
Toward a Rapid Development Environment
for Cognitive Tutors

Interactive Event during AIED-03

Kenneth R. KOEDINGER
Vincent A.W.M.M. ALEVEN

Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213, USA

koedinger@cmu.edu, aleven@cs.cmu.edu

Neil HEFFERNAN
Computer Science Department
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609-2280, USA

nth@WPI.EDU

1. Introduction

Cognitive Tutors have been very successful (Anderson, Corbett, Koedinger, Pelletier,
1995; Koedinger, Anderson, Hadley & Mark, 1997) but take a very significant amount of
development effort. We are developing a suite of Cognitive Tutor Authoring Tools
(CTAT), shown in Figure 1, intended to make tutor development both easier and faster for
experienced modelers and possible for potential modelers who are not experts in cognitive
psychology or artificial intelligence programming. Our concrete goal is to experimentally
demonstrate a reduction in development time by a factor of three. We are employing
Human-Computer Interaction (HCI) methods and Cognitive Science principles to design
development tools that reduce the time programmers and cognitive scientists need to spend
in order to develop a Cognitive Tutor. Our preliminary analytic and empirical analyses
compare use of CTAT with use of our current development environment and indicate a
potential reduction in development time by a factor of about two.

The tools are currently in use by people in our research group at Carnegie Mellon
University to develop a Cognitive Tutor for introductory genetics. One unit of this tutor
that was partly developed with the tools is currently being pilot-tested at two universities.
Also, the tools were used by the students in a graduate level/upper undergraduate level
course on intelligent tutoring systems taught at CMU this spring semester. Finally, the tools
were used by the participants of the 3rd Annual CIRCLE Summer School on Intelligent
Tutoring Systems, which was held recently at Carnegie Mellon University.

Figure 1: The prototype Cognitive Tutor Authoring Tools

2. The Cognitive Tutor Authoring Tools

Our rapid development environment, illustrated in Figure 1, consists of the following tools:
ß A GUI Builder (top left) to create a graphical user interface (GUI) for the tutor.
ß A Behavior Recorder (top right), used (a) to record solution paths for a given problem,

(b) to create a problem-specific “pseudo tutor” and (c) to test a production rule model.
ß A WME Editor and a Production Rule Editor, dedicated editors to create a production

rule model.
ß A debugging tool called the Cognitive Model Visualizer.

3. Event outline

The event will have three main sections: introduction, hands-on, and discussion. During the
introduction, we will discuss the goals and planned contributions of the project and provide
background information on Cognitive Tutors. Each Cognitive Tutor has a cognitive model
that specifies how a student might reasonably go about solving a problem in the given
application area. The tutor uses the model to follow the student’s actions and provide step-
by-step guidance, in a process called model-tracing (Anderson, et al, 1995).

During the hands-on part of the event, the participants will work with the tools to
develop part of a tutor for a simple domain such as multi-column addition. First, they will
create a “pseudo tutor” which, on a single problem, behaves like a full-blown Cognitive
Tutor but is much easier to build. The pseudo tutor will then be used as the basis for
creating part of a cognitive model that can drive a “full” Cognitive Tutor.

DDDrrraaaggg &&& dddrrroooppp iiinnnttteeerrrfffaaaccceee
dddeeesssiiigggnnn &&& iiimmmpppllleeemmmeeennntttaaatttiiiooonnn

UUUssseeerrr---ggguuuiiidddeeeddd gggeeennneeerrraaalll iiizzzaaatttiiiooonnn fffooorrr
mmmooodddeeelll dddeeesssiiigggnnn &&& iiimmmpppllleeemmmeeennntttaaatttiiiooonnn AAAuuutttooommmaaattteeeddd ttteeessstttiiinnnggg

DDDeeebbbuuuggggggiiinnnggg vvviiisssuuuaaalll iiizzzaaatttiiiooonnnsss

CCCooogggnnniiitttiiivvveee tttaaassskkk aaannnaaalllyyysssiiisss bbbyyy dddeeemmmooonnnssstttrrraaatttiiiooonnn

In order to build the pseudo tutor, the participants will develop a user interface
using the GUI Builder tool, dragging and dropping widgets as needed. Having completed
the GUI, they will set up a tutor problem in the GUI and demonstrate one or more solution
paths, simply by performing solution steps in the GUI. The Behavior Recorder will
automatically record the demonstrated paths in a “behavior diagram”. The nodes in the
diagram represent problem-solving states (which typically correspond to the states that the
GUI goes through in the process of solving the given problem), the links potential student
actions. The participants will attach hint sequences to links in the diagram. They will also
add links that represent common student errors and attach “bug messages” to these links. At
this point, the pseudo tutor will be complete. The participants will test it to see that it
provides useful help and feedback on the given problem. The capability to build pseudo
tutors is useful to do rapid prototyping or to build tutors in domains where there are few
problem instances per problem type. It is useful also because the behavior diagram guides
the construction of a cognitive model.

The next step for the participants of the Interactive Event will be to construct some
components of a cognitive model that can be used to drive tutoring over a wider range of
problems. In general, a production rule model consists of a specification of the objects in
“working memory” and a set of production rules (or “if-then” rules). CTAT takes over a
significant portion of the first task: it generates an initial version of the working memory
objects needed to represent the initial state of a given problem. The participants will write a
few production rules that model some of the problem-solving steps recorded in the
behavior diagram —the diagram now functions as a specification of the desired behavior of
the model to be built, on the given problem. The Production Rule Editor supports a process
that we call “user-guided generalization”: the author first constructs a concrete or
“instantiated” version of the rule and then generalizes the concrete rule by removing
constants, introducing variables, and adding list matching patterns. The behavior diagram is
now used for semi-automated testing. Upon the author’s request, the Behavior Recorder
checks which links in the diagram have been “modeled correctly” and color codes the links
accordingly. When the production rule model does not behave as intended, the participants
will use the debugging tools to find out how to fix the problem. Finally, they will test their
partial Cognitive Tutor, verifying that it provides useful hints and feedback to students.

During the discussion section, we would like to discuss with the participants what
they see as desirable features for an authoring environment for intelligent tutoring systems
and what existing components they might want to hook up. We would also like to establish
contacts with participants who are interested in using the tools in their own projects
(versions of some of these tools can be found at http://nth.wpi.edu/CTAT.htm).

Acknowledgements
This research is supported by ONR grants N00014-02-1-0443 and N00014-03-1-0220. Thanks to
programmers Vanessa DeGennaro, Chang-Hsin Chang, Mike Schneider, Noble Shore, Zhenhua
Zhang, Yogi Samant, and Sanket Choksey and for comments from Ryan Baker.

References
Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Erlbaum.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons
learned. The Journal of the Learning Sciences, 4 (2), 167-207.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes
to school in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

