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Abstract

Given that the single most important mathematical skill for
students who wish to study beyond arithmetic is the ability
to take a problem situation (usually stated in words) and
formulate a mathematical model (usually an equation), we are
working on a cognitive developmental model of this skill to
be used in an intelligent tutoring system. We call this skill
symbolization. High school students do it poorly and
improve slowly. We are using a Difficulty Factors
Assessment as an efficient methodology for identifying the
critical cognitive factors that distinguish competent from
less competent symbolizers. We present a developmental
model identifying three major transitions through which a
student must pass. Underlying the developmental model are
empirical results which suggest, contrary to prior research
and common belief, the difficulty in algebra word problem
solving is less about the difficulties of comprehending the
word problems, and more about the difficulty of speaking in
the foreign language of algebra. Many of students’ errors
are analogous to the errors people make when learning fto
speak in a new language. While it may be that
mathematically algebra symbolization is a generalization of
arithmetic, cognitively it is more accurate to say algebra
symbolization is the articulation of arithmetic.

Introduction

When a student is presented with an algebra word problem
such as problem CS in Table 1 and asked to provide a
symbolic expression (rather than a numerical answer), she is
doing what we refer to as symbolizing. For instance, the
symbolic expression for CS is "(72-m)/4." In studying
symbolization skills we have focused on algebra story
problems but our results may also be relevant more generally
to symbolization skills needed in using a calculator or
programming a spreadsheet or computer. As these
computational devices take over more of the symbol
manipulation of algebra, symbolization deserves, and is
receiving, increasing instructional emphasis. We are trying to
understand how students learn to symbolize. To test that
understanding we are building a cognitive developmental
model which will be used in an intelligent tutoring system.
Much of the prior work (Cummins et. al., 1988; LeBlanc
& Weber-Russell; 1996, Lewis & Mayer, 1987; Paige &
Simon, 1979) on word problem solving has focused on
students' comprehension abilities. Cummins et. al. "suggest

that much of the difficulty children experience with word
problems can be attributed to difficulty in comprehending
abstract or ambiguous language." The general conclusion
from the above research is that comprehension rules are key
knowledge components students must acquire to become
competent problem solvers.

Generalization/Comprehension Hypothesis

This brings us to the first naturally intuitive hypothesis
about what makes algebra symbolization difficult. What we
call the generalization hypothesis flows naturally from the
previous literature that has focused on comprehension
difficulties caused by abstract language. An important
conceptual leap for students is to move from the concrete
grounded world of arithmetic problems to the more abstract
world of algebra problems with variables. According to this
hypothesis, what is hard about algebra is the generalization
ability needed to think about a problem with an abstract
variable, as opposed to a concrete known.

But more recent research by Koedinger & Anderson (in
press) found evidence that acquiring such comprehension
skills is not sufficient for symbolization competence. They
reported that in 36% of problems that students comprehended
well enough to find a numerical answer, students nevertheless
failed to correctly symbolize. We call the difference between
the students’ performance on symbolization problems and on
similar arithmetic problems the symbolization effect.

Previous Results on this Problem

To determine if the symbolization effect is well-explained
by the generalization hypothesis we (1997) performed an
assessment in which we compared students’ performance on
symbolization problems (like problem CS) with their
performance on arithmetic symbolization problems. We
could turn problem CA into an arithmetic symbolization
problem simply by changing the final question to “Write an
single expression that shows all the computations you would
need to do in order to find how much she can spend on each
sister.” The correct answer for this problem would be “(72-
32)/4.” Arithmetic symbolization problems are a special type
of symbolization problem that have no variables. We found
no statistically significant difference between students
performance on these two types of problems. This suggests
that the presence of a variable did not increase difficulty, thus
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CS: Sue made 72 dollars by washing cars to buy holiday presents. She decided to spend "m" dollars on a present for her mom and then use the
remainder to buy presents for each of her 4 sisters. She will spend the same amount on each sister. How much can she spend on each sister?

CA: Sue made 72 dollars by washing cars to buy holiday presents. She decided to spend 32 dollars on a present for her mom and then use the
remainder to buy presents for each of her 4 sisters. She will spend the same amount on each sister. How much can she spend on each sister?

Sue made 72 dollars by washing cars to buy holiday presents for each of her "s" sisters. She will spend the same amount on each sister. How

Sue made 72 dollars by washing cars to buy holiday presents. She decided to spend "m" dollars on a present for her mom and then use the

Sue made 72 dollars by washing cars to buy holiday presents for each of her 4 sisters. She will spend the same amount on each sister. How

DSI:
much can she spend on each sister?
DS2:
remainder to buy presents for her sisters. How much can she spend on her sisters?
DAI:
much can she spend on each sister?
DA2:

Sue made 72 dollars by washing cars to buy holiday presents. She decided to spend 32 dollars on a present for her mom and then use the

remainder to buy presents for her sisters. How much can she spend on her sisters?

Table 1: The 4 Problem Types: Composed Symbolization(CS), Composed Arithmetic(CA), Decomposed Symbolization
(DS and DS2 together), and Decomposed Arithmetic(DAI and DA2.)

calling into question the usefulness of the generalization
hypothesis’s focus on the variable per se as the factor that
causes the symbolization effect.

An alternative hypothesis was suggested by another factor
we tested. We found what we called the composition effect.
The composition effect is the difference in student
performance on what we call composed problems, like CS,
and their decomposed analogs (DSI and DS2), which are two
separate problems from the student’s point of view, but for
analysis purposes they are treated as a single problem and the
problem is correct only if both parts are correct. The
decomposed version of a composed problem is made by
dividing the composed problem into two separate questions
that each ask for one of the steps required to solve the
composed version. Our results showed that there was a
significant composition effect because many students could
correctly answer both parts of a decomposed problem but fail
to correctly answer the composed version. In other words, in
this case, the whole is greater than the sum of its parts. The
size of this composition effect overshadowed the small and
not statistically significant difference, mentioned above,
between arithmetic symbolization and symbolization.

Articulating Composition Hypothesis

We suspected that the cause of the symbolization effect was
actually the composition effect. We will illustrate with an
actual student who answers “72-m=n/4=" for CS. This
student demonstrates that she knew the two steps she would
need to perform if she had been given the arithmetic version
CA. This student must learn how to correctly represent these
two steps. She uses a placeholder variable, possibly because
she does not know how to represent anything but a single
operation at a time. For the expert it is obvious that “72-m”
can be treated in the same way any number is treated. But
the novice, who looks at “72-m™ as a recipe and not as an
object of reflection, does not know that she can operate on
this quantity directly by adding parentheses and “/4”. We call
this missing skill articulating composition and we suspect
that it is this difficulty that explains why symbolization
problems are so much harder then arithmetic.

An important distinction between the articulation
composition hypothesis and the generalization hypothesis is
on where in the translation process a student has difficulty:
the comprehension of the source language, or the
production/articulation of the target language. The

generalization hypothesis suggests that students are having
difficulty on the comprehension side of the translation
process. The articulating composition hypothesis suggests
the difficulty is on the production side. To investigate if this
“articulating composing hypothesis” is a good explanation,
we performed the current difficulties factors assessment
(Koedinger & MacLaren, 1997).

Experimental Design and Predictions

The two factors we studied were 1) arithmetic vs.
symbolization (CA vs. CS and DS vs. DA) crossed with 2)
composed vs. decomposed (CS vs. DS and CA vs. DA).
Remember that the decomposed problem DS is actually one
problems from the analysis point of view, but two separate
problems from the student’s point of view. In our previous
study (1997) we may have even underestimated the size of the
composition effect, because we had a few students who would
answer “(72-m)/4” for DA2. These students had noticed the
superficial similarity of the two problems parts of a
decomposed problem and interpreted the second one to be
linked to the first. To avoid such misinterpretation by
students we superficially changed a few aspects of the second
part of the decomposed problems including the participants
name. We also changed the numbers (making sure not to not
decrease the difficulty of the arithmetic) to ensure that the
results of the first part of a decomposed problem did not
appear as a given in the second part of the problem. For
example, DA2 was changed to “Rebecca made 81 dollars
working at the grocery store. She decided to give her mom
25 dollars for Mother’s Day and put the remainder in her
savings account. How much can she put in the savings
account?”” We found this strategy worked well and students
did not think the two problems were connected.

The articulating composition hypothesis suggests that
there should be no composition effect for arithmetic, but a
large composition effect for symbolization. The reasoning
behind this is that students know how to combine steps in an
arithmetic problem, but they don’t know how to say, in
symbols, how to put two steps together. Therefore, it
predicts that there should be many students who know how to
do both composed arithmetic problems and decomposed
symbolization problems but fail to do composed
symbolization problems. The two hypotheses differ in their
predictions because the articulating composition hypothesis
predicts an interaction between these two factors, while the



generalization hypothesis does not predict an interaction and
instead predicts one broad symbolization effect.

Procedure

Given the two binary factors that were studied, there were four
different problem types: composed symbolization, composed
arithmetic, decomposed symbolization and decomposed
arithmetic. These 4 problem types were crossed with 8 different
cover stories and distributed in a Latin square design among 4 test
forms that were balanced for each factor. Therefore each form had
two problems of each type. Given that students tend to perform
worse on items near the end of a test, the order of various problem
types was systematically varied on each form. The cover-stories
were not a variable of critical interest. and from our previous DFA
we knew the performance on the cover stories would vary
considerably. We used 6 of the 8 cover stories used previously
and added two new cover stories to replace the two easiest cover
stories from the prior study. Because we wanted to be able to
compare the performance of students on cover stories we made
two versions of each form that differed only in the order of the
problems. The subjects were 76 ninth grade students in the first
month of a regular-level algebra course from an urban high
school in Pittsburgh. Two subjects were dropped for lack of
participation in the test. Each student was randomly given one of
the 8 different test forms and enough time to complete the test.
Each test was then graded and no partial credit was given. A
decomposed problem was considered correct only if both parts
were answered correctly.

Analysis and Results

To test for the effect of the two factors we performed both
an item analysis and a item analysis as recommend by Clark
(1973). We performed a subject analysis on the students
mean score for each of the four problem types. We performed
a full two-factor (2*2) repeated measures ANOVA with each
factor as a within-subject variable. We found significant
effects of symbolization (F(1,73)=170.8, p<.0001) and of
composition (F(1,73)=22.4, p<.0001.) but not the expected
interaction (F(1,73)=1.024, p>.31). To verify that these
effects generalize across items as well as across subjects, we
performed an item analysis on students’ mean performance on
the 32 different items (8 cover stories and 4 problem types)
appearing on the test. We performed a full two-factor (2*2)
ANOVA on the item means. Each factor was treated as a
repeated measure. We found significant effects of
symbolization (F(1,28)=55.476, p<.0001) and a smaller effect
of composition (F(1,28)=13.26, p<.0083). The size of the
symbolization effect was much larger then the size of the
composition effect. Contrary to the prediction of the
articulating composition hypothesis, there was not a
significant interaction (F(1,28)=.821, p>.395), and this will
be addressed below. Since the subject and the item analysis
agree, we can be confident that both effects are real and
generalize across the larger populations of both similar
students and similar items.

We were initially surprised at the absence of the expected
interaction, but upon investigation we saw that the individual
variation, as shown by the histogram in Figure 1, was very
large. Figure 1 shows how average student performance
changes as their ability level increases. The lower-performing
students, with total scores of 1, 2 and 3, are all at the floor

for symbolization. They also show a composition effect
during arithmetic problems. This is the exact opposite
interaction we were expecting to see, but its cause is
intuitively sensible. Students first learn to deal with the
easier arithmetic problems, and the lower-performing students
will show competence only in these. The fact that there is a
composition effect among the arithmetic problems will be
explored below. The middle-performing group (total scores of
4) show that the composition effect for arithmetic problems
is going away as overall performance improves. The high-
performing students ,with total scores of 5, 6 and 7, are doing
equally well on both types of arithmetic problems and are
improving on symbolization but primarily decomposed
symbolization. In other words, the students show the
interaction that the articulating composition hypothesis
predicted.

To statistically characterize the individual variation we
witnessed, we classified the subject population into a top-
performing half and a bottom-performing half (using total
score). We performed a full three-factor (2*2*%2) ANOVA on
the average of students’ means, again treating our two
difficulty factors as within-subject repeated measures, and
treating the factor of “top half vs. bottom half” as a between
subjects factor. Again we had highly significant effects of
symbolization (F(1,280)=172.5, p<.0001) and composition
(F(1,280)=22.1, p<.0001). None of the three possible two-
way interactions were close to statistical significance (P>.24
in all cases), but we did find a highly significant
(F(1,280)=14.0, p<.0004) three-way interaction. Again, to
verify that these effects occurred across items as well as across
subjects, we did a three-factor (2*¥2*2) ANOVA on the item
means, treating all three factors as within item repeated
measure factors. Again, the only significant effects were the
two main effects for symbolization (F(1,56)=50.1, p<.0002)
and composition (F(1,56)=11.7, p<.012) and the three-way
interaction (F(1,56)=9.4, p<.0183).

We will speculate below as to whether or not the
composition effects seen in arithmetic(at the low end) and in
symbolization (at the high end) are caused by a single effect
or two separate effects. Our articulating composition
hypothesis suggests that they are different effects and this will
be explored now. We will then explore the other transitions
we observed, which were not the main focus of the
experiment, but nevertheless provide us with insight into the
composite skills for composed symbolization.

Why are Composed Symbolization Problems
Hard?

Our articulating composition hypothesis predicted that there
would be an additional cognitive hurdle for students to be able
to solve composed symbolization problems. When we look
at the top-performing half of the students we see the
interaction which suggests that composed symbolization
problems are unduly difficult. But how is that we get this
average performance? Are most of these students
demonstrating the same effects? The answer is “some, but
not all.” Let us call the prerequisites to being able to do a
composed symbolization problem the ability to do both
decomposed symbolization and composed arithmetic
problems. Then 40% of the students who have met the



prerequisites for composed symbolization, failed to solved a
composed symbolization problem. When we say a student
has met the prerequisites, we mean that a student was able to
do at least one composed arithmetic problem, as well as one
decomposed symbolization problem. there were 43 students
who met this criterion, and 17 of them failed to solve a
composed symbolization problem. We think that these 17
students are missing the knowledge of how to compose two
symbolic expression together.

These 17 students made a total of 34 errors on composed
symbolization problems and we would like to see if these
errors are consistent with the articulating composition
hypothesis. The largest category of errors are the 8 examples
of errors where students wrote only the first step (i.e. one
student wrote “72-m” for problem CS.) These errors are
consistent with the articulating composition hypothesis,
because a student that doesn’t know how to put two steps
together might simply stop once she gets to a point where
she doesn’t know how to continue. There were 3 errors of
missing parentheses and one student who incorrectly used
parentheses. These errors are also consistent with what one
would expect from a person who can both symbolize single
steps and do the arithmetic for two step word problems, but
doesn’t yet know how to put two symbolizations together. It
is also good to see that the missing-parentheses errors are
responsible for a small portion of this effect. Many of the
other errors are not easily categorizable and don’t give us
much insight into what the student was thinking. It is true
that about a third of the errors of students who appeared to be
trying to overcome this hurdle are those that the articulating
composition hypothesis would predict.

Our articulating composition  hypothesis is  what
Newell(1990) would have called a knowledge-level
explanation as opposed to a symbol-level explanation. We
hypothesize that students are missing a certain bit of
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Figure 1: The two main effects across ability levels

knowledge (e. g., production rules) that we can point to. But
an alternative explanation of the additional difficulty of
composed symbolization problems could be made at the
symbol level. For example, maybe both symbolization
problems and composed problems put a burden on working
memory, and when these two factors combine, there is a
strong interaction. We looked for evidence of such a symbol-
level explanation by seeing if the composition effect while
doing symbolization problems increased under a working
memory load. Conveniently we have data to make this
comparison, from our previous difficulty factors assessment.
In this we studied both composition while symbolizing as
well as the effect of distractor numbers. To illustrate, we had
studied problem DSI with and without a distractor phrase
where we changed the problem to read “‘6 cars” rather then just
“cars.” We found a large effect for these distractor phrases,
and we claim that this may be due to an increased working
memory load. If the composition effect in symbolization
problems is a working memory phenomenon we should
expect to see the composition effect increase for distractor
problems. Unfortunately, the results are inconclusive. Figure
2 shows a trend towards the predicted interaction but it is not
significant (F(1,250)=1.48, p=.23).

But we do have evidence that conclusively shows that a
knowledge-level component is definitely present. In our
previous work (1997) we conjectured that if the hard part is
composing  steps together, then instruction focused on
teaching students just the missing knowledge should improve
their performance, even if divorced from practice on word
problems. We haven’t space for a full reporting, but in short,
we trained 39 students on problems like “Let X= 72-m. Let
B= X/4. Write a new expression for B that composes these
two steps.” We then looked for transfer from the learning of
this skill to students” improvement on algebra symbolizing.
In a single hour of training on this skill, we saw statistically
significant increases in student performance on algebra
symbolization as a result of training on symbolic
substitution, even factoring out gains due to using
parentheses correctly. This is possibly the strongest evidence
we could present in favor of the articulating composition
hypothesis. This result also supports the more general idea
that there is greater difficulty on the production side rather
then the comprehension side of translation, since these
students improved without practice reading algebra word
problems; the only practice they had was composing
expressions together.

Symbolization Effect among Decomposed Problems

We now consider one of the transitions students must make
before being able to deal with composed symbolization
problems. This transition occurs when students learn
decomposed symbolization problems. The evidence suggests
that this transition is difficult. Fully one-third of the students
who demonstrated competence (at least one correct) in the
decomposed arithmetic problems could not do get any of the
decomposed symbolization problems correct (let alone the
composed one). This is a substantial effect that results in an
additional 108 errors occurring (152 errors on decomposed
symbolization problems while only 44 errors on decomposed
arithmetic problems). What is the explanation for this
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symbolization gap of 108 errors? We note that there were
many more “no answers” increasing from 12 to 57, but these
“no answer” responses do not give us much insight into what
is causing the difficulty. We now look at four different
explanations that might account for why there are so many
more errors.

The first hypothesis to explain the symbolization effect in
decomposed problems is similar to the articulating
composition hypothesis in that we focus on difficulties
students have with production and not with comprehension.
We will introduce two types of errors that are analogous to
the sorts of errors made when learning a natural language.
One such error is to say words in the wrong order, for
instance, writing “m-72” when “72-m” is intended. We call
these reversal errors. A second language production error is
to use the wrong verb. For instance, writing “72+m” when
“72-m” is intended. We call these wrong verb errors. But just
because a person has written “72+m” does not mean we can
assume they meant “72-m” so we will have to compare the
error rates on symbolization problems with the number of
analogous errors on arithmetic problems(for instance the
number of people who added 72+32 to get 104 for problem
DA2 in Table 1) It turns out that there are 7 errors of
students using the wrong verb to arrive at a arithmetic
answer. In contrast, for symbolization problems, there are 31
such errors. The increase in these wrong operator errors is
due to the fact that that students’ difficulties arise not so
much in English comprehension but in symbolic production.
We see a similar pattern for the reversal errors, with no such
errors occurring for arithmetic problems (nobody answers ‘-
40" for DS2) while there are 12 such errors for symbolization
problems. The difference in these simple articulation errors
accounts for about 40% of the symbolization gap.

A second explanation is a possible consequence of the
generalization hypothesis. Consider the 6th grade student who
has never seen a variable before and is suddenly confronted
with a problem with a variable for the first time. She would
probably be totally confused and be inhibited from using that
variable in her answer. She might be much more likely to
randomly guessing using the more familiar numbers from the
problem. Or she might answer as one student of ours did on
several of the symbolization problems: “Not enough info”.
This leads to the prediction that novices are inhibited from
using a variable. Of the students who gave an answer 38
answers did not contain the given variable even though in a
decomposed problem there are only two numbers. This

accounts for 35% of the symbolization gap. But there is a

consistency problem with this variable inhibition
hypothesis. In previous research we (1997) found that
students’ ability to do arithmetic symbolization (e.g.

answering with “72-32” rather then “40”) was not
significantly different (F(1,30)=.9, p>.35) from their ability
to do algebraic symbolization (e.g. answer with “72-m”).
However, we do note that the trend in the data was
particularly large and in the predicted direction: the absolute
performance on decomposed problems rises from 58% for
arithmetic symbolization problems to 68% for symbolization
problems with a variable. Furthermore, the students in the
current study were generally at a lower level where variable
inhibition may be greater. On the 6 cover-stories that the two
populations had in common the percentage correct, on
average, for symbolized problems was significantly different
(F(1,10)=7.292, p<.02) with this present group averaging a
low 27.2% while the previous group averaged a higher
42.8%.

A third hypothesis is that the symbolization effect for
decomposed problems is caused by the fact that students may
be using back-up strategies (like repeated addition:
40+40+40) for the arithmetic problems instead of the direct
arithmetic strategy (e.g. 3*40) that is necessary for
symbolization. We looked at all of the responses students
gave to the arithmetic problems to see if we saw any evidence
that students were using any math operations other than those
expected, and found no evidence to support this hypothesis.
At the same time, since students did not always show their
work, we can not rule this out.

A fourth explanation for the presence of a symbolization
effect in decomposed problems is what we call the semantic
support hypothesis. If a student actually has numbers that
they can use to compute answers they have the advantage of
being able to look at the answer to detect violations with the
semantics of the problem. We discussed above that there
were no reversal errors on arithmetic problems but 12 on
symbolization problem. Maybe the reason reversal errors
don’t occur on decomposed problems is that if a student
calculates “-40” she will quickly detect that a negative number
of dollars to give to the sisters does not make sense. The
semantic support hypothesis also suggests that even without
doing any of the arithmetic, it might be easier for a student
to figure out which operator to use if they know the relative
size of the numbers given: students seem to have heuristics
like “if one number is much larger then the other, then
division is likely”, in addition to heuristics like *always
subtract the smaller number from the larger.” So a student
might benefit more by having numbers rather then variables
even before she actually does any math. In our previous
work, though we failed to find a significant difference
(F(1,30)=.9, p>.35) between the performance on arithmetic
symbolization vs. algebraic symbolization problems (as
mentioned in the introduction), there was a difference of
average percentage correct of about 10% from 58% correct to
68% correct. This suggests that there might be a role for the
semantic support hypothesis that helps students use heuristics
based on the size of numbers as well as heuristics that check
the result of arithmetic computations for semantic violations.
Neither of these strategies is possible if the problem has a



variable present. Further research is needed to conclusively
distinguish between the merits of these explanations.

Comprehension Effect in Arithmetic Problems:

The third developmental transition we detected was the gap
shown by students who could not do composed arithmetic
problems as well as decomposed arithmetic problem (which
leads to what we call a composition effect in the decomposed
problems). The gap is not large; there were 42 errors on
decomposed problems while composed problems had 52.
Again we notice that 10 of the answers for composed
problems were the result of doing just the first of two required
steps. These students possibly stop early because they are
not reading the question carefully. There were only 5 students
who were able to get a decomposed problem correct but failed
to get any other type of problem including composed
arithmetic problems correct. More generally, there were 24
students whose performance on composed arithmetic
problems was worse than their performance on decomposed
arithmetic  problems. We would assume that this
composition effect is partly explained by reference to
cognitive models like LeBlanc and Russell (1996) that
attempt to explain arithmetic word problem performance
based on working memory load considerations. That is,
composed problems are somewhat harder to read. It also
might be that some students do not bother to re-read such
problems even in the face of this high working memory load.

A Sketch of a Developmental Model

Based on these results of our difficulties factors assessment
(here and in Heffernan & Koedinger, 1997), we have begun to
create a developmental model of how students learn to
symbolize. Contrary to common belief and the emphasis of
prior cognitive science research, student’ difficulty in algebra
word problem solving appears less related to comprehension
difficulties and more related to difficulties in producing
symbolic expressions, particularly expressions that involve
more than one operator. We will summarize three main
transitions this model. At the start of the developmental
progression are students (two in this study) who fail to get
any of the problems correct and we will ignore them. At the
first non-trivial level, we saw five subjects who showed
competence in decomposed arithmetic problems (where
competence is at least one of the two problems correct) but
failed to show competence in any other problem type. We
speculated that their poorer performance on composed
problems might be due to working memory limitations or
related  to difficulties comprehending more complicated
composed stories. The students at this level show evidence
predicted by the generalization hypothesis. In going to the
next level students must learn to deal with composed
arithmetic problems. They most likely need to improve their
reading skills and make sure they answer the question asked.
Twenty-four students had made this transition to competence
in composed arithmetic but we not successful on any
symbolization problems.

The next hurdle students surmount is learning how to deal
with decomposed symbolization problems. It is interesting to
note that no student was competent in decomposed
symbolization problems who was not also competent in

composed arithmetic. This is most likely due to the fact that
students see composed arithmetic problems in elementary
school, but most see variables much later. There were at the
level of showing competence in both composed arithmetic
and decomposed symbolization, but were not successful on
any of the composed symbolization problems. We considered
four alternative hypothesis regarding what students need to
learn to make this transition to competence on simple
decomposed symbolization problems.

At the highest level there were 25 students who were able
to get one of the composed symbolization problems correct
(only one student got both composed symbolization problems
correct). In making this transition to competence in
composed symbolization problems, students learn how to
combine the articulation of individual steps.

We will limit ourselves to one instructional design
suggestion that can be derived form this developmental
model. In helping students transition from competence at
symbolizing one operator problems to competence at
symbolizing multiple operator problems, we recommend
practice on symbolic substitution problems. At the face of
it, such problems seem totally unrelated to translating word
problems to symbols. However, our cognitive analysis and
difficulty factors assessments have identified substantial
overlap in the skills required for these apparently unrelated
tasks.  Furthermore, we have preliminary evidence that
training on substitution transfers to symbolization.
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