiled a list of student errors and

analyzed what were the common errors.  We found

that the following list of errors was able to account
of over 75% of the errors that students made.  We

illustrate the errors in the context of the “two-jobs”
problem which has a correct answer of “5g+7(30-

g)”.

1) Wrong operator (e.g. “5g-7(30-g)”)
2) Wrong order of arguments  (e.g. “5g+7(g-30)”)

3) Missing parentheses  (e.g.  “5g+7*30-g”)
4) Confusing quantities (e.g. “7g+5(30-g)”)

5) Missing a component  (e.g.  “5g+7g” or
“g+7(30-g)” or “5g+30-g”)

6) Omission: correct for a subgoal. (e.g. “7(30-g)”

or “5g”)
7) Combinations of errors (e.g. “5g+7*g-30” has

the wrong order for “g-30” and is missing
parenthesis)

These “buggy” productions are used to allow us to
make sense of a student’s input even if she has

made several incorrect steps.  We don’t want a

computer system that can’t understand a student if
she gives an answer that has parts that are

completely correct and parts that are wrong.  We
want the system to be able to understand as much

as possible of what a student says and be able to
give positive feedback even when the overall

answer to a question might be incorrect.

Traditional model-tracing tutors have a bug
message attached to each buggy production that

generates a message through the use of a template.
We do not do that.  We feel such an architecture

confuses student reasoning with tutorial reasoning.

We instead have the student model report its full



diagnosis (which is represented with a set of wmes)
to the tutor model that will then decide what to do.

If the student makes several errors, traditional
model-tracing tutors are sometimes in a quandary

as to what to do.  Some ITSs do not deal with
multiple bugs and instead rely on breaking down

the problem into finer steps.  A problem with this

approach is that you can’t break down a skill like
symbolization easily without decreasing the overall

difficulty. Another solution is to ask the student
what the subgoals should be and then tutor them on

the subgoals individually (Corbett & Anderson,
1995.)  However, a problem remains about what the

ITS should do if the student makes more than one

distinct error in a given input. This is addressed
below.

The Tutorial Model
As mentioned already, we collected and transcribed
one hour of experienced human tutoring.  We

wanted to observe what experienced tutoring in this
domain looked like.  The tutor worked as a full time

math tutor for over a year before teaching middle

school math for 5 years.  She was given a list of
symbolization problems and told her goal was get

the student to learn how to solve such problems.
After transcribing the dialog we have been

able to extract some regularities in terms of the

tutorial strategies. One caveat: our tutorial model is
informed by this observation of human tutoring, but

it doesn’t model any one individual or make claims
to being the most effective model.

Now we will look at the components of the
tutorial model shown in Figure 1.  A fundamental

distinction in the intelligent tutoring system (ITS) is

between the student model, which  does the
diagnosing, and the tutorial models, which chooses

the pedagogical plan that best responds to that
particular diagnosis.  It is composed of a tutorial

agenda component, as well as tutorial questions that
can be used alone or in combination to make a

tutorial strategy.  The system currently has 4

tutorial strategies. Through empirical study, we
plan to learn which strategies are most effective.

The tutorial model is implemented with 77
productions. This approach is similar to Freedman's

(2000).  First, we deal with how Ms. Lindquist
decides what to focus problem attention upon.

Dealing with the diagnosis: The Focusing Heuristic
Ms. Lindquist uses a heuristic to decide what to

focus the conversation on.  In cases when the

student model’s diagnosis indicates that the student
had some correct elements and some incorrect

elements. For instance, we considered giving the
following positive feedback on an answer like that

in line 242 : “Your answer of ‘s/m+b’ has some
correct elements; it is true that you need to add the

time of the break to the time on the bikes to find the

total trip time.”  This feedback was meant to
confirm the “+b” portion of the answer.  After

looking at what our human tutor did we decided not
to give positive feedback unless the student has two

operands correct and the correct operator.  We give
an example of this in the context of the “two-jobs”

problem.

T: [problem with answer of 5g+7*(30-g)]
S:  5g+7*g

ITS

Tutorial Model

Student Model

Tutor's
Response

Tutorial

Reasoning

Agenda Questions

Pedagogical
Strategies

Student Input

Diagnosis

Figure 1: Ms. Lindquist's Architecture



T: No, but, 5*g does represent the amount Debbie
earned bagging groceries.  Let me ask you a

simpler question. Can you tell me how much
she made delivering newspapers?

If the student has made more than one error,
the tutor decides to come up with a strategy to deal

with each error.  The errors are considered in the

order they would be encountered in a post-order
traversal of the parse tree of the correct answer (i.e

visited “bottom-up.”)  Therefore, the tutor might
add  multiple questions to the tutorial agenda

depending upon the tutorial strategy selected for
each error.

If a student says something the student

model doesn’t understand (e.g. says “5/30-5*7/g”
when the answer is “5g+7(30-g)”) we will still want

a robust ITS to be able to pick a reasonable strategy
for a response. This is important because many

times the tutor (humans or computers) will not be

able to make sense of the student’s input.  Graesser
et. al. (in press) reports in their study of human

tutors that they “found that the human tutors and
learners have a remarkably incomplete

understanding of each other’s knowledge base and
that many of each other’s contributions are not

deeply understood…  Most tutors have only an

approximate assessment of the quality of student
contributions.”  We want our ITS to be able to

operate under these same difficult conditions and
still be robust enough to say something reasonable.

Tutorial Agenda
Ms. Lindquist has a data structure we called the

agenda, that stores the ideas she wants to talk about
next.  This agenda ordinarily operates like a push

down stack, but we give an example of when the
stack order is violated below in the section on the

Concrete Articulation Strategy.

Tutorial Questions
The tutorial model can ask the following kinds of

tutorial questions illustrated with an example of

how the question can be phrased:
1) Q_symb : Symbolize a given quantity (“Write

an expression for the distance Anne has
rowed?”)

2) Q_compute: Find a numerical answer
(“Compute the distance Anne has rowed?”)

3) Q_explain: Write a symbolization for a given
arithmetic quantity. This is the articulation

step.  (“How did you get the 120?”)
4) Q_generalize: Uses the results of a Q_explain

question (“Good, Now write your answer of

800-40*3 using the variables given in the
problem (i.e. put in ‘m’)”)

5) Q_represents_what: Translate from algebra to
English(“In English, what does  40m

represent?” (e.g. “the distance rowed so far”))
6) Q_explain_verbal:  Explain in English how a

quantity  could be computed from other

quantities.  (We have two forms: The reflective
form is “Explain how you got 40*m” and the

problem solving form is “Explain how you
would find the distance rowed?”)

7) Q_decomp: Symbolize a one operator answer,

using a variable introduced to stand for a sub-
quantity. (“Use A to represent the 40m for the

distance rowed.  Write an expression for the
distance left towards the dock that uses A.”)

8) Q_substitute: Perform an algebraic substitution
(“Correct, that the distance left is given by 800-

A.  Now, substitute “40m” in place of A, to get

a symbolization for the distance left.”)
You will notice that questions 1, 3, 4, and 8 all ask

for a quantity to symbolize.  Their main difference
lies in when those questions are used, and how the

tutor responds to the student’s attempt.  Questions 5
and 6 ask the student to answer in English rather

than algebra. To avoid natural language the student

is prompted to use pull down menus to complete
this sentence “The distance rowed is equal to <noun

phrase> <operator> <noun phrase>.”  The noun
phrase menu contains a list of the quantity names

for that problem.  The operator menu contains
“added to”, “subtracted from”, “multiplied by” and

“divided by.”

Below we will see how these questions
can be combined into strategies.

Tutorial Strategies
We will now look at three different tutorial
strategies that Ms Lindquist uses; "Concrete

Articulation", "Introduced Variable", and finally



"Explain in English First" (There is a fourth
strategy that we don't have space to illustrate. This

strategy is that if a students makes an error the tutor
tells the student the answer and then asks the

student questions to see if the student understands
the answer.)  The first strategy we will look at is

Concrete Articulation strategy.

Concrete Articulation Strategy
The concrete articulation strategy usually uses three

questions of type Q_compute, Q_explain and

Q_generalize. Here is an example of the dialog
generated by Ms. Lindquist which we believe

parallels the experienced human tutor closely.
T1: [Doing the “bike-trip” problem]  Please write

an expression for the total time the trip took.
[Q_symb]

S1: s/m+b

T2: No.  Let me ask you an easier question.
Please compute the time actually on bikes if

the speed was 20 miles per hour, and the
distance ridden was  100 miles?

[Q_compute]
S2: 5

T3: Correct.  What math did you do to get that

five? [Q_explain]
S3: 100/20

T4: Correct. Now write your answer of 100/20
using the variables given in the problem (i.e.

put in ‘m’ and ‘s’)? [Q_generalize]
S4: b+m/s

T5: Correct.

We will walk through what Ms. Lindquist did here.
First, the student model diagnosed S1 (“s/m+b”) as

having the quantity “s/m” with reversed arguments
(bug type #2.) The diagnosis also said that the

student understood that the total trip time was the

time of the break (“b”) plus the time actually on the
bikes.  This diagnosis was passed to the tutorial

model that could have selected among competing
strategies. In this case the tutorial model decided to

conduct a concrete articulation knowledge
construction dialog.  Therefore, the tutor model

generated quest ions for the compute,

explain/articulation and generalization steps.  The
tutor put these three questions on the agenda.

At S2, the student answers the compute
question correctly, and the tutor decides to continue

with its plan.  It has to be sensitive to what the
student typed.  If the student typed 100/20 instead

of 5, then both the compute and explain questions
would be removed from the agenda and the tutor

would skip to the generalize step.  An example of

this sort of flexibility is demonstrated in T5.  T4
was a question to articulate the time actually on

bikes.  The tutor was hoping the student would type
“m/s” but instead the student answered “b+m/s.”

Only a pedantic tutor wouldn’t accept that answer
as it indicates an understanding that subsumes the

understanding required for the sub-goal.   This is

where the tutorial agenda behaves differently than a
stack because Ms. Lindquist pops both of the

questions off the agenda.
To show you an example of how the previous

situation could have come out differently, lets look

at the following dialog
T1: Hello.  [Doing the “bike-trip” problem]

Please write an expression for the total time
the trip took. [Q_symb]

S1: help!
T2: Let me ask you an easier question. Please

compute the time actually on bikes if instead

the speed was 20 miles per hour, the time of
the break was 2 hours, and the distance

ridden was  100 miles? [Q_compute]
S2: 7

T3: Correct.  What math did you do to get that 7?
[Q_explain 7]

S3: 2+5

T4: Okay, but how did you get the 5? [Q_explain
5]

S4: 100/20
T5: Correct  Now lets try this again, what math

did you do to get the 7? [Q_explain 7]
S5: 2+100/20

T6:Correct. Now write your answer of ‘2+100/20’

using the variables given in the problem (i.e.
put in ‘m’, ‘b’ and ‘s’)? [Q_generalize]

S6: b+m/s
T7: Correct.

This example is interesting in the way Ms.

Lindquist responds at T4.  The system has bug rules



to apply to questions other than symbolization
questions.  In this case, the student model reported

that the student’s answer of “2+5” is a partially
complete articulation but that the student didn’t

spell out where the “5” came from.  So the tutorial
model is  able to “dig-down” into the student's

reasoning with an embedded  sub-dialog.  This

involved adding the additional question of
explaining how the student got the “5”.

Introduced Variable Strategy
A second example of a tutorial strategy is what we
call the Introduced Variable strategy, which was

alluded to above when we looked at the student
who answered the “two-jobs” problem with

“A=5*g, B=30-g, C=7*B and D=A+C”. Below we
present an real example of Ms. Lindquist tutoring

an ninth grader with this strategy. This  strategy

uses both Q_decomp and Q_substitute questions.
Question Q_decomp sets the stage for this strategy,

and is used to break down the originally composed
problem into separate decomposed one-operator

problems  (as shown below in T2 and T3),
introducing new variables when appropriate (as in

T3.)  The real meat of this strategy is shown at line

4, where the tutor introduces the variable "A" to
stand for a sub-quantity.  Question Q_substitute is

used to scaffold the substitution step as shown in
T5.

T1: Hello. Jane is "j" years old. Peg is "p" years
old.  Mary is Peg's age minus Tom's age.

Tom is 3 years younger than Jane.  Peg is

"x" years older that Mark. Write an
expression for Mary's age. [Q_symb]

S1:(p-3)-(3-j)+(p+x)   [correct answer is “p-(j-
3)”]

T2:Hmm. No.  Let me ask you and easier

question. Use j and 3 to calculate Tom's age.
[Q_decomp]

S2:3-j
T3:Hmm. No.  Try again please. What is Tom's

age?  Hint: pick one of these: j-3, 3-j, j+3,
j*3, j/3, or 3/j. [This is a rephrasing as

explained in the hint section below]

S3:j-3

T4:Correct.  Calculate Mary's age. Use A instead
of j-3 for Tom's age.  [Q_decomp]

S4:p-a
T5:Correct. You are correct that p-A is Mary's

age.  Now, can you state this in terms of the
numbers given in the problem.

[Q_substitute]

S5:p-(j-3)
T6:Correct.

We note that this strategy is not one inspired by
looking at human tutors but by our cognitive

analysis that informed us that a crucial difficulty
occurs when a student has to treat an expression

(i.e., "j-3") like a number, so this strategy breaks

that hard step into two steps (i.e., T4 and T5).

"Explain in English" Strategy
Mathematical communication is increasingly seen

as a goal for students, and in particular translating
between an algebraic representation, an English

verbal representation, and a concrete representation
of numerical instances (Schoenfeld et. al., 1992,

Koedinger & Nathan) Other researchers are also
interested in wanting an ITS to elicit explanations

from students (e.g. Conati et. al., 1997.) We noticed

in the dialog we collected from an experienced
human tutor that she would often ask the student to

explain how to compute a quantity in English and
afterward, ask the student to say it in symbols.

(Heffernan, 2001).  Therefore, we have
implemented similar questions in the form of

Q_represents_what and Q_explain_verbal  as

shown below.
T1: Hello. [Doing the “bike-trip” problem]

Please write an expression for the total time
the trip took. [Q_symb]

S1: m/s

T2: What does “m/s” represent (e.g. the speed on
the bike?)[Q_represents_what]

S2: the total time of the trip
T3: No, “m/s” represents the actual time on the

bikes. Can you explain how you would find
the total time of the trip using the time on

the bikes? [Q_explain_verbal]

S3: The total time of the trip is equal to [1st menu]
"the amount of time for the break" [2n d



menu] "plus" [3rd menu] "the actual time on
the bikes".  [Composed using three pull

down menus.]
T4: Good, now say what the total trip time is in

symbols [Q_symb]
S4: b+m/s

T5: Correct

This strategy is based on the hypothesis that
students will learn more if they are asked to explain

in English how to compute a quantity.

Hints
Giving the students a hint is the simplest tutorial

strategy we have and is a common way that a
traditional model-tracing tutors gives help.  Each

question has a hint chain which is simply a list of
rephrasings of the question.  The rephrasings  get

progressively more explicit, eventually, possibly,

telling the student exactly what to do3.

Formative Evaluation
We have performed a early formative analysis of

Ms. Lindquist, by comparing her to a traditional
computer-aided instruction(CAI) control condition

that simply told students the answer (if they got the
problem wrong).  This study answers the question

of whether the dialogs Ms. Lindquist has with

students lead to increased student learning, but
ignores the question of whether it is worth the

additional time.   That is because we controlled for
the number of problems, and not the amount of

time.  Students in the condition that received Ms.
Lindquist were expected to  take more time.

Procedure
The procedure and the results are more fully

explicated in Heffernan's dissertation (2001).  In
summary, 20 high school students participated in

the study.  They were given pretests and posttests
on symbolization.  They were blocked into groups

                                                            
3 The question of how explicit to make the “bottom-out”,

or last hint (i.e. “Do you tell the student the answer?”) is

not a question that we, or this architecture, makes a
commitment about.  Some of our hint chains end with

multiple choice questions while others tell the student

exactly what to type.

according to their pretests. Students proceeded
though the curriculum consisting of 68 problems.

Students in the experimental condition received a
partially random combination of the different

strategies Ms. Lindquist is capable of.

Results
The students in the control condition, as expected,
took half the amount of time, since they did not

engage in dialogs with Ms. Lindquist.  Students
performed better on a pretest after having just

received instruction from Ms. Lindquist.  We
performed a ANOVA that showed only a

marginally statical ly signif icant effect

(F(1,37)=2.6,p=.12) but with a respectable effect
size of .7 standard deviations.

Discussion
Now that we have established that this dialogs
appear to lead to better learning, our next

experiment will control for "time on task" in order

to determine if the additional time required to have
a dialog is worth it.

The following example from this
experiment nicely illustrates some of the aspects of

Ms. Lindquist, including embedded dialogs
(starting on lines 4 and 10), as well as the

embedded feedback shown at the beginning of line

8.  The number of seconds it takes the student to
respond is in square brackets.

1) Problem: Jane is "j" years old. Peg is "p" years
old.  Mary is Peg's age minus Tom's age.  Tom

is 3 years younger than Jane.  Peg is "x" years
older than Mark. Write an expression for

Mary's age

2) Tutor: Hello.  Please write an expression for
Mary's age.

3) Student [143]: Student hit the help button
[should be p-(j-3)]

4) Tutor:  Let me try to give you some help.    We
will come back to Mary's age.  Let me try to

break this down for you. Please compute

Mary's age if  Jane's age was "20" years,  and
"Peg's age" was "40" years?

5) Student: [169]: 23 [correct]

6) Tutor: Correct. Using only 40, 20, and 3 write

an expression for Mary's age.



7) Student [126]: (20-3)-40 [should be 40-(20-3)]

8) Tutor: No.  Your answer of "(20-3)-40" equals

"-23", but you wanted to write an expression
that equaled "23".  Using only 40, 20, and 3

write an expression for Mary's age. Hint: Use
40 for Peg's age and 20-3 for Tom's age.

9) Student [47]: (40-20)+3 [should be 40-(20-3)]

10) Tutor: Hmm.  No.   Let me ask you a different
question. Using only 20, and 3 write an

expression for Tom's age.
11) Student [15]: 20-3 [correct]

12) Tutor: Correct.  Now, lets try this question
again:  Using only 40, 20, and 3 write an

expression for Mary's age. Hint: Use 40 for

Peg's age and 20-3 for Tom's age.
13) Student [138]: 40-(20-3) [correct]

14) Tutor: Correct. Now, say that again but this
time use the variables from the problem.

15) Student [25]: p-(j-3) [correct]

16) Tutor: Correct
Notice that this example shows a student how could

compute an instance (line 5), but had trouble
articulating how to write the complete expression

(lines 7, and 9), which is consistent with what our
cognitive analysis predicted about the relatively

difficulty of these tasks.  Also consistent is the fact

that using a variable, per se, does not appear to
have been difficult (line 15). This students

performance is consistent with our theory that
articulation, and not comprehension of word

problems or variables per se is what makes
symbolizing difficult for students.

Conclusion
McArthur et. al. criticized Anderson’s et. al. (1985)

model-tracing ITS and model-tracing in general
“because each incorrect rule is paired with a

particular tutorial action (typically a stored
message), every student who takes a given step gets

the same message, regardless of how many times
the same error has been made or how many  other

error have been made. … Anderson’s tutor is

tactical, driven by local student errors (p. 200)”
and  goes on to argue for the need for a more

strategic tutor.  Ms. Lindquist meets that criticism.
Ms. Lindquist’s model of tutorial reasoning is both

strategic (i.e. has multi-step plans) and tactical (i.e.
reasons to produce output at the single question

level.)  She also intelligently handles multiple
errors and reasons about the order in which to deal

with them and then constructs a plan to deal with
each of them.  Ms. Lindquist is a modest step on the

path to making a more dynamic tutor.

We have released Ms. Lindquist onto the
web at www.AlgebraTutor.org, and have had over

600 students who have been tutored by Ms.
Lindquist, the results of which are now in

preparation.  In addition she has won various
industry awards from teacher related web sites such

as USAToday Education and the National Council

of Teachers of Mathematics. Ms. Lindquist is a
system that combines the student modeling of

traditional model-tracing tutors with a model of
tutorial dialog based on an experienced human

tutor.  Early analysis reveals Ms. Lindquist can be

effective, but more analysis is needed to determine
where the biggest "bang for the buck" is to be

found.
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