On the Design of Novel Notations and Actions to Facilitate
Thinking and Learning

Kenneth R. Koedinger
Department of Psychology
Carnegie Mellon University
Pittsburgh, Pa 15213

EMAIL: koedinger@psy.cmu.edu

ABSTRACT

There are certain domains, for example, word problems or high school geometry,
which even well-motivated students find particularly difficult. | claim that such domains
are enigmatic to students because the problem solving notation used in current
instruction does not provide a good reflection of the underlying problem solving
processes necessary to be successful in these domains. | argue that some domains
are not enigmatic in this sense, like algebra equation solving, and thus, are not good
candidates for model-based notation design. However, domains that are enigmatic,
like geometry theorem proving, can be made less so by (1) developing a cognitive
model of skilled problem solving in the domain and (2) designing novel notations and
actions that reify the underlying structures and processes of the model. In previous
research, we found that skilled geometry problem solvers plan proofs much differently
than the problem solving approach implied by textbook solution examples (and by
previous cognitive models). A new cognitive model of this perceptually-based
planning approach has been used to design novel geometry notations and actions
that facilitate a way of thinking about geometry proofs that is more like the thinking of
skilled problem solvers. These notations and actions have been implemented in a
computer environment called ANGLE (A New Geometry Learning Environment).

Appears in Proceedings of the International Conference on the Learning Sciences. Charlottesville, VA: Association
for the Advancement of Computing in Education. 1991.

ENIGMATIC DOMAINS

There are certain subjects, for example, high school word problems and geometry
proofs, which even well-motivated students find particularly difficult. | call such
domains enigmatic domains. A key claim about them is that:

Students find enigmatic domains patrticularly mysterious because the
problem solving notation used in current instruction does not provide a
good reflection of the underlying problem solving processes students
must acquire to be successful.

While cognitive science tools can be used to identify these underlying problem
solving processes, achieving effective instruction is not as simple as describing these
processes or strategies to students. People are not very good at learning from explicit
procedural instruction (e.g., consider trying to learn geometry problem solving by
reading an Al program that solves geometry problems). Instead, people learn more
easily from example solutions or cases (Anderson, Farrell, and Sauers, 1984;
Riesbeck and Schank, 1989; Ward and Sweller, 1990; Zhu and Simon, 1987).
However, not all examples are created equal: The ease of learning from example
solutions depends crucially on the similarity between the example’s notation and the
problem solving process the student is supposed to learn. By developing a better
understanding of these problem solving processes, particularly in enigmatic domains,
we may be able to design notations that take some of the mystery out of acquiring
enigmatic skills.

To illustrate the distinction between enigmatic and non-enigmatic domains, |
contrast two domains: algebra equation solving and geometry theorem proving. This
distinction is important because if the current notation is already a good reflection of
the underlying problem solving process (i.e., in a non-enigmatic domain), designing
better instruction may prove difficult. This appears to be the case for algebra equation
solving.

A Non-Enigmatic Domain: Algebra Equation Solving

Field tests of two different intelligent tutoring systems for algebra have shown that
while students clearly learn from these tutors, they do not appear to learn more
effectively than students in a normal classroom (Lewis, 1989; Stasz, Ormseth,
McArthur, and Robyn, 1989). In addition, mathematics teachers report that algebra
equation solving is not a particularly difficult skill for well-motivated students to acquire.
It would be useful if we could characterize what it is about current instruction and/or the
skill itself that makes learning algebra equation solving much more straightforward for
students than learning some other skills like geometry theorem proving.

One way to characterize the task of learning mathematics problem solving is in
terms of two subtasks: 1) learning the basic problem solving operators, operator
application and 2) learning how to choose among operators, operator selection. In
algebra, both these subtasks can be accomplished using general weak methods —
methods that most high school students have (at least) tacit knowledge of. Table 1
shows an example algebra solution.

Table 1. An example solution in the domain of algebra equation solving.

1) 3x - 13 = 2{x — 3)

2y 3% - 13 =2x - 6 Distribute

3) 3x - 13 - 2x = - 6 x's to left side

4) 3x - 2x = -6 + 13 Num's to right side
5) x =17 Simplify

Learning problem solving operators in this domain can be done in a
straightforward way by focussing on pairs of successive steps and inducing the
operation that gets from one step to the next. Looking at the transition between steps 2
and 3 and similarly between steps 3 and 4, students can induce that terms, like 2x in
step 2, can be moved from one side of an equation to another by switching the sign of
the term. For example, in going from step 2 to 3, 2x goes from the right hand side
(RHS) in step 2 to -2x on the LHS in step 3, while in going from step 3 t0 4, -13 goes
from the LHS to +13 on the RHS.

Since many possible operators can apply to a particular step, students must learn
to make good operator selections in addition to learning the operators themselves.
Because of the nature of the algebra domain, students need to learn very little special-
purpose operator selection knowledge. Instead, a the domain-general heuristic,
difference-reduction, can be used to reliably select among operators. The difference-
reduction heuristic is to choose operators that reduce (visible) differences between the
current state and the goal state. (This heuristic is used, for example, as a key
component of Newell and Simon’s (1972) means-ends analysis method.) For
example, from step 2 a student could notice that one of the differences between this
state and the desired goal state (x = ?) is that there is an x-term on the RHS of step 2.
This difference can be reduced by applying the “move-to-other-side” operator
described above.

In algebra, the tasks of learning both operator application and operator selection
are fairly straightforward because the notation of example solutions facilitates the use
of general problem solving and learning methods. That these to general methods can
work to learn algebra equation solving is evidenced by an early machine program that
was successfully programmed to learn algebra in exactly this way (Neves, 1978).

An Enigmatic Domain: Geometry Theorem Proving

In contrast, the situation in geometry is much different. First, learning operator
application is not so straightforward as it is in algebra. See Table 2 which shows an
example solution from a geometry textbook. It is not easy to induce operators from
successive steps in solution partly because successive steps are not always related,
for example, step 4 comes from step 1 not step 3. The numbers in the parentheses on
the reasons side of the proof can help make this connection but, in fact, examples in
traditional textbooks often do not use these numbers. Even if the student makes the
proper connections between steps, the job of inducing an operator that gets from say
step 1 to step 4 is not easy. In fact, if the student only considers the statement notation
itself, ZAED £ ZECA and AE £ AC , this induction is impossible. One must also consider
the objects referred to by these statements (the angles and segments in AEAC) in

order to have any chance of inducing the oppesite-Sides operator (in a triangle, the
sides opposite congruent angles are congruent).

Table 2. An example solution in the domain of geometry theorem proving.

Given: ZAEDZ ZECA
D midpoint EC

Prove: DA bisects ZCAE

E 5) C
PROOF:
Statements: Reasons:
1. ZAED € ZECA 1. Given
2.D midpoint EC 2. Given
3.DCZED 3. Def. of midpoint (2)
4. AEE AC 4. Opposite sides (1)
5.ADEAD 5. Reflexive (diagram)
6. AEAD £ ACAD 6. Side-Side-Side (3, 4, 5)
7. ZCAD £ ZDAE 7. Corresponding-parts (6)
8. DA bisects LCAE 8. Def. of bisector (7)

The task of learning operator selection is even more problematic. Domain-general
heuristics like difference reduction are not effective in this notation. There is no natural
way to characterize the differences, for example, between the givens ZAED £ ZECA
and D midpoint EC and the goal DA bisects ZCAE in a way that could aid in the selection
of operators to reduce these differences.

Previous models of geometry problem solving (e.g., Gelernter, 1963; Anderson,
Boyle, and Yost, 1985) have operator application knowledge that corresponds with the
steps in two-column proofs, that is, the definitions, postulates, and theorems of
geometry. Koedinger and Anderson (1990) called this problem space the execution
space since it is made up of operators that correspond with the steps that problem
solvers conventionally write down (or “execute”) in solving problems. (The problem
space discussed above for algebra is the execution space for that domain.) As further
evidence that domain general search heuristics are not effective in this problem space,
these previous computer models were only successful through the use of many
domain specific heuristics.

IDENTIFYING IMPLICIT PLANNING

A straightforward way to model problem solving in many domains is as a heuristic
search in the execution space — the only trick is to find appropriate operator selection
heuristics. From the perspective of a student, to the extent that the execution space
provides a good characterization of skilled problem solving, as it seems to in algebra,
his or her learning job is made easier. Execution operators can be induced fairly
directly from the steps of worked out examples and may be supported by verbal
descriptions in textbooks and lectures.

Although heuristic search in the execution space is a natural candidate for
modeling problem solving in a domain, it may not be the problem space
representation that skilled problem solvers typically use in this domain. It may be
possible to find a better problem space representation in which solutions can be
planned. Plans developed in this alternative representation can be executed in the
conventional one. This is exactly what we have found that skilled geometry problem
solvers do (Koedinger & Anderson, 1990). They plan key proof steps using a
perceptually-based problem space representation (called the diagram configuration
space) and deal with the details of the execution space after a complete (abstract)
proof plan has been discovered. This approach yields a dramatic reduction in the
geometry search space from more than 100,000 states in the execution space on a
particular proof problem to just 12 in the diagram configuration space. In addition, the
diagram configuration model (DC) provides a more accurate account of the planning
behavior we have observed in the verbal reports of skilled problem solvers. Further
details on the DC model can be found in Koedinger and Anderson (1990).

Essentially, we found that skilled subjects were skipping steps in the process of
developing a proof plan. The regularity of this step-skipping within and between
subjects suggested that subjects had “thinking steps” (operators) that are not
represented in the execution space. From the perspective of the student, these
thinking steps are an implicit part of the planning process which, in contrast to the
execution operators, cannot be directly induced from worked out examples. In other
words, when there is implicit planning in the thinking of skilled problem solvers, there
may be aspects of a successful problem solving method that are hidden in the
traditional curriculum.

DESIGNING INTERFACE NOTATIONS AND ACTIONS TO REIFY
IMPLICIT PLANNING

Building a cognitive model of implicit planning is the first step in this approach to
model-based notation design proposed in this paper. Once an accurate model of
implicit planning has been developed the challenge is to find a way to communicate
this model to students. Since people seem to learn best by doing, directly
communicating it to them doesn’t usually help much. By design, this model contains
problem solving process that are not reflected in the notation of the current curriculum.
Thus, it may be possible to invent new notations which reify the previously hidden
structures and processes. These notations can be the basis for interface design.

We have applied this approach in the design of ANGLE: A New Geometry
Learning Environment. The cognitive model we developed, DC, played a key role in
guiding the design process. Figure 1 shows the interface of ANGLE as it stands in the
middle of the solution of the problem in Table 2.

An obvious design principle for a computer interface is that it should be easy to use
and learn. A less obvious principle has to do with the role of interface as a subtle, yet
ever-present, form of instruction. This implicit instruction comes both in the form of the
notations used in the computer interface and also in the actions allowed by the
interface. Notations should be created which mirror the important underlying
representations of the problem solving model, while actions should be created which
mirror the important underlying processes of the problem solving model. In this way,
students can begin to internalize both the desired representations as they use the
interface notations and the desired processes as they perform interface actions.

J7?

A GOAL: A
L/ D

DA bisects ZCAE

| ZcADE LDAE |

AACD £ AAED z
bA L Ec
A | oc=em |
A
=] s
:=:%: GIVENS: | LAEDE ZLECA | D midpeiat EC standard

Figure 1. The ANGLE interface as it stands in the middle of the
solution of the problem in Table 2. Students can work forward,
backwards, or post “island” subgoals. An instance of the ISOSCELES-
TRIANGLE schema is currently being instantiated in the problem
diagram.

ANGLE Interface Notations

The ANGLE interface includes a number of examples of notations which reify
representations in the cognitive model we developed. The key representations in the
DC model are diagram configuration schemas that tie together perceptual knowledge
of prototypical geometric categories with conceptual knowledge of properties and
sufficiency conditions for these categories. The most prominent and important
notational devices in ANGLE are the icons used for representing generic diagram
configuration schemas and specific instances of these schemas. The generic schema
categories are represented by icons in menu on the left in Figure 1. The icon for the
ISOSCELES-TRIANGLE schema is currently highlighted (as are the segments in the
diagram the make up an instance of this schema — discussed below). Student-
selected schema instances are represented in the proof graph as a miniature picture
of the relevant part of the diagram. For example, an instance the PERPENDICULAR-
ADJACENT-ANGLES schema appears on the far right side of the screen and the
miniature picture contains only the segments DA and EC that make up the
perpendicular lines.

Following the Geometry Proof Tutor (Anderson, Boyle, and Yost, 1985), ANGLE
incorporates a graph representation of proofs in contrast to the two-column format of
traditional geometry instruction. This proof graph notation reifies the search process:

1) by explicitly indicating how a correct solution must be a chain of steps
linking the givens to the goal,

2) by allowing the posting of subgoals as possible future links in the
solution chain, and

3) by explicitly indicating dead end solution attempts which are a
common part of problem solving (even for experts).

In the proof graph proven statements appear in the bold boxes while unproven
statements appear in the dotted boxes.

Following a conventional notation used on paper, ANGLE uses hash marks in the
diagram to indicate segment and angle congruence statements that have been given
or proven. For example, see the markings in diagram that indicate the angles in the
given statement ZAED £ ZEDA are congruent. (The other proven statement DC £ ED is
also marked in the diagram, but the markings are somewhat occluded by the
highlighting.) These markings reify the equivalence class nature of segment and
angle congruence in contrast to the binary relationships of the formal notation. In other
words, to indicate that 3 angles are all congruent to each other using the hash mark
notation, one can mark all three with the same marking — the marking serves as a
token of the equivalence class containing all three angles. In contrast, the formal
notation requires three binary statements to represent this situation, for example, £1 £
L2, L2 £3,and L1 £ £3.

Finally, as a further aid to the acquisition of schemas, ANGLE highlights a schema
within the problem diagram whenever the mouse passes over the corresponding
schema instance icon in the proof graph. This is intended to reinforce the relationship
between the schema and the rest of the diagram. This is a kind of dynamic notation
which cannot be feasibly employed with paper and pencil.

ANGLE Interface Actions

Following the major processes in the cognitive model, ANGLE interface actions are
broken down into (1) diagram parsing actions and (2) planning actions. The diagram
parsing actions are those done in order to post schema statements. First the student
selects a schema type and then indicates the lines within the diagram that make up an
instance of this schema. Figure 1 shows a student instantiating the ISOSCELES-
TRIANGLE schema — note that only the segments that make up this instance are
selected, AD is not. This particular way of constructing a statement, as opposed to the
way a student constructs one in the Geometry Proof Tutor or on paper, is meant to
reinforce the relationship between the schema instance and the problem diagram in
which it is embedded.

Planning actions are those done in order to justify schemas and their properties.
To some extent these actions are more elaborate than those made in a two-column
proof on paper: In ANGLE, the student must explicitly indicate the premises that lead
to a conclusion (that is, by drawing the lines between them), while in the typical two
column proof these links are only implicit. On the other hand, the planning actions are
for the most part less elaborate than those required for a two column proof. Certain

details required in a two column proof can be left out while constructing a plan.
Students can omit a) certain statements usually required in a complete proof, for
example, the reflexive statement AD £ AD can be omitted when the student goes to
prove AACD £ AAED in Figure 1, and b) the rules or “reasons” that usually appear in
the right column of a two-column proof.

Any tutor interface (or notational scheme for that matter) is implicitly taking an
instructional stance about what things are hard and/or important to learn and what
things are not. Three important aspects of the instructional stance taken by ANGLE’s
interface are worth making explicit: (1) learning about the logical linkages between
proof steps is hard and important, (2) learning the details of proof execution is less
important and perhaps less hard than learning proof planning, and (3) learning how to
parse geometry diagrams into particular chunks (DC-schemas) is hard but it is
important for successful search in a vast problem space. The first point is shared by
the Geometry Proof Tutor’s interface, but not by the two-column notation used on
paper. The last two points are special to ANGLE’s interface.

REFERENCES

Anderson, J. R., Boyle, C. F. and Yost, G. (1985). The geometry tutor. In Proceedings
of the International Joint Conference on Artificial Intelligence-85. Los Angelos:
IJCAL.

Anderson, J. R., Farrell, R. and Sauers, R. (1984). Learning to program in LISP,
Cognitive Science, 8: 87-120.

Gelernter, H. (1963). Realization of a geometry theorem proving machine. In E. A.
Feigenbaum & J. Feldman (Eds.), Computers and Thought. New York: McGraw-
Hill Book Company.

Koedinger, K. R. and Anderson, J. R. (1990). Abstract planning and perceptual
chunks: Elements of expertise in geometry. Cognitive Science, 14: 511-550.

Lewis, M. W. (1989). Developing and evaluating the CMU algebra tutor: Tension
between theoretically and pragmatically driven design. Paper presented at the
annual meeting of the American Educational Research Association, San Francisco.

Neves, D. M. (1978). A computer program that learns algebraic procedures.
Proceedings of the 2nd Conference on Computational Studies of Intelligence,
Toronto.

Newell, A. and Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

Riesbeck, C. and Schank, R. C. (1989). Inside case-based reasoning. Hillsdale, NJ:
Lawrence Erlbaum Associates, Inc.

Stasz, C., Ormseth, T., McArthur, D. and Robyn, A. (1989). An intelligent tutor for basic
algebra: Perspectives on evaluation. Paper presented at the annual meeting of
the American Educational Research Association, San Francisco.

Ward, M. and Sweller, J. (1990). Structuring effective worked examples. Cognition
and Instruction 7(1): 1-39.

Zhu, X. and Simon, H. A. (1987). Learning mathematics from examples and by doing.
Cognition and Instruction 4:137-166.

