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Abstract
Symbolization is the ability to translate a real world situation
into the language of algebra.  We believe that symbolization
is the single most important skill students learn in high
school algebra.   We present research on what makes this skill
difficult and report the discovery of a “hidden” skill in
symbolization.  Contrary to past research that has emphasized
that symbolization is difficult due to both comprehension
difficulties and the abstract nature of variables, we found that
symbolization is difficult because it is the articulation in the
“foreign” language of “algebra”.  We also present Miss
Lindquist, an Intelligent Tutoring System (ITS) designed to
carry on a tutorial dialog about symbolization. Miss Lindquist
has a separate tutorial model  encoding pedagogical content
knowledge in the form of different tutorial strategies that was
partially developed by observing an experienced human tutor.
We discuss aspects of this human tutor’s method that can be
modeled well by Miss Lindquist and share examples of what
she can do.  Through testing, we plan to learn about the
relative effectiveness of the different tutorial strategies Miss
Lindquist uses.

Introduction
The mission of the Center for Interdisciplinary Research on
Constructive Learning Environments  (CIRCLE) is 1) to
study human tutoring and 2) to build and test a new
generation of tutoring systems that encourage students to
construct the target knowledge instead of telling it to them
(VanLehn et. al., 1998).  CAI (Computer Aided Instruction)
systems were 1st generation tutors. They presented a page of
text or graphics and depending upon the student’s answer, put
up a different page.   Model tracing ITSs are 2nd generation
tutoring systems that allow the tutor to follow the line of
reasoning of the student.  ITS have had notable success
(Koedinger et. al., 1997) despite the fact that human tutoring
can look very different  (Moore, 1996).  One way they are
different is that there is a better sense of a dialog in human
tutoring and maybe this is important.  After analyzing over
100 hours of untrained tutors in naturalistic tutoring sessions
Graesser et. al. (in press) believe “there is something about
interactive discourse that is responsible for learning gains.”

The members of CIRCLE are working on 3r d

generation tutoring system that are meant to engage in a
dialog with students, using multiple strategies to allow

students to construct their own knowledge of the domain.
We are building a new ITS, called Miss Lindquist, that will
not only be able to model trace the student’s actions, but can
be more human-like in carrying on a running conversation,
complete with probing questions, positive and negative
feedback, follow-up questions in embedded sub-dialogs, and
requests for explanation as to why something is correct.  In
order to build Miss Lindquist we have expanded the model
tracing paradigm so that Miss Lindquist not only has a model
of the student, but also has a model of tutorial reasoning (e.g.
Clancey, 1982).  Based on observation of an experienced
tutor and cognitive research, this tutorial model has multiple
tutorial strategies at its disposal.

The task domain we are working on is
symbolization, which is the task of writing an algebraic
expression given a real-world problem context, often
presented in the form of a word problem.  An example
problem is shown in Figure 1.  Symbolization is important
because if students can’t translate problems into algebra, they
will not be able to apply algebra to solve real world problems.
This domain makes it easy to avoid some difficult natural
language issues because we can ask students to write
algebraic expressions and those expressions are easy for the
computer to “understand”.  We take advantage of this
property of the domain to avoid any serious natural language
processing.  We do ask students to formulate explanations in
words, but in such cases we provide them pull down menus to
construct their sentences.  Instead, we focus our energies on
modeling tutorial reasoning which includes capturing the
pedagogical content knowledge (Shulman, 1986) of an
experienced human tutor.  Pedagogical content knowledge is
the knowledge that a good tutor has about how to teach a
specific skill.   A good tutor is not just one who knows the
domain, nor is it simply one who knows generally tutoring
rules.  A good tutor is one who also has content specific
strategies that can help a student overcome common
difficulties.  We have set out to observe and model some of
these strategies for our specific domain of symbolization.
Lets look at one example of a content-specific pedagogical
strategy for symbolization. The following was collected and
transcribed from a one hour long one-on-one tutoring session
between an experienced human tutor and an eighth grade
student working on the “bike-trip” problem, which we use as
one of several running examples.
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240. Student: [reads problem1] Cathy took a "m" mile bike
ride.  She rode at a speed of "s" miles per hour.  She
stopped for a "b" hour break.  Write an expression
for how long the trip took.

241. S: uhm [ writes "s/m+b" but should be “m/s+b”]
242. Tutor: How do you calculate the amount of time it takes

you?  If you’re, if you’re, if you’re riding at, let’s
make it simple.  If you are riding at 20 miles per
hour, OK, and you go 100 miles, how many hours
did that take you?

243. S: Um  5
244. T: 5. And how did you get that 5?  How did you use the

numbers 100 and …
245. S: 100 miles divided by  miles per hour
246. T: So you took the miles and divided it by the [garbled,

but possibly “speed”]
247. S: Miles divided by s  plus b equals time [writes m/s+b ]
248. T: Right.

The tutor in the above dialog, appears to have done two
things to scaffold this problem. First, the tutor focused on the
problem of calculating the time actually on the bikes by
decomposing what had been a problem with two operators
into a problem that had only one operator.  Presumably this is
because the student indicated he understood that the goal
quantity was found by adding for the amount of the break
(“b”) to the time actually on the bikes.

The second scaffolding move the tutor did was to
change the problem question from a symbolization question
to a presumably simpler compute question by asking the
student to calculate the speed using 100 and 20 rather than
“m” and “s”.  Then in line 244 the tutor asked for the
articulation step of "How did you get that 5?"  Finally, the
student is prompted for the generalization step of writing the
expression using variables.

Our experienced tutor often invited the student to
use concrete numbers. We call this strategy the concrete
articulation strategy (Koedinger & Anderson, 19982).
McArthur et. al. (1990) also observed that human tutors often
used what he called curriculum scripts and micro-plans,
which often involved a series of questions designed to
remediate particular difficulties. We call these scripts
knowledge construction dialogs to emphasis the fact that that
we are trying to build a tutor that encourages students to build
their own knowledge by less often telling them a hint and
more often asking them a question.

The impediments to building a third generation tutor
is not just technical.   We think that if you want to build a
good ITS for a domain you need to:
•  Study what makes that domain difficult, including

discovering any hidden skills, as well as determining
what types of errors students make.

• Construct a theory of how students solve these problem.
(We instantiated that theory in a cognitive model.)

•  Observe experienced human tutors to find out what
pedagogical content knowledge they have and then build

                                                            
1 Throughout this paper, text in square brackets are comments,  and
S and T stand for “student” and “tutor” respectfully.
2 Then called the inductive support strategy.

a tutorial model that, with the help of the theory of
domain skills, can capture and reproduce some of that
knowledge.

We look at these each of these steps in turn.

What Makes Symbolization
Difficult?

Symbolization is a difficult task for students.  For example,
one month into an algebra class only 13% of students  could
answer the symbolization problem in the caption to Figure 1.
To determine what makes symbolization difficult we
conducted two difficulty factors assessments (Koedinger &
MacLaren,  1997) which are paper and pencil tests that we
gave to groups of 80+ students (Heffernan & Koedinger,
1997 and 1998).  First, we identified three hypotheses about
what makes symbolization difficult.

The first of these is the comprehension hypothesis.
Much of the prior research (Cummins et. al., 1988; LeBlanc
& Weber-Russell, 1996; Lewis & Mayer, 1987; Paige &
Simon, 1979) on word problem solving has focused on
students' comprehension abilities.  Cummins et. al.  "suggest
that much of the difficulty children experience with word
problems can be attributed to difficulty in comprehending
abstract or ambiguous language."  The general conclusion
from the above research is that comprehension rules are key
knowledge components students must acquire to become
competent problem solvers.

A second hypothesis is the generalization
hypothesis. According to this hypothesis, symbolization is
difficult because students must learn how to use variables to
generalize arithmetic procedures..

More recent research by Koedinger and Anderson
(1998), and which we confirmed (Heffernan & Koedinger,
1997 and 1998), showed that students could comprehend
many problems well enough to find a numerical answer, but
they nevertheless failed to correctly symbolize.  Although
this refutes the comprehension hypothesis it does not refute
the generalization hypothesis because the symbolization
problems had variables in them.  Therefore, we compared
students’ ability to symbolize a problem that contained a
variable (with an answer like “800-40m”) to their ability to
symbolize a problem with just constants.  In the “constants”
case the students were asked to write an expression for their
answer (i.e. “800-40*3”) instead of finding a numerical
solution (like “680”).  Even if we counted as correct the very
few students who did not follow the directions and evaluated
the answer, we found that the presence of the variable in the
problem did not make problems more difficult.  Therefore,
the generalization hypothesis was refuted.

So what can explain why symbolization is so
difficult?  We propose the articulation hypothesis which
suggests that there is a  “hidden” skill that is not obvious to
most teachers and researchers.  The hidden skill is the ability
to produce symbolic sentences in the language of algebra.  It
appears that many students are able to figure out all the
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conceptual relations in a problem, but are not able to express
those relationships in algebra.  If we asked students to
translate a story written in English into Greek we would not
be surprised if many fail because they don’t know Greek.
But teachers and researchers often fail to realize that algebra
too is a language. And a language that students have had
relatively little practice in “speaking” By “speaking” we
mean producing sentences of symbols, not verbalizing. This
was demonstrated anecdotally by one of our students who
when asked to symbolize a problem with the answer of “(72-
m)/4” responded  with “72-m=n/4=”.  Many commentators
have noted that students will incorrectly use an equal sign in
a way that makes sense if “=” means “results in.”  Sfard et. al.
(1993) gives the following example “3*4=12-5=7.”  Another
example is the student who when working on a problem with
an answer of “550/(h-2)” answered with

h-2     h)550
This student means to suggest that first she would subtract 2
from “h.” The arrow seems to indicate that this new
decremented value of h should be assigned back to the
symbol “h”.  Then 550 should be divided (indicated with the
grade school way of expressing division)  by this new value
of “h.” Both of these examples indicate students who
probably understand the quantitative structure and the
sequence of operations that should happen, but nevertheless,
failed to express that structure in normative algebra. What
does such a student need to learn? A computer scientist or
linguist might say that the student needs to learn the correct
grammar for algebraic expressions.  The novice student
knows how to write one-operator expression like “5+7” using
the following simple grammar:

<expression> = <literal> <operator> <literal>
<literal>  = 1|2|3|4….
<operator>  = “+” | “-“ | “*” | “/”

But the competent student knows how to write multiple
operator expression indicated by these grammar rules:

<expression> = <expression> <operator> <expression>
| “(“ <expression> “)” | <literal>

Phrased differently, what the student needs to be told is that
“You can always wrap parentheses around an expression and
substitute an expression anywhere you normally think a
number can go.  There are also rules for when you can leave
out the parenthesis but you can always put them in to be sure
that your expression won’t be misinterpreted.”

We found experimental evidence that supports the
articulation  hypothesis when we performed the following
manipulation (Heffernan & Koedinger, 1997 and 1998). We
started with a two-operator problem, like

Composed: Ann is in a rowboat in a lake.  She is 800 yards
from the dock.  She then rows for "m" minutes back towards
the dock.  Ann rows at a speed of 40 yards per minute.  Write
an expression for Ann's distance from the dock.

and  decomposed the problem into two new separate
questions like the following.   

Decomposed: A) Ann is in a rowboat in a lake.  She is 800
yards from the dock.  She then rows "y" yards back towards
the dock.  Write an expression for Ann's distance from the
dock.

B) Ann is in a rowboat in a lake.  She then rows for "m"
minutes back towards the dock.  Ann rows at a speed of 40
yards per minute.  Write an expression for the distance Ann
has rowed.

Then we compared the ability of a student to answer the
composed problem with their ability to get both decomposed
parts correct.  We found that the composed problems were
much harder.  Why?  We speculated that many students could
not compose the two decomposed expressions together;  just
because you know that you need to first add two quantities
together and then multiply them by a number, doesn’t mean
you know how to express this correctly in the language of
algebra.  The following is an example of a student who
appeared to be missing just this skill of composing
expressions together.  This example occurred while the first
author was tutoring a student on the following “two-jobs”
problem:

T: Debbie has two jobs over the summer.  At one job she
bags groceries at Giant Eagle and gets paid 5 dollars an hour.
At the other job she delivers newspapers and gets paid 7
dollars an hour.  She works a total of 30 hours a week.  She
works "g" hours bagging groceries.  Write an expression for
the total amount she earns a week. [the correct answer is
“5g+7(30-g)”]
S: A=5*g, B=30-g, C=7*B  and D=A+C

This student clearly understands the 4 math operations that
need to be performed, and the order in which to perform
them.   This student spontaneously introduced new variables
(A, B, C, and D) to stand for the intermediate results.  We
were surprised to find that this student could not easily put
this together and write  “5g+7(30-g)”. This student appears to
be ready for a strategy that will help him on just one skill;
combining expressions by substitution. (We also turn this
idea into a tutoring strategy which is presented below in the
section on Tutorial Strategies.)

To see if substitution really is a hidden component
skill in symbolization, we designed the following transfer
experiment. Thirty-nine students were given one hour of
group instruction  on  algebraic substitution problems like the
following:

Let  X= 72-m.  Let B= X/4.  Write a new expression for B that
combines these two steps.

The student were guided in practicing this skill. The students
got better at this skill, but that is not the interesting part.   By
comparing pre-tests and post-tests, we found statistically
significant increases in the students ability to do
symbolization problems, even though they did not get
instruction involving  word problems!  The students
transferred knowledge of the skill of substitution to the skill
of symbolization revealing a shared skill of being able to
“speak” complicated (more than one-operator) sentences in
the foreign language of algebra.  This is strong supporting
evidence for the articulation hypothesis.

This research has put a new focus on the production
side of the translation process.  This work also has
ramifications for sequencing in the algebra curriculum. If
learning how to do algebraic substitution involves a sub-skill
of symbolization, perhaps algebraic substitution should be
taught much earlier.  In many curriculums (e.g. Larson, 1995)
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it is not taught until students get to systems of equations half-
way through the year .

Cognitive Student Model
Our student model is similar to traditional student models.
We use the Turtle (Anderson & Pelletier, 1991) production
system, which is a simplification of the ACT (Anderson,
1993) Theory of Cognition.  A production system is a group
of if-then rules operating on a set of what are called working
memory elements (wmes).  We use these rules to model the
cognitive steps a student could use to solve a problem.   Our
student model has 68 production rules.  Our production
system can solve a problem by being given a set of wme that
encodes the problem at a high level.  Figure 1 shows an
example involving 5 quantity wmes and 2 relation wmes.

We model the common errors that students make with a
set of “buggy” productions. From our data, we compiled a list
of student errors and analyzed what were the common errors.
We found that the following list of errors was able to account
of over 75% of the errors that students made.  We illustrate
the errors in the context of the “two-jobs” problem which has
a correct answer of “5g+7(30-g)”.
1) Wrong operator (e.g. “5g-7(30-g)”)
2) Wrong order of arguments  (e.g. “5g+7(g-30)”)
3) Missing parentheses  (e.g.  “5g+7*30-g”)
4) Confusing quantities (e.g. “7g+5(30-g)”)
5) Missing a component  (e.g.  “5g+7g” or “g+7(30-g)” or

“5g+30-g”)
6) Omission: correct for a subgoal. (e.g. “7(30-g)” or “5g”)
7) Combinations of errors (e.g. “5g+7*g-30” has the wrong

order for “g-30” and is missing parenthesis)
These “buggy” productions are used to allow us to make
sense of a student’s input even if she has made several
incorrect steps.  We don’t want a computer system that can’t
understand a student if she gives an answer that has parts that
are completely correct and parts that are wrong.  We want the
system to be able to understand as much as possible of what a
student says and be able to give positive feedback even when
the overall answer to a question might be incorrect.

Traditional model tracing tutors have a bug message
attached to each buggy production that generates a message
through the use of a template.  We do not do that.  We feel
such an architecture confuses student reasoning with tutorial
reasoning.  We instead have the student model report its full
diagnosis (which is represented with a set of wmes) to the
tutor model that will then decide what to do.

If the student makes several errors, traditional model
tracing tutors are sometimes in a quandary as to what to do.
Some ITSs do not deal with multiple bugs and instead rely on
breaking down the problem into finer steps.  A problem with
this approach is that you can’t break down a skill like
symbolization easily without decreasing the overall difficulty.
Another solution is to ask the student what the subgoals
should be and then tutor them on the subgoals individually
(Corbett & Anderson, 1995.)  However, a problem remains

about what the ITS should do if the student makes more than
one distinct error in a given input. This is addressed below.

The Tutorial Model
As mentioned already, we collected and transcribed one hour
of experienced human tutoring.  We wanted to observe what
experienced tutoring in this domain looked like.  The tutor
worked as a full time math tutor for over a year before
teaching middle school math for 5 years.  She was given a list
of symbolization problems and told her goal was get the
student to learn how to solve such problems.

After transcribing the dialog we have been able to
extract some regularities in term of the tutorial strategies. One
caveat: our tutorial model is informed by this observation of
human tutoring, but it doesn’t model any one individual or
make claims to being the most effective model. The model
we have come up with has multiple strategies it can choose
among.  Through empirical study, we plan to learn which
strategies are most effective.

Now we will look at the components of the tutorial
model in Figure 2.  It is composed of a tutorial agenda
component, as well as tutorial questions that can be used
alone or in combination to make a tutorial strategy.  The
model is implemented with 77 productions.  First, we deal
with how Miss Lindquist decides what to focus problem
attention upon.

Dealing with the diagnosis: The Focusing Heuristic

Miss Lindquist uses a heuristic to decide what to focus the
conversation on.  In cases when the student model’s diagnosis
indicates that the student had some correct elements and
some incorrect elements. For instance, we considered giving
the following positive feedback on an answer like that in line
242 : “Your answer of ‘s/m+b’ has some correct elements; it
is true that you need to add the time of the break to the time
on the bikes to find the total trip time.”  This feedback was
meant to confirm the “+b” portion of the answer.  After
looking at what our human tutor did we decided not to give
positive feedback unless the student has two operands correct
and the correct operator.  We give an example of this in the
context of the “two-jobs.”

T: [problem with answer of 5g+7*(30-g)]
S:  5g+7*g
T: No, but, 5*g does represent the amount Debbie earned

bagging groceries.  Let me ask you a simpler question.
Can you tell me how much she made delivering
newspapers?

If the student has made more than one error, the tutor
decides to come up with a strategy to deal with each error.
The errors are considered in the order they would be
encountered in a post-order traversal of the parse tree of the
correct answer (i.e visited “bottom-up.”)  Therefore, the tutor
might add  multiple questions to the tutorial agenda
depending upon the tutorial strategy selected for each error.
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If a student says something the student model
doesn’t understand (e.g. says “5/30-5*7/g” when the answer
is “5g+7(30-g)”) we will still want a robust ITS to be able to
pick a reasonable strategy for a response. This is important
because many times the tutor (humans or computers) will not
be able to make sense of the student’s input.  Graesser et. al.
(in press) reports in their study of human tutors that they
“found that the human tutors and learners have a remarkably
incomplete understanding of each other’s knowledge base
and that many of each other’s contributions are not deeply
understood…  Most tutors have only an approximate
assessment of the quality of student contributions.”  We want
our ITS to be able to operate under these same difficult
conditions and still be robust enough to say something
reasonable.

Tutorial Agenda
Miss Lindquist has a data structure we called the agenda, that
stores the ideas she wants to talk about next.  This agenda
ordinarily operates like a push down stack, but we give an
example of when the stack order is violated below in the
section on the Concrete Articulation Strategy.

Tutorial Questions
The tutorial model can ask the following kinds of tutorial
questions illustrated with an example of how the question can
be phrased:
1) Q_symb : Symbolize a given quantity (“Write an

expression for the distance Anne has rowed?”)
2) Q_compute: Find a numerical answer (“Compute the

distance Anne has rowed?”)
3) Q_explain: Write a symbolization for a given arithmetic

quantity. This is the articulation step.  (“How did you get
the 120?”)

4) Q_generalize: Uses the results of a Q_explain question
(“Good, Now write your answer of 800-40*3 using the
variables given in the problem (i.e. put in ‘m’)”)

5) Q_represents_what: Translate from algebra to
English(“In English, what does 40m represent?” (e.g.
“the distance rowed so far”))

6) Q_explain_verbal:  Explain in English how a quantity
could be computed from other quantities.  (We have two
forms: The reflective form is “Explain how you got
40*m” and the problem solving form is “Explain how
you would find the distance rowed?”)

7) Q_decomp: Symbolize a one operator answer, using a
variable introduced to stand for a sub-quantity. (“Use A
to represent the 40m for the distance rowed.  Write an
expression for the distance left towards the dock that
uses A.”)

8) Q_substitute: Perform an algebraic substitution
(“Correct, that the distance left is given by 800-A.  Now,
substitute “40m” in place of A, to get a symbolization for
the distance left.”)

9) Q_order_of_ops: Ask a clarification question about the
order of operations. (“Which operation do you do
first/second/third/etc?”)

You will notice that questions 1, 3, 4, and 8 all ask for a
quantity to symbolize.  Their main difference lies in when
those questions are used, and how the tutor responds to the
student’s attempt.  Questions 5 and 6 ask the student to
answer in English rather than algebra. To avoid natural
language the student is prompted to use pull down menus to
complete this sentence “The distance rowed is equal to <noun
phrase> <operator> <noun phrase>.”  The noun phrase menu
contains a list of the quantity names for that problem.  The
operator menu contains “added to”, “subtracted from”,
“multiplied by” and “divided by.”

Below we will see how these questions can be
combined into strategies.

Tutorial Strategies
We will now look at a few examples of strategies that the
tutorial model is able to reason about.  First, we look at the
concrete articulation strategy and how the cognitive research
described earlier applies to it.

Concrete Articulation
The concrete articulation strategy usually uses three questions
of type Q_compute, Q_explain and Q_generalize. Here is an
example of the dialog generated by Miss Lindquist which we
believe parallels the experienced human tutor closely.

T1: [Doing the “bike-trip” problem]  Please write an
expression for the total time the trip took. [Q_symb]

S1: s/m+b
T2: No.  Let me ask you an easier question. Please compute

the time actually on bikes if the speed was 20 miles per
hour, and the distance ridden was  100 miles?
[Q_compute]

S2: 5
T3: Correct.  What math did you do to get that five?

[Q_explain]
S3: 100/20
T4: Correct. Now write your answer of 100/20 using the

variables given in the problem (i.e. put in ‘m’ and ‘s’)?
[Q_generalize]

S4: b+m/s
T5: Correct.

We will walk through what Miss Lindquist did here.  First,
the student model diagnosed S1 (“s/m+b”) as having the
quantity “s/m” with reversed arguments (bug type #2.) The
diagnosis also said that the student understood that the total
trip time was the time of the break (“b”) plus the time
actually on the bikes.  This diagnosis was passed to the
tutorial model that could have selected among competing
strategies. In this case the tutorial model decided to conduct a
concrete articulation knowledge construction dialog.
Therefore, the tutor model generated questions for the
compute, explain/articulation and generalization steps.  The
tutor put these three questions on the agenda.

At S2, the student answers the compute question
correctly, and the tutor decides to continue with its plan.  It
has to be sensitive to what the student typed.  If the student
typed 100/20 instead of 5, then both the compute and explain
questions would be removed from the agenda and the tutor
would skip to the generalize step.  An example of this sort of
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flexibility is demonstrated in T5.  T4 was a question to
articulate the time actually on bikes.  The tutor was hoping
the student would type “m/s” but instead the student
answered “b+m/s.”  Only a pedantic tutor wouldn’t accept
that answer as it indicates an understanding that subsumes the
understanding required for the sub-goal.   This is where the
tutorial agenda behaves differently than a stack because Miss
Lindquist pops both of the questions off the agenda.

To show you an example of how the previous situation
could have come out differently, lets look at the following
dialog

T1: Hello.  [Doing the “bike-trip” problem] Please write an
expression for the total time the trip took. [Q_symb]

S1: help!
T2: Let me ask you an easier question. Please compute the

time actually on bikes if instead the speed was 20 miles
per hour, the time of the break was 2 hours, and the
distance ridden was  100 miles? [Q_compute]

S2: 7
T3: Correct.  What math did you do to get that 7? [Q_explain

7]
S3: 2+5
T4: Okay, but how did you get the 5? [Q_explain 5]
S4: 100/20
T5: Correct  Now lets try this again, what math did you do to

get the 7? [Q_explain 7]
S5: 2+100/ 20
T6:Correct. Now write your answer of ‘2+100/20’ using the

variables given in the problem (i.e. put in ‘m’, ‘b’ and
‘s’)? [Q_generalize]

S6: b+m/s
T7: Correct.

This example is interesting in the way Miss Lindquist
responds at T4.  The system has bug rules to apply to
questions other than symbolization questions.  In this case,
the student model reported that the student’s answer of “2+5”
is a partially complete articulation but that the student didn’t
spell out where the “5” came from.  So the tutorial model is
able to “dig-down” into the student 's reasoning with an
embedded  sub-dialog.  This involved adding the additional
question of explaining how the student got the “5”.

 Substitution with decomposition
A second example of a tutorial strategy is what we call the
substitution with decomposition strategy, which was alluded
to above when we looked at the student who answered the
“two-jobs” problem with “A=5*g, B=30-g, C=7*B and
D=A+C”. Below we present an example of Miss Lindquist
tutoring with this strategy. (As this article went to press we
had just conducted our first test with a human student to help
us debug the system.  The following example is verbatim
from this test.)  This  strategy uses both Q_decomp and
Q_substitute questions.  Question Q_decomp sets the stage
for this strategy, and is used to break down the originally
composed problem into separate decomposed one-operator
problems  (as shown below in T2 and T3), introducing new
variables when appropriate (as in T3.)  Question Q_substitute
is used to scaffold the substitution step as shown in T4.

T1: Hello. Jane is "j" years old. Peg is "p" years old.  Mary is
Peg's age minus Tom's age. Tom is 3 years younger than

Jane.  Peg is "x" years older that Mark. Write an
expression for Mary's age. [Q_symb]

S1:(p-3)-(3-j)+(p+x)   [correct answer is “p-(j-3)”]
T2:Hmm. No.  Let me ask you and easier question. Use j and

3 to calculate Tom's age. [Q_decomp]
S2:3-j
T3:Hmm. No.  Try again please. What is Tom's age?  Hint:

pick one of these: j-3, 3-j, j+3, j*3, j/3, or 3/j. [This is a
rephrasing as explained in the hint section below]

S3:j-3
T4:Correct.  Calculate Mary's age. Use A instead of j-3 for

Tom's age.  [Q_decomp]
S4:p-a
T5:Correct. You are correct that p-A is Mary's age.  Now, can

you state this in terms of the numbers given in the
problem.  [Q_substitute]

S5:p-(j-3)
T6:Correct.

We note that this strategy is not one inspired by looking at
human tutors but by our cognitive analysis.  Suggestively, the
human student seemed to profit from this strategy. We look
forward to a controlled evaluation of this strategy to
determine its relative effectiveness.

Reflective Explanation Strategy
Mathematical communication is increasingly seen as a goal
for students, and in particular translating between an
algebraic representation, an English verbal representation,
and a concrete representation of numerical instances
(Schoenfeld et. al., 1992, Koedinger & Nathan) Other
researchers are also interested in wanting an ITS to elicit
explanations from students (e.g. Conati et. al., 1997.) We
noticed in the following dialog that our experienced tutor
made many requests for explanations that required the student
to translate from the symbolic representation to a verbal
representation  (lines 204, 210 and 212.) Or sometimes they
were asked to explain in English without having been told the
algebra (line 192 and 196.)

190. S: [reads problem]Bob left at 3 P.M. and drove 550 miles from
Boston to Pittsburgh to visit his grandmother.  Normally this trip
takes him "h" hours, but on Tuesday there was little traffic and he
saved 2 hours.  What was his average driving speed? [Q_symb]

191. S: ….Well … Ah … so he save two hours …ahum…
192. T: Do you know how to calculate average driving speed?

[Q_explain_verbal]
193. S: I think, but I forget
194. T: Well, average speed… As your mom drove here did she drive the

same speed the whole time. [tutor tries to make concrete]
195. S: No
196. T: But she did have an average speed.  How do you think you

calculate the average speed? [Q_explain_verbal]
197. S: It would be h hours divided by 550 miles an hour.
198. T: So which way is it?  It’s miles PER[verbal emphasis] hour.  So

which way do you divide?
199. S: It would be 550 divided by h. [writes “550/h=mph”]
200. T: OK, so now,.. that's how you calculate miles per hour.  So now

how about for this problem?  Read the problem again. Because
you got the right idea.  You know how to calculate average speed.
But what exactly do you have to do for this trip.

201. S: Um. Well he save two hours, but I don't know how that is
important

202. T: Well, how do you calculate... Not for Bob but for your mom, how
did you calculate what her average speed was driving to CMU
this morning?  [prompting for “average speed is equal to total
distance divided by total time”  like Q_explain_verbal]
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203. S: Ahm, I guess you would   I would have done it 550 divided by h
204. T: yeah  [even though the 550 is not for his mom]  That's how you

calculate average speed but what exactly is it?  550 represent
what?  [like Q_represents_what]

205. S: Miles per hour
206. T: No.
207. S: Oh  550 miles
208. T: Right
209. S: Divided by h
210. T: Which represents?   [like Q_represents_what]
211. S: Miles per hour
212. T: No what does h represent?   [like Q_represents_what]
213. S: Hours [This problem continues for 15 more conversational turns.]

Since this seems common in our tutorial dialog we have
implemented similar questions in the form of
Q_represents_what and Q_explain_verbal  as shown below.

T1: Hello. [Doing the “bike-trip” problem]  Please write an
expression for the total time the trip took. [Q_symb]

S1: m/s
T2: What does “m/s” represent (e.g. the speed on the

bike?)[Q_represents_what]
S2: the total time of the trip
T3: No, “m/s” represents the actual time on the bikes. Can you

explain how you would find the total time of the trip
using the time on the bikes? [Q_explain_verbal]

S3: The total time of the trip is equal to the amount of time for
the break added to the actual time on the bikes.
[Composed using pull down menus.]

T4: Good, now say what the total trip time is in symbols
[Q_symb]

S4: b+m/s
T5: Correct

There are many different contexts where you might want to
use explanations.  We are currently using them in situations
like the one that occurs at line S1 where the student might
have made an error of omission, rather than of commission.
By asking the student what they mean by “m/s” we might
prompt them to think more deeply about what that quantity
represents.  Another place where an explanation seems
appropriate is in a reflective context as mentioned in the
Hints section below.

Missing Parentheses Errors Remediation
A fourth example of a tutorial strategy is applicable only
when the student fails to use parentheses.   We model the
pedagogical decision of what to do in such  a case as having
to decide between treating the error as a slip (the student
knows how to use parentheses but forgot) or a serious
conceptual problem that demands a more through tutorial
intervention.   Our plan is to use the knowledge tracer
component, that keeps track of the probability the student
knows a particular skill, to decide if the error was a slip or
not.  If it is was a slip then we simply point out the error. On
the other hand, if its not a slip then we can engage in the
following dialog (assume the student said 7*30-g instead of
7(30-g))

T: What operation should you do first in 7*30-g?  The
multiplication or the subtraction? [Q_order_of_ops]

S: minus (tutor realizes that the student knows what should be
done first but lacked the conceptual understanding for
the need for parentheses)

T:  [Start a dialog about the rules for order of operations, such
as  “If evaluating 7-3*4/(5+2), what operations would
you do first and why?”]

Hints
Giving the students a hint is the simplest tutorial strategy we
have and is a common way that a traditional model tracing
tutors gives help.  Each question has a hint chain which is
simply a list of rephrasings of the question.  The rephrasings
get progressively more explicit, eventually, possibly, telling
the student exactly what to do3.  We speculate that students
will learn more if asked a question to prompt their own
knowledge construction, than if they were told a hint. If the
tutor has to tell the student the most explicit hint message
then there is a good chance the student might not understand
why that answer is correct.  We observed that our
experienced human challenged students’ answers when it
looked like the students guessed.  Therefore, if the student
receives the most explicit hint, Miss Lindquist has a strategy
to ask the student a follow-up reflective question about what
they received a hint on.

Other Tutorial Operations
In addition to the questions the tutorial model can pose, it can
also decide to do other things.  A few examples will suffice.
The tutor can decide whether to provide positive feedback
about a portion of the student’s answer that is correct, for
example

T: No, but the 5g is correct for the distance rowed.
The tutor can also decide to give simple negative feedback
like the following.

T: You used a “z” in your answer but there is no “z” in this
problem. Did you mean to make that an “x”?

Generally, we avoid simply reporting the results of the
student diagnosis, as this message does, but this is an
example of a error that is probably best remediated with a
simple message rather than a knowledge construction dialogs,
since the error is probably not a conceptual error.

A final element, but a very important one is making
sure the tutor provides the English cues for conversational
dialog coherence (Moore, 1993).  For instance the tutor
reasons whether a question should be prefaced with

T: No. Let me ask you an easier question…
or

T: No.  What is …[no prefacing]
or

T: Correct, Now, lets go back to this earlier question …
or

T: Okay, but where did the 5 come from…
We recognize that this is a simple approach, but it has been
able to take us a reasonable distance.

                                                            
3 The question of how explicit to make the “bottom-out”, or last hint
(i.e. “Do you tell the student the  answer?”) is not a question that we,
or the architecture, makes a commitment about as it appears to
depend greatly on context.  Some of our hint chains end with
multiple choice questions while others tell the student exactly what
to type.
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How is Miss Lindquist different from
traditional model tracing tutors?
Our experienced human tutor was very active, taking over
200 turns in an hour which averaged out to a comment every
20 seconds. Graesser et. al. and Lepper et. al. (1997) both
reported that tutors asked at least 80% of the questions (our
smaller sample was even higher.)  Our experienced tutor did
not wait for the student to ask for a hint, as many model
tracing tutors do. Miss Lindquist is more like a human in that
the dialog is largely through tutor initiative.  But this
difference with model tracing tutors should not be made too
much of, as model tracing tutors could easily have their hints
triggered automatically when an error is made.

McArthur et. al. criticized Anderson’s et. al. (1985)
model tracing ITS and model tracing in general “because
each incorrect rule is paired with a particular tutorial action
(typically a stored message), every student who takes a given
step gets the same message, regardless of how many times
the same error has been made or how many  other error have
been made. … Anderson’s tutor is tactical, driven by local
student errors (p. 200)”  and  goes on to argue for the need for
a more strategic tutor.  Miss Lindquist meets that criticism.
Miss Lindquist’s model of tutorial reasoning is both  strategic
(i.e. has multi-step plans) and tactical (i.e. reasons to produce
output at the single question level.)  She also intelligently
handles multiple errors and reasons about the order in which
to deal with them and then constructs a plan to deal with each
of them.  Miss Lindquist is a modest step on the path to
making a more dynamic tutor and promises to teach us about
the effectiveness of different tutoring strategies.

Planned Experiment and Future
Work
We believe that the good way to test theories of tutoring is to
build concrete instantiations of that theory, as represented by
computer programs, and perform experiments to determine
which are most effective.  We have taken a very modest step
in that direction with our tutorial model.  Though it has some
general tutorial knowledge, most of its interesting aspects
come from its content-specific pedagogical  knowledge.  We
look forward to measuring the effectiveness of this system
compared to effective benchmarked 2nd generation ITS
(Koedinger et. al., 1997; Anderson et. al., 1995).  We also
look forward to comparing the effectiveness of different
strategies.  Finally we forward the possibility that through
machine learning, Miss Lindquist  could become a more
effective tutor while at the same time instructing us on what
makes a tutor more effective.
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=relation types

TEXT:   "The Distance
             left to row"
UNITS:   yards
VALUE:  goal

TEXT: "The Distance 
           rowed so far"
UNITS:  yards
VALUE:  unknown

TEXT:   "The Distance
          across the lake"
UNITS:   yards
VALUE:  800

TEXT:    "speed of 
             rowing"
UNITS:   yards/minute
VALUE:  40

TEXT: "time rowing"
UNITS: minutes
VALUE:  m

OPERATOR: Plus

OPERATOR: Times

= quantity types

KeyQ2

Q!

Q4 Q5

Q3

R2

R1

Q3 = quantity identifer

SLOT-NAME: slot-value

FIX!!!

Figure 1.  A Picture of the working memory representation of a student after comprehending the problem
“Anne is in a rowboat in a lake. She is 800 yards from the dock.  She rows back towards the dock at a speed of
40 yards per minute for ‘m’ minutes.  How far is Ann from the dock?”
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Figure 2: A model of Miss Lindquist’s architecture.


