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Abstract: This paper illustrates a technique for determining whether the knowledge acquired by students over 
the course of an instructional intervention can be used flexibly across problem contexts. The technique relies on 
power law fits to training data obtained from log files. Power law curves can also provide insight into the 
learning rate and helps researchers determine when differences among instructional conditions begin to emerge.  
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Simply comparing learning outcomes that result from two or more distinct instructional treatments leaves 
numerous questions of interest to instructional researchers unanswered. Differences between pre-test and post-
test scores reveal little about the flexibility with which students will be able to use their newly acquired skills.  
Learning outcomes do not reveal enough to determine whether the treatment or some other pre-existing 
characteristic of students in a group contributed to the observed difference between treatments. Even in cases 
where no apparent difference exists in terms of learning outcomes, the course of the learning process may be of 
interest to researchers. Student may have reached a particular level of competency relatively early in one 
condition over the other.  

In this paper we describe a technique that employs learning curves derived from logs generated by model tracing 
tutors to make inferences about the course and effectiveness of learning. We do so in the context of a spreadsheet 
tutor designed to teach students spreadsheet cell referencing skills. The approach described here requires that the 
target skill or knowledge be decomposed into component skills or knowledge elements. In Cognitive Tutors 
(e.g., Corbett, Koedinger, & Hadley, 2001) we use ACT-R (Anderson & Lebiere, 1998) inspired production 
rules as the knowledge elements, however, the approach we describe is neutral to the particular representation of 
knowledge components and could be constraints (e.g., Mitrovic & Ohlsson, 1999), difficulty factors (e.g., 
Heffernan & Koedinger, 1998), or any other knowledge representation method.  We call these knowledge 
elements “learning factors” and the approach described here is an instance of Learning Factors Analysis 
(Koedinger & Junker, 1999; Heffernan, Croteau, & Koedinger, 2004).  The approach requires that the errors 
associated with each opportunity to practice a skill component be logged. Learning curves generated from such 
logs can describe performance at the start of training, the rate at which learning occurs, and the flexibility with 
which the acquired skills can be used. 

Power Law Fits of Data 
Newell and Rosenbloom (1993) have observed that skill improvement with practice follows power law, which 
appears as a linear relationship in log-log space. The greatest improvement on a skill occurs early in the learning 
process and slows down with subsequent practice (see figures 1 and 2 for examples of power law curves).  

The general function for this power law relationship is: E = Xnα 

E describes the error rate, or other performance criteria of interest.  

X describes performance on the first trial.  
n describes the opportunity to practice a skill 
α describes the learning rate 
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Anderson, Conrad, and Corbett have demonstrated that the power law relationship between practice and 
performance may not always be readily evident in the practice of complex skills. For instance student 
performance over the course of individual steps in each practice problem in the LISP tutor showed a rather 
chaotic pattern. However, by decomposing the skill required to program in LISP in terms of production rules, 
and examining performance as a function of the opportunity to practice each of the underlying rules Anderson 
and colleagues observed a clear power law relationship between practice and performance.   

Power law fits of learning outcomes as a function of the opportunity to practice basic knowledge elements can 
provide useful parameters that describe performance on the first learning trail and the learning rate. These 
parameters characterize the course of the learning process. This paper demonstrates that power law fits of 
practice data can also shed light on the depth of learning – whether the knowledge acquired can be used flexibly 
across contexts. We describe this technique in the context of a spreadsheet tutor described below.  

The Learning Context: A spreadsheet tutor 
Power law fits of training data provided valuable insight into the relative efficacy of two versions of a 
spreadsheet tutor. Mathan and Koedinger (2003) compared the relative effectiveness of a tutor emphasizing 
solution generation skills with a tutor that also supported the exercise of error detection and correction skills.  
The so-called expert model version of their tutor provided feedback on the basis of a model that emphasized 
error free and efficient task performance. Students were kept on a solution path – deviations from the solution 
path were remedied with immediate feedback. In contrast, a version of the tutor based on the model of a so-
called intelligent novice allowed students to make errors and observe the consequences of errors. The intelligent 
novice version gave students an opportunity to analyze their errors and generate a new solution. If student’s 
failed to correct errors at the solution step, corrective feedback served to get students back on the solution path.  

We hypothesized that the opportunity to reason about errors in the intelligent novice condition would facilitate a 
deeper conceptual understanding of domain principles.  As Merrill, Reiser, Merrill, and Landes (1995) have 
theorized, errors provide an opportunity to develop a better model of the behavior of operators in a domain.   
They attribute this to the fact that error recovery requires that students construct explanations about the causes 
and consequences of errors and act on their analyses.   This kind of active self-explanation and problem solving, 
they argue, contributes to a better understanding of domain operators and their applicability in problem contexts. 

Comparisons of the expert and intelligent novice versions of the tutors relied on tests of procedural knowledge 
and conceptual understanding immediately following training. Our assessments also included transfer and 
retention tests. Students in the intelligent novice condition outperformed students in the expert condition on all 
measures.  However, even such a broad set of outcome assessments did not serve to clarify whether these 
differences are qualitative, that is, they emerged as a consequence of the opportunity to build a different, more 
general model of domain operators as a result of reasoning about errors, or whether the differences are 
quantitative, that is, they emerged from a more efficient acquisition of the same domain operators.   Although 
randomization of subjects to condition and the statistical results make it unlikely, it is also possible that prior 
knowledge and experience among students in the intelligent novice condition account for or contributed to the 
observed difference.  Pre-test assessments of competence showed prior knowledge among students in both 
groups to be close to zero.  We turned to an analysis of power law learning curves to rule out two of these three 
possibilities.  

Assessing depth of encoding with Power law fits 
Over the course of their interaction with the spreadsheet tutor, students worked with variations of six types of 
problems represented in the tutor (Table-1) (see appendix 2 for overview of tutorial domain). There are several 
ways in which a learner may encode the knowledge necessary to solve these problems. A more shallow or 
superficial encoding would require a unique rule for each type of problem. A deeper, more flexible knowledge 
encoding, would result in the acquisition of a smaller set of rules that would apply more broadly across 
problems. For instance, problems one and two in the table below require no absolute references because the 
formula will refer to cells at the same relative location as the original formula no matter where it is pasted. 



Table 1: Six types of problems represented in the spreadsheet tutor with shallow and deep skill encodings. 

 

Example of each type of problem represented in the tutor 

 

Shallow encoding: 
Each problem type 
has a distinct 
knowledge 
component 
associated with it. 

Deep encoding: Certain 
knowledge components 
generalize across 
multiple problem types. 

 

1. Relative-row 

 

2. Relative-column 

1. Relative 

 

 

3. Absolute-row 

 

4. Absolute-column 

2. Absolute 

 

5. Double absolute 3. Double absolute 

 

6. Matrix 4. Matrix 



A deep and flexible rule would treat the first two problems the same way. However, a shallow knowledge 
encoding would rely on superficial features of the problems such as the orientation (in a row vs. in a column) of 
the cells to be pasted into. This shallow encoding will result in two rules, one relative referencing rule relevant to 
the horizontal orientation of paste cells, the other to the vertical orientation of paste cells. 

An analysis of learning curves provides the basis for determining whether students acquire a shallow or deep 
encoding of skills. Consider the two relative referencing problems in the table below. If students were to encode 
a separate rule for each of the two types of cell referencing problem, each iteration through the six types of 
problems would provide a single opportunity to practice the two distinct production rules associated with two 
relative referencing problem types. In contrast, with a deeper encoding, where a single production rule would 
relate to the two problem types, students would receive two opportunities to practice the general production rule 
applicable to both problem types.  Yet another general encoding one could make with the type of problems 
highlighted in the table below would be to have a single production rule that applied to both the third and fourth 
problems. 

We created plots of the number of attempts required to generate correct solution to the problems as a function of 
the opportunity to practice underlying production rules (see figures 1 and 2 below). We created two plots, each 
with a different assumption about the underlying encoding. We created one plot assuming a six skill, shallow 
encoding associated with the six types of problems represented in the tutor and another representing a four skill 
encoding of the six types of problems. Thus, with each iteration through the six types of problems, learning data 
organized with respect to a six skill encoding would show a single opportunity to apply each production rule. In 
contrast, with a four skill, deep encoding, the log data is organized such that there are two opportunities to apply 
the general rule relevant to the two types of relative referencing problems and two opportunities to practice the 
general rule associated with the two single absolute reference problems. Additionally there would be one 
opportunity each to apply each of the two rules relevant to the two other types of problems represented in the 
tutor. Fitting power law curves to data plotted with these alternative assumptions about the underlying skill 
encoding can help determine whether students were acquiring a skill encoding that would generalize well across 
problems or not.  

It is worth illustrating how these two different knowledge or skill models, the shallow vs. deep, make different 
predictions about the shape of the learning curve.  Let us consider how students acquiring the shallow six-skill 
model are likely to perform as they repeat instances of problems in the six categories in Table 1.  The shallow 
six-skill model predicts that the learning experiences on the first six problems will be independent of each other 
(the X and α in the power law formula above), but that performance on the next six problems should improve. 
That is, the error rate (E in the formula above) should be smaller on the second opportunity to apply each of 
these skills (when n = 2 in the formula) than it is on the first opportunity (when n = 1).  On the third iteration 
through these six problems (n = 3), the error rate will be even lower. 

Now, let us contrast the predictions of the four-skill model.  For students acquiring the deep four-skill model, the 
learning experiences on the first six problems will not be independent of each other.  Instead, the second and 
fourth problems will be repetitions (n = 2) of skill elements (the “relative” and “absolute” skills in the third 
column of Table X) practiced previously in the first and third problems.  Thus, for students acquiring the deep 
four-skill model, there should be transfer of the learning experience from problem 1 to problem 2 (the relative 
skill) and from problem 3 to problem 4 (the absolute).  And thus, performance will increase (the error rate will 
drop) more quickly on these problems than it will for students that acquire the shallow six-skill model. 

Figures 1 and 2 show power law fits of the two instructional conditions, intelligent novice and expert, to the two 
alternative skill models. The x-axis in the graphs represents the number of opportunities to practice a skill, the 
“n” in the formula.  The y-axis represents an alternative version of error rate where instead of computing the 
proportion incorrect (0 if a step is performed correctly on the first attempt and 1 otherwise), we computed the 
number of attempts a student made until they finally got the answer correct (1 if a step is performed correctly on 
the first attempt, 2 if correct on the second attempt, and so forth).  The points plotted are the average number of 
attempts across all students and all skills (6 per point in Figure 1 and 4 per point in Figure 2) for each 
opportunity number (n).    



Power fits to six skill model
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Figure 1: Power law fits to a more shallow six-skill model.  Note how the expert (EX) condition fits better 
here than in the deeper four-skill model in Figure 2. 

 

Power fits to four skill model
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Figure 2: Power law fits to a deeper four-skill model. Note how the intelligent novice (IN) condition fits 

better here than in the more shallow six-skill model in Figure 1. 



We performed a power law fit to each of the four sets of data points in Figures 1 and 2.  Note that all models 
provide a reasonable fit to the learning curve data with R2 values ranging from 0.59 to 0.97.  The important result 
is that the learning behavior of students in the Intelligent Novice condition is better fit by the deeper four-skill 
model (R2 = 0.97) than the shallow six-skill model (R2 = 0.95) whereas the learning behavior of the students in 
the Expert condition is better fit by the shallow six-skill (R2 = 0.75) model than the deeper four-skill model (R2 = 
0.59).  In other words, the learning curves provide evidence that students getting Intelligent Novice instruction 
acquire a deeper, more flexible encoding of the domain operators whereas the students getting Expert instruction 
acquire a shallower, less general encoding of the domain operators. These fits demonstrate that students in the 
intelligent novice condition were acquiring a qualitatively better skill encoding. That is, students in the 
intelligent novice condition were acquiring skills that would apply broadly across problem types.  

These plots also provide some insight into other aspects of the quality of learning fostered by each version of the 
tutor. From both plots, it is clear that students in both conditions start of at the same level. The advantage for the 
intelligent novice condition is only evident in the second attempt to practice problems. It is also clear that 
students in the intelligent novice condition demonstrate a higher learning rate than students in the expert 
condition.  The exponent in the power law function (α) represents the learning rate. Power fits associated with 
both the six skill and the four skill reveal a learning rate in the intelligent novice condition that is twice as high 
as the expert condition (six skill – EX: -0.10  IN: -0.27; four skill – EX: -0.16  IN: -0.32) (See figures 1 and 2). 
The appendix steps the reader through the procedure of conducting the analysis described here on the basis of 
log file data.  

Conclusion 
This paper illustrates a technique for determining whether the knowledge acquired by students over the course of 
an instructional intervention can be used flexibly across problem contexts. The technique relies on power law fits 
to training data obtained from log files. Analysis of power law curves also provides insight into the learning rate 
and helps researchers determine when differences among instructional conditions begin to emerge.  

While the analysis illustrated here has relied on averaging over students, an alternate approach might be to 
perform such an analysis based on individual student data. For instance, we could have fit the 4-skill vs. 6-skill 
models to individual students and than count the number of students in each condition that better fit one vs. the 
other.   
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Appendix 1: Analysis Procedure 
This appendix outlines the steps we took to go from log file data to the learning curve analysis.  Note, this 
procedure is an instance of Learning Factors Analysis (Koedinger & Junker, 1999; Heffernan, Croteau, 
Koedinger, 2004).  Figure 3 illustrates part of the file from which the Learning Factors Analysis was performed.  
Columns A-E and J and K come directly from the tutor interaction log data.  The Problem Number column 
displays the order in which the student saw each problem.  The “Attempts required to correctly solve” shows 
how many times the student tried to write a formula before getting it correct. The average of this value, across 
different problem types and students, is displayed on the y-axis of Figures 1 and 2. The remaining columns show 
the individual formula attempts the student made.   

Columns F-I are created as the key step in producing learning curves.  Columns G and I are the knowledge 
element or skill coding for each of the problems for the six-skill and four-skill models, respectively.  The skill 
names correspond to those in Table 1.  The values in column F are the number of opportunities (the N in the 
power of law of practice formula) the student has had to practice the skill in column G (the six-skill model).  
Similarly, the values in column H are the number of opportunities the student has had to practice the skill in 
column I (the four-skill model).  Notice how the opportunity counts between the six-skill model (Column F) and 
four-skill model (Column H) deviate in row 4 of the table.  This problem is the third the student has attempted 
(Problem Number = 3).  It is an instance of Problem Type 4 and is encoded in the six-skill model as “relative 
row” (meaning it is a relative reference, and it is copied within a row).  Because this problem is the first 
opportunity the student has had to apply the “relative row” skill, the “opportunity to practice six-skill knowledge 
lements” (column F) is 1.  In contrast, in the four-skill model, Problem Type 4 is encoded as “relative”.  Because 
the student has applied this skill before (in problem 1), this 3rd problem is the second opportunity for the student 
to apply this skill.  Thus, the “opportunity to practice four-skill knowledge elements” (column H) is 2. In other 
words, the four-skill model predicts transfer between instruction on problem 1 and performance on problem 3 
whereas the six-skill model predicts students will be learning anew from problem 3. 

The final steps in our analysis involve drawing learning curves and fitting a power law function to the data.  
Such data analysis can be done with a number of software packages.  We have used Microsoft Excel.  Excel’s 
“Pivot Table” feature makes it relatively simple to make an x-y function table relating Opportunity values (e.g., 
Column F) with the average of the Attempts (column J) across all rows that have the same Opportunity value.  
For instance, for the six-skill model and Opportunity = 1, the Attempts in rows 2-7 will be averaged together (for 
Student #1 shown in this excerpt) along with all the other rows (not shown in this excerpt) where Opportunity = 
1 for all the other students in the data set.  Once this x-y function table is created (relating Opportunity and 
average Attempts), Excel’s charting features can be used to create a scatterplot of the data.  These features also 
include options for curve fitting and a power function is one of the possible choices. 

 

 

Figure 3: Part of file on which analysis described on preceding pages is based.



Appendix 2: Tutorial Domain — Spreadsheet Cell Referencing 
A spreadsheet is essentially a collection of cells on a two dimensional grid.  Individual cells may be addressed by 
their column and row indices.  Column indices (also called column references) are denoted by letter, whereas 
row indices (often called row references) are denoted by number.  Cells may contain alphanumeric data and 
formulas.  Formulas can refer to values in specific cells by referring to their addresses.  So a user could enter a 
formula in cell C3 (in column C and row 3) that adds the content of cell A3 and B3 by typing “=A3+B3”. 

Formulas may be reused to perform iterative operations.  This is accomplished through a scheme called relative 
referencing.  Consider the spreadsheet depicted in Figure-4.  One could enter a formula in cell B5 that adds the 
contents of cells B2, B3, and B4.  The corresponding operation can be performed in cells C5 and D5 simply by 
copying the formula entered in cell B5 and pasting  it into these new locations.  When pasted, Excel modifies the 
formula to refer to cells that lie at the same relative location as the original formula.  For example the formula in 
Cell B5 referred to the 3 cells above it.  When the formula is copied and pasted into cells C5 and D5 the 
formulas are modified to refer to the three cells above these new locations.   

 

In order to determine the appropriate relative references at new locations, Excel updates formulas based on 
where the formula is moved.  When a formula is moved into a cell in a different column, Excel updates column 
references in the formula by the number of columns moved (see Figure-8, =B2+B3+B4 becomes =D2+D3+D4 
when moved across columns from B5 to D5).  Similarly, when a formula is copied and pasted into a cell in a 
different row, all row references in the formula get updated by the number of rows moved (see Figure-8, 
=B2+C2+D2 becomes =B4+C4+D4 when moved across rows from E2 to E4).    

While relative referencing works in many task contexts, it is sometimes necessary to hold a row or column 
reference fixed regardless of where a formula is moved.  Consider the example in Figure-5.  The value in cell B2 
(Hourly Wage) has to be multiplied with the values in cells A3, A4, and A5.  If the formula, =A3*B2 is entered 
into B3 and pasted into cells B4 and B5, all row references will change in order to refer to cells that lie at the 
same relative location as those referred to by the formula in B3.  This would produce =A4*B3 in B4 and 
=A5*B4 in B5 (instead of =A4*B2 and =A5*B2 respectively).  In order for the formula to continue to refer to 
cell B2, the row reference 2 has to be held fixed as an absolute reference.  This can be done by placing a ‘$’ 
ahead of ‘2’.  Thus, in order for the formula in B3 to work appropriately when copied and pasted, it would be 
modified to read =A3*B$2. 

 

 

Figure 5: Inappropriately used relative references (left) remedied with absolute references (right) 

Figure 4: Relative Referencing allows formulas in B5 and E2 to be reused via copy and paste 


