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Abstract

This article explores the complementary strengths and weaknesses of grounded and abstract rep-
resentations in the domain of early algebra. Abstract representations, such as algebraic symbols, are
concise and easy to manipulate but are distanced from any physical referents. Grounded represen-
tations, such as verbal descriptions of situations, are more concrete and familiar, and they are more
similar to physical objects and everyday experience. The complementary computational characteristics
of grounded and abstract representations lead to trade-offs in problem-solving performance. In prior
research with high school students solving relatively simple problems, Koedinger and Nathan (2004)
demonstrated performance benefits of grounded representations over abstract representations—students
were better at solving simple story problems than the analogous equations. This article extends this
prior work to examine both simple and more complex problems in two samples of college students. On
complex problems with two references to the unknown, a “symbolic advantage” emerged, such that
students were better at solving equations than analogous story problems. Furthermore, the previously
observed “verbal advantage” on simple problems was replicated. We thus provide empirical support
for a trade-off between grounded, verbal representations, which show advantages on simpler problems,
and abstract, symbolic representations, which show advantages on more complex problems.
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1. Introduction

External problem representations have a profound effect on problem-solving performance
and learning (Collins & Ferguson, 1993; Day, 1988; Kirshner, 1989; Zhang, 1997). As one
example, different external representations of the Tower of Hanoi problem lead to differ-
ent rates of correct solution (Kotovsky, Hayes, & Simon, 1985). However, understanding of
how specific characteristics of external representations influence performance and learning
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is limited. One dimension along which representations vary is in how grounded or abstract
they are (Paivio, 1986; Palmer, 1978). In this article, we focus on how grounded and abstract
representations influence performance for problems of varying complexity and for participants
of various levels of competency. Our theoretical analysis suggests that there is a fundamen-
tal trade-off between grounded and abstract representations in supporting problem solving.
Specifically, we hypothesize that grounded representations are more effective than abstract rep-
resentations for simpler problems like those typically encountered early in learning, whereas
abstract representations are more effective for more complex problems like those encountered
later in learning. If true, this trade-off has important implications for the use and ordering of
alternative representations, both in performance environments (e.g., when are features of the
Mac vs. Unix operating system better for users) and in learning environments (e.g., should
mathematics story problems be presented before or after formal equation-solving exercises).

We investigate the hypothesized trade-off in the context of algebra problem solving. Algebra
is a natural choice because, apart from natural language, it is the first abstract symbolic
language that most people learn (i.e., it is usually learned before other abstract symbolic
languages such as programming languages, chemical equations, and so forth). Algebraic
reasoning is also important in high school and post-secondary education. In prior research,
Koedinger and Nathan (2004) found that students solved story problems more successfully
than matched equations. Story problems were often solved without using abstract symbolic
equations, by using informal strategies that are grounded in concrete knowledge of quantitative
relations. In other words, for such problems, students experience a verbal advantage whereby
they are better able to solve problems presented in verbal form than in corresponding symbolic
form. If Koedinger and Nathan’s results generalize to all algebra story problems, that is, if
algebra story problems are generally easier than corresponding equations, one may justifiably
wonder why we teach equation solving at all. We suspected, however, that such a generalization
may not be true for the entire range of algebra problems, and we set out to identify whether
there are some problems, namely complex problems, for which equations are easier than
corresponding story problems.

For more complex problems, we hypothesize that a “symbolic advantage” emerges, such
that using the abstract language of equations enhances performance relative to reasoning with
grounded story representations. In this article, we explore the evidence for this representation-
complexity trade-off and consider its general implications for the study of problem solving
and learning.

Our analysis is focused on external representations, which can be written on paper, though
it may also apply to internal mental representations. We define grounded representations as
ones that are more concrete and specific, in the sense that they refer to physical objects and
everyday events. Abstract representations, in contrast, leave out any direct indication of the
physical objects and events they refer to and hence are more general as well as more concise.

In the context of quantitative reasoning, real-world problem situations or “story problems”
are more grounded than symbolic equations because they use familiar words and refer to
familiar objects and events.1 For example, consider the following story problem.

Ted works as a waiter. He worked 6 hours in one day and also got $66 in tips. If he made $81.90
that day, how much per hour does Ted make?
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Given some experience with money and waiters, the words, objects, and events in this problem
are relatively familiar. Students’ understanding of the quantitative relationships described is
thus grounded in familiar terms and in knowledge of corresponding objects and events.

In contrast, consider the following symbolic representation of the story problem above.

x∗6 + 66 = 81.90

The equation form is clearly shorter or more concise than the story problem (12 characters
as compared to 108). The equation leaves out any reference to familiar objects and events
like hourly wages and tips. Furthermore, the terminology is different. The semantics of the
“words” in the algebraic sentence (i.e., x, ∗, =) are likely to be less familiar to beginning
algebra students than the phrases expressing analogous meanings in the story (i.e., how much,
hours in one day, he made). Although others have identified student difficulties with algebraic
symbols such as variables (Clement, 1982; Knuth, Alibali, McNeil, Weinberg, & Stephens,
2005; Küchemann, 1978) and the equal sign (Kieran, 1981; McNeil & Alibali, 2004; Rittle-
Johnson & Alibali, 1999), the difficulty of symbolic expressions relative to matched verbal
expressions had not been explored before Koedinger and Nathan (2004).

2. Trade-offs in representational advantages

Some previous studies have demonstrated benefits for grounded or concrete representations
(e.g., Koedinger & Nathan, 2004; Nunes, Schliemann, & Carraher, 1993; Paivio, Clark, &
Khan, 1988). Others have demonstrated benefits for abstract representations (Day, 1988;
S. H. Schwartz, 1971, 1972; Sloutsky, Kaminski, & Heckler, 2005). We present a framework
for reasoning about the circumstances under which different representations are most effective.

We explore different properties of grounded and abstract representations and how these
can yield different computational advantages and disadvantages (see Table 1). Grounded
representations tend to be more familiar, so their meanings can be more readily accessed in
long-term memory (Table 1, first row). For example, in the story problem above, the words
(e.g., “tips,” “gets”) and the syntactic structure (e.g., “also got [number] in tips,” “how much
per [unit] does [person] make”) are familiar to young adults. However, to correctly comprehend
the equations, students must remember the meanings of less familiar formal “words” (e.g.,
x, =) and syntax (e.g., order of operations), which may be more difficult to access in long-term
memory. Koedinger and Nathan (2004) observed greater student difficulty on equations than
stories like those above, and based on student errors, they provided an explanation in terms
of lack of familiarity with the “words” and syntax of equations. Beginning algebra students
have greater prior experience with aspects of the English language used to express quantitative
relationships than with the abstract language of algebra.2

Besides being more familiar, grounded representations tend to be more reliable, in the
sense that students are less likely to make errors and more likely to detect and correct them
when they are made (Table 1, second row). This reliability is a consequence of redundant
semantic elaborations that are connected with grounded representations and that can be used
to support or check inferences (cf. Baranes, Perry, & Stigler, 1989; Hall, Kibler, Wenger, &
Truxaw, 1989; Nhouyvanisvong, 1999). Abstract representations are stripped of such semantic
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Table 1
Trade-offs in computational characteristics of more grounded versus more abstract representations

Type of Representation and Level of Benefit

Benefit By Means of Property Grounded ⇔ Abstract

Ease of LTM Access Familiarity Higher Lower
Reliability Redundancy Higher Lower
WM support Externalizability Lower Higher
Efficiency Conciseness Lower Higher

Examples: Stories Equations

Note. LTM = Long-term memory; WM = Working memory.

elaborations; thus, errors are more likely to be made and more likely to go unnoticed. For
example, for the Waiter story problem presented above, Koedinger and Nathan (2004) found
that students never added the number of hours worked to the amount of tips. However, in the
corresponding equation, students frequently added 6 + 66. Such undetected errors in equation
solving are fairly common, even for equation-solving experts (C. H. Lewis, 1981).

Although abstract representations may be more error prone than grounded representations,
abstract representations have several advantages. Working with abstract representations can
be fast and efficient because their concise form allows for quick reading, manipulating, and
writing (Table 1, fourth row). Consequently, abstract representations put fewer demands on
working memory than grounded representations because it is easier to use paper as an external
memory aid (Table 1, third row). Further, one need not keep track of the referents of all the
symbols while solving the problem, and one may more easily mentally imagine manipulations
of quantitative relations (e.g., combination of like terms) when using abstract representations
(cf. Kirshner, 1989).

3. Representational advantages in the acquisition of algebra skill

Contrary to common belief and prior claims in the literature (e.g., Cummins, Kintsch,
Reusser, & Weimer, 1988; Geary, 1994), Koedinger and Nathan (2004) found that high
school students succeeded more often on grounded, story problems than on matched abstract
equations. This finding is consistent with other results showing that problem situations can
activate real-world knowledge and aid problem solution (Baranes et al., 1989; Carraher,
Carraher, & Schliemann, 1987; Hall et al., 1989; Hudson, 1983).

Koedinger and Nathan (2004) provided a two-part explanation for this pattern. First, stu-
dents were less successful on symbolic equations than one might have expected. Students’
errors in the symbolic format often revealed serious difficulties with the syntax and semantics
of equations. Students made errors in comprehending and manipulating algebraic expressions
(see also Matz, 1980; Payne & Squibb, 1990; Sleeman, 1986). For example, students often vi-
olated syntactic rules such as order of operations or performed illegal algebraic manipulations
(e.g., subtracting from both sides of the plus sign rather than the equal sign). Second, students
were more successful on story problems than one might have expected. In contrast with nor-
mative expectations, students often did not solve the story problems by converting them to
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equations and then manipulating symbols. Instead, students usually used informal strategies,
not involving algebraic symbols, to “bootstrap” their way to correct answers. For example,
students sometimes used an iterative guess-and-test procedure to arrive at a solution, and they
sometimes worked backwards through the constraints provided in the problem, “unwinding”
the constraints. We refer to these as informal strategies because they do not involve the domain
formalism (algebra symbols in this case) and are not traditionally formally taught in school.

A detailed cognitive model of these results, the Early Algebra Problem Solving (EAPS)
theory, was developed by Koedinger and MacLaren (2002). The EAPS theory contains com-
prehension processes, represented as ACT-R production rules (Anderson & Lebiere, 1998),
that describe how students process the given external problem representation and create inter-
nal representations of the quantitative structure. The EAPS model accurately predicts student
error patterns and frequencies. A key to this prediction is the idea that students’ equation
comprehension skills are worse than their verbal comprehension skills; that is, they can com-
prehend word problems, but have trouble comprehending equations.

Figure 1a shows the network of quantitative relations for the Lottery story problem. The
EAPS cognitive model can solve such problems using various strategies, including the informal
unwind strategy mentioned above. To unwind, EAPS searches for a quantitative relationship
for which the output is known and all but one of the inputs are known (an English version of
the corresponding production rule is shown in Fig. 1c). In the Lottery problem, the second
quantitative relation (the division node) satisfies the condition (“if” part) of this production—
the amount each son got is known (20.50) and the number of sons is known (3) and thus the
portion for all sons can be computed.

Students are able to use informal strategies like “unwind” to solve problems without
recourse to algebra equations. We lack both an empirical and theoretical base for knowing
when and how abstract formalisms, like algebra equations, might be superior to such informal
strategies, and given past results (Koedinger & Nathan, 2004; Nhouyvanisvong, 1999), we
should not simply assume that they are.

In this article we explore the hypothesis that the advantages of grounded representations
hold true for simple problems, but the advantages of abstract representations emerge for
more complex problems. Early in the acquisition of a formal skill, students can succeed with
grounded representations by using informal strategies that do not require abstract formalisms.
They fail with abstract representations because they have difficulty comprehending them.
To the beginner, formalisms like algebra are like a foreign language (see Ernest, 1987). For
more complex problems that are presented later in skill acquisition, this pattern may reverse.
First, students increasingly acquire familiarity and facility with abstract formalisms. Second,
as problems become more complex, limitations of informal strategies emerge and become
increasingly more severe.

For example, the unwind strategy depends on being able to invert operators and work
backwards toward the problem unknown. However, the unwind strategy is thwarted when the
unknown is referenced more than once. For instance, consider the following double-reference
problem:

Roseanne just paid $38.24 for new jeans. She got them at a 15% discount. What was the original
price?
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Fig. 1. Double-reference problems are more complex than single-reference problems because they thwart the
unwind strategy that works on single-reference problems. (a) Examples of analogous single-reference story and
equation problems and their underlying quantitative structure. (b) Examples of analogous double-reference story
and equation problems and their underlying quantitative structure. (c) An English version of the unwind production
rule in the EAPS cognitive model.

We call such problems double-reference problems because the unknown (the original
price) is used or referenced twice in the quantitative relationships described in the problem.
The original price is referenced once in a multiplication relation (the original price times 15%
is the savings) and once in a subtraction relation (the original price minus the savings is the
amount paid). The key structural differences between single- and double-reference problems
are evident in the EAPS theory’s “quantitative network” for this Discount problem (Fig. 1b) as
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compared to the Lottery problem (Fig. 1a). In contrast to the Lottery problem, in the Discount
problem neither quantitative relation satisfies the condition of the unwind production (Fig.
1c). In neither relation is there a known output and input. In the first relation, only one input
is known, the discount rate of 15%, and the output (savings) and other input (original price)
are both unknown. In the second relation, both inputs are unknown.

In double-reference problems, one cannot work backwards from a known result to the
unknown because the unknown is in more than one place (see also Bednarz & Janvier,
1996).3 Without an effective informal strategy for solving a complex double-reference prob-
lem, students can turn to the algebraic strategy of translating to an equation and solving that
equation. However, given students’ well-documented difficulties with translation (Heffernan
& Koedinger, 1997; Mayer, 1982; Nathan, Kintsch, & Young, 1992), this strategy is prone to
error.

In this article, we present two experiments that test for a representation-complexity trade-
off. These experiments were designed to test whether the verbal advantage previously observed
on simpler problems would extend to more advanced students and to demonstrate, for the first
time, a symbolic advantage for more complex problems. These experiments also show, for the
first time, a representation-complexity trade-off within the same sample of students.

Experiment 1 investigates this trade-off for students with fairly weak mathematics skills,
that is, college students in an algebra review course. Such students are expected to have
limited success with complex problems. Experiment 2 investigates whether this trade-off
holds for highly skilled students, who are expected to have greater success with complex
problems. In the following sections, we first present the two experiments and the main
results regarding the representation-complexity trade-off. We then provide a detailed analysis
of students’ performance and errors in an effort to explain the sources of the observed
trade-off.

4. Experiment 1

4.1. Method

4.1.1. Participants
Participants were 153 students from two college-level algebra courses at a state university.

Forty-three were in a basic elementary algebra course (similar to high school Algebra 1) and
110 were in a more advanced intermediate algebra course (content combines high school
Algebra 1 and 2 topics).

4.1.2. Procedure
Students were given 20 minutes within class time to complete a six-item “difficulty factors

assessment,” which systematically varies hypothesized factors that may affect problem dif-
ficulty. Each student was randomly assigned one of six test forms. The forms were designed
to contrast the two difficulty factor dimensions, representation and problem complexity,
illustrated in Table 2. We manipulated problem representation, creating mathematically
equivalent problems in both story and equation representations. Two types of story problems
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Table 2
Six problem categories illustrating two difficulty factors used in Experiment 1: representation and number of
unknown references

Number of Unknown References

Representation Single Double

Story-implicit operators Mom won some money in a lottery. She
kept $64 for herself and gave each of
her 3 sons an equal portion of the rest
of it. If each son got $20.50, how
much did Mom win?

Roseanne just paid $38.24 for new
jeans. She got them at a 15%
discount. What was the original
price?

Story-explicit operators After hearing that Mom won a lottery
prize, Bill took the amount she won
and subtracted the $64 that Mom kept
for herself. Then he divided the
remaining money among her 3 sons
giving each $20.50. How much did
Mom win?

Roseanne bought some jeans on sale for
$38.24. To figure that sales price, the
salesperson took the original price,
multiplied it by the 15% discount
rate, and then subtracted the outcome
from the original price. What was the
original price?

Equation Solve for the unknown value, X: (X −
64) ÷ 3 = 20.50

Solve for the unknown value, X: X −
0.15X = 38.24

were used: (a) more narrative and familiar story-implicit problems in which arithmetic
operations are expressed implicitly through everyday verbs (e.g., “kept”) and (b) more
equation-like story-explicit problems in which arithmetic operations are explicitly expressed
(e.g., “subtracted”). Examples are presented in the first two rows of Table 2. This manipulation
addresses a concern that the story-explicit problems used in Koedinger and Nathan (2004) may
not be representative of story problems as they occur in the real world and in textbooks; story-
implicit problems are more representative. The third row in Table 2 illustrates the equation
representation.

The columns in Table 2 illustrate the problem complexity dimension. The simpler single-
reference problems, illustrated in the first column, are a subset of the single-reference problems
used by Koedinger and Nathan (2004). The more complex double-reference problems are
illustrated in the second column. Although there are other complexity differences between
the single- and double-reference problems besides the number of references to the unknown
(e.g., cover story and base equation differences), the key hypothesis being tested here is that
story problems will be easier than equations within the single-reference problems, and harder
than equations within the double-reference problems.

For each level of problem complexity, there were three different cover stories, each of
which involved a different base equation. Combining these six cover stories with the three
representation types yielded 18 different problems. These problems were distributed onto
six forms such that: (a) each problem appeared on two different forms with its position
counterbalanced (i.e., the first position on one form, sixth on the other) and (b) all six cover
stories appeared on each form, with each of the three representations appearing at both levels
of complexity.
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Table 3
Strategy codes and coding definitions

Strategy Definition

Algebra Student uses algebraic manipulations to derive solution
Arithmetic Student works forward to derive solution using the operations presented in the problem

(applies primarily to the result-unknown problems used in Experiment 2)
Unwind Student works backward to derive solution using inverse operations
Untangle Student informally combines problem constraints and then works backward to derive solution

using inverse operations
Guess and test Student generates and tests potential solutions
Answer only Student provides solution without showing any written work

4.1.3. Coding
Each problem was scored as correct or incorrect. Next, the strategy used to solve the

problem was coded, using the scheme outlined in Table 3. For problems that were scored as
incorrect, error type was coded, using the scheme outlined in Table 4.

Reliability was established by having a second trained coder rescore the data for 15 partici-
pants. Agreement between coders was 96% (N = 90) for problem-solving strategies. For error
types, agreement between coders was 93% (N = 46) using the three broad categories in Table
4 (no response, conceptual error, arithmetic error) and 84% (N = 46) using the finer-grained
categories in Table 4.

4.2. Results and discussion

As seen in Fig. 2, on the simpler single-reference problems, students performed better with
the more grounded story representations than with the more abstract equation representation.

Table 4
Error codes and definitions (broad categories used in Fig. 6 are in italics)

Error Type Definition

No response Student leaves problem blank
Conceptual errors

Give up Student performs some work but does not provide a final answer
Order of operations Student violates order of operations rule
Comprehension Student shows evidence of either incorrect interpretation of problem constraint(s)

or a failure to produce external forms (equations or arithmetic) consistent with
those constraints

Missing operator Student does not perform one of the operations presented in the problem
Bad algebra Student performs an incorrect algebraic manipulation, such as subtracting from

both sides of the plus sign rather than both sides of the equal sign
Inversion Student fails to invert an operator (e.g., change + to −) that needs to be inverted to

solve the problem
Answer only Student writes only a number and the number is the wrong

Arithmetic error Student adds, subtracts, multiplies, or divides wrong
Copy slip Student miscopies a value given in the problem or previously generated
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Fig. 2. The interaction of problem complexity (number of references to the unknown) and representation in
Experiment 1. Error bars represent standard errors.

In contrast, on the more complex double-reference problems, students performed better with
the abstract equation representation than with the story representations. This interaction was
significant, F(2, 304) = 27.46, p < .0001. An item analysis (using item, not subject, as the
random effect; see Clark, 1973) suggests that this interaction effect may also generalize across
items, F(2, 8) = 3.29, p < .10, though more than six core items would be needed for a more
conclusive result. There was also a main effect of problem complexity, F(1, 152) = 246.36,
p < .0001. There were no differences between story-implicit and story-explicit problems, on
either single- (79 vs. 77%) or double-reference problems (21 vs. 22%).

The finding that these college students succeed more often on single-reference stories than
on single-reference equations not only replicates the verbal advantage previously observed
among high school students (Koedinger & Nathan, 2004) but also generalizes it in two ways.
First, our use of story-implicit problems demonstrates that the verbal advantage is not limited
to the story-explicit problems used by Koedinger and Nathan. Second, this study demonstrates
that the verbal advantage applies to college algebra students who perform better overall than
the high school algebra students in Koedinger and Nathan’s study (72 vs. 49% correct on
single-reference problems, respectively).

The results for individual problems are presented in Table 5. Looking at the single-reference
stories and equations (first three rows), we see that, for the most part, these college students have
mastered two-operator, single-reference problems. However, whereas their story-problem–
solving competence is uniformly high (averaging 80, 71, and 83% on the three problem
types), their equation-solving competence is spotty. For the two problems in the familiar
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Table 5
Problems used and proportion of participants who solved each problem correctly in Experiment 1

Story Problems Equations

Proportion of Proportion of
Participants who Participants who

Problem Solved Correctly Problem Solved Correctly

Single-Reference Problems
Laura bought 7 donuts and paid $0.12 extra

for the box to hold them. If she paid $2.57
total, what is the price per donut?

0.80 7X + .12 = 2.57 0.79

Ted works as a waiter. He worked 6 hours in
one day and also got $46 in tips. If he made
$65.50 that day, how much per hour does
Ted make?

0.71 6X + 46 = 65.50 0.80

Mom won some money in a lottery. She kept
$64 for herself and gave each of her 3 sons
an equal portion of the rest of it. If each son
got $20.50, how much did Mom win?

0.83 (X − 64) ÷ 3 = 20.50 0.23

Double-Reference Problems
There are 38 students in class. If there are 6

more girls than boys, how many boys are in
the class?

0.54 X + (X + 6) = 38 0.71

Roseanne just paid $38.24 for new jeans. She
got them at a 15% discount. What was the
original price?

0.04 X − 0.15X = 38.24 0.29

You are in Paris, France, and you want to
exchange your dollars for French Francs
(FF). The first exchange store gives you 5.7
FF per dollar but charges 22 FF for each
exchange. The second exchange store gives
you 5.4 FF per dollar and does not charge a
fee. When are the charges from the two
stores the same? In other words, what
amount of dollars results in the same charge
from both stores?

0.05 5.7X − 22 = 5.4X 0.41

Note. The story problems shown are the implicit operator versions, but the data are the mean proportion correct
for both versions.

“mx + b = y” form, students performed just as well on the equations (79%) as on the
stories (76%). However, for the equation in the “(x − c) / n = y” form, which involves
less familiar elements (parentheses and “/”), students performed much worse (23%). This
performance difference is striking, and it is consistent with the notion that students are
acquiring the language of algebra in pieces. These students have acquired pieces of algebra
language knowledge for an equation form that is highly frequent in textbooks but have not
fully acquired the pieces needed for another form that is rare in textbooks.
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The results for the double-reference problems are quite different. For all three cover stories
and their corresponding equations (Table 5, last three rows), students performed better on the
equations than on the story problems. Thus, we see that introducing the complexity of multiple
references to the unknown leads to an advantage for symbols.

Strictly speaking, the representation-complexity trade-off hypothesis is about the represen-
tations that students use, not the representations they are given. The analysis presented thus
far is an indirect test of this hypothesis. It is based on the assumption that the given external
representation influences the representation and corresponding strategy the problem solver
uses. This assumption seems reasonable given the preponderance of evidence that external
representations profoundly affect performance (e.g., Collins & Ferguson, 1993; Kirshner,
1989; Kotovsky et al., 1985; Zhang, 1997). Nevertheless, students have been observed to use
a variety of representations and corresponding strategies when given story problems (diSessa,
Hammer, Sherin, & Kolpakowski, 1991; Greeno & Hall, 1997; Hall et al., 1989). Therefore, we
also address the representation-complexity trade-off hypothesis more directly by examining
the strategies students used to solve the problems.

We grouped students’ solution strategies into two broad categories: abstract, formal strate-
gies (algebra) and more grounded, informal strategies (arithmetic, unwind, untangle, guess-
and-test, and answer only; see Table 3 for definitions). Solutions that involved multiple
strategies, one of which was algebra, were classified with formal strategies. This analysis is
summarized in the “% Used” columns of Table 6. As expected, students in Experiment 1
rarely used informal strategies on equations (1% of single-reference, 1% of double-reference
equations), but they often did so on stories (55% of single-reference, 27% of double-reference
stories). Thus, the given representation clearly influenced students’ strategy choices.

The key question is whether students are more effective with formal strategies on the
more complex story problems and informal strategies on the less complex story problems.

Table 6
Percentage of problems solved and solved correctly with informal and formal strategies for story problems and
equations

Story Problems Equations

Informal Formal Informal Formal

% Used % Correct % Used % Correct % Used % Correct % Used % Correct

Experiment 1
Single-reference (start

unknown)
55 86 42 73 1 50 94 65

Double-reference 27 7 52 37 1 0 90 52

Experiment 2
Single-reference

(result unknown)
91 97 9 100 68 89 32 95

Single-reference (start
unknown)

32 86 68 98 11 86 88 88

Double-reference 12 58 88 80 4 71 96 88
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This analysis is summarized in the “% Correct” columns of Table 6. Indeed, the predicted
interaction holds. On the simpler single-reference stories (row 1, left columns), students were
more effective when they chose more grounded, informal strategies (86% correct) than when
they chose more abstract, formal strategies (73% correct). Conversely, on the more complex
double-reference stories (row 2, left columns), students were more effective when they chose
formal strategies (37% correct) than when they chose informal strategies (7% correct).

Such between-subject comparisons may suffer from selection bias; that is, the strategies
may not be better, but instead better students may be selecting these strategies. One way to
address this concern is to focus on individuals who used an informal strategy on one problem
and a formal strategy on another problem of the same type. On single-reference stories,
36 students used a formal strategy on one problem and an informal strategy on another. These
students were more successful on single-reference stories when they used the informal strategy
(92% correct) than when they used the formal strategy (75% correct; F[1, 35] = 3.9, p =
.057). On double-reference stories, 46 students used an informal strategy on one problem and
a formal strategy on another. On these problems, they were more successful when they used
the formal strategy (37% correct) than when they used the informal strategy (7% correct;
F[1, 45] = 12.2, p < 0.01). Thus, we not only see a trade-off between grounded and abstract
representations based on the representation given to students, we also see the same trade-off
based on the external (written) representations students use in solving problems.

We next present a replication of these results with a more mathematically sophisticated
student sample, and we then proceed to a detailed analysis of students’ errors in both experi-
ments.

5. Experiment 2

Mathematically more sophisticated students should be more adept at comprehending and
manipulating abstract formal representations. Compared to the students in Experiment 1, math-
ematically sophisticated students have developed a greater familiarity with abstract symbolic
representations (Table 1, row 1) and thus may have little difficulty accessing the knowledge
needed to comprehend abstract representations. In other words, the hypothesized “ease of
long-term memory access” benefit of grounded representations should have limited relevance
for such students.

Given greater facility with abstract representations, students should be more likely to
employ them as an aid in problem solving. However, just because a student uses an abstract
external representation does not mean that a grounded interpretation of that representation is
lost (cf. Hall et al., 1989). Although these students may tend to use equations even on simple
story problems, they may solve these equations with the redundant semantic support of the
given grounded representation. In other words, they may reap the hypothesized reliability
benefit of grounded representations (see row 2 of Table 1) and perform better on these simpler
story problems than on analogous context-free equations, even though it may appear from
their written work that they are using the abstract representation alone. Thus, we predict that
because of the reliability benefit of grounded representations, even these highly experienced
students will perform better on stories than equations when in single-reference form.
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In brief, Experiment 2 both attempts to replicate the representation-complexity trade-off
observed in the first experiment and to explore whether we can separate the effects of the two
different hypothesized benefits of grounded representations. We do so by using a sample that
should show effects of reliability, but limited effect of ease of long-term memory access.

5.1. Method

5.1.1. Participants
Sixty-five undergraduate students from Carnegie Mellon University participated in partial

fulfillment of a course requirement. Students’ self-reported Math SAT scores had a mean of
719 (range 510–800).

5.1.2. Procedure
Students completed a difficulty factors assessment designed to evaluate equation solving

and story problem solving. The assessment also included two other types of items that will
not be considered here: drawing generalizations from tables and translating between different
representational formats.

All problem-solving items were presented in both story and equation format. All story
problems were of the familiar, implicit-operator type. As shown in Table 7, the single-reference
problems included both those where the unknown is the result of the process described, “result
unknowns” (e.g., 800 − 30 ∗ 23 = y), and those where the unknown is the start of the process
described, “start unknowns” (e.g., 600 − 20 ∗ x = 260). The double-reference problems were
identical to those used in Experiment 1.

5.1.3. Coding
Each problem was scored as correct or incorrect. Next, the strategy used to solve the

problem was coded using the scheme outlined in Table 3, and for problems that were scored
as incorrect, error type was coded using the scheme outlined in Table 4.

Reliability for problem-solving strategies was established by having a second trained coder
rescore the data for 10 participants. Agreement between coders was 96% (N = 100). Because
this sample contained few incorrectly solved problems, an additional set of 30 incorrectly
solved problems was sampled to check error coding. Agreement between coders was 93%
(N = 30) using the three broad categories in Table 4 (no response, conceptual error, arithmetic
error) and 85% (N = 30) using the finer-grained categories in Table 4.

5.2. Results and discussion

As seen in Fig. 3, the predicted representation-complexity trade-off also held in this sample,
F(1, 64) = 17.89, p < .0001. Students showed a verbal advantage for the single-reference
problems, F(1, 64) = 5.82, p < .02, as well as a symbolic advantage for the double-reference
problems, F(1, 64) = 12.74, p < .001. Results for individual problems are presented in Table 7.
For both types of single-reference problems, students showed a verbal advantage, and for all
three types of double-reference problems, students showed a symbolic advantage. An item
analysis (using item, not subject, as the random effect, see Clark, 1973) suggests that this
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Table 7
Problems used and proportion of participants who solved each problem correctly in Experiment 2

Story Problems Equations

Proportion of Proportion of
Participants Who Participants Who

Problem Solved Correctly Problem Solved Correctly

Single-Reference Problems
Anne is in a rowboat on a lake. She is 800

yards from the shore. She rows toward the
shore at a speed of 30 yards per minute. How
far is Anne from the shore after 23 minutes?

0.97 800 − 30 ∗ 23 = y 0.91

Kim is saving up for a mountain bike that
costs $600. She earns $20 per week by
babysitting every Saturday afternoon. She
can save all of the money that she earns. If
Kim only needs to save $260 more, how
many weeks has she already saved?

0.94 600 − 20 ∗ x = 260 0.88

Double-Reference Problems
There are 38 students in class. If there are 6

more girls than boys, how many boys are in
the class?

0.86 X + (X + 6) = 38 0.92

Roseanne just paid $38.24 for new jeans. She
got them at a 15% discount. What was the
original price?

0.63 X − 0.15X = 38.24 0.75

You are in Paris, France, and you want to
exchange your dollars for French Francs
(FF). The first exchange store gives you
5.7 FF per dollar but charges 22 FF for each
exchange. The second exchange store gives
you 5.4 FF per dollar, and does not charge a
fee. When are the charges from the two
stores the same? In other words, what
amount of dollars results in the same charge
from both stores?

0.82 5.7X − 22 = 5.4X 0.94

Note. The numbers shown in this table illustrate one of the two number sets used in the experiment. Each
student saw a story problem using one number set and a matched equation using the other.

interaction effect may also generalize to new items, F(1, 3) = 38.4, p < .01. Because we
used some new items (the first two in Table 7) that were not in Experiment 1 or Koedinger
and Nathan (2004), the item generality of the representation-complexity interaction is further
strengthened, though a larger sampling of single- and double-reference problems would be
desirable.

As in Experiment 1, we also examined not only the representations students were given but
also the representations they actually used to solve the problems (Table 6, last three rows). The
given representation clearly influenced students’ choice of solution strategies.4 Students rarely
used informal strategies on equations (7 of 64 start-unknown single-reference equations, 11%;
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Fig. 3. The interaction of problem complexity (number of references to the unknown) and representation in
Experiment 2. Error bars represent standard errors.

7 of 195 double-reference equations, 3.6%), but they did so about three times more often on
the corresponding stories (21 of 65 start-unknown single-reference stories, 32%; and 24 of
195 double-reference stories, 12%). As in Experiment 1, students in Experiment 2 were more
successful on double-reference stories when they chose formal strategies (80%) than when
they chose informal strategies (58%). However, unlike Experiment 1, this formal advantage
also held for the simpler story problems: students in Experiment 2 were more effective on start-
unknown single-reference stories when they chose formal strategies (98%) than when they
chose informal strategies (86%). Interestingly, this strategy performance difference provides
evidence for the reliability benefit of grounded representations. Despite having little or no
difficulty with retrieving the semantics of equation forms, these students still perform better
on start-unknown stories than matched equations. Unlike students in Experiment 1, who do
so primarily because they use informal strategies as an alternative to equation solving, the
more advanced students in Experiment 2 are primarily using equations on start-unknown story
problems. However, they more reliably solve those equations in the context of a grounded
story (98%) than in abstract isolation (88%).

Given their success with formal strategies, it may seem surprising that the sophisticated
students in this experiment used informal strategies at all. One possible explanation is that
students sometimes perceived informal strategies to require less effort (cf. Scribner, 1986).
Indeed, for single-reference problems, the informal unwind strategy requires fewer production
rules (mental steps) in the EAPS cognitive model described above and involves less written
work because no equations are needed, just arithmetic (see Fig. 4c vs. 4b).
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6. Sources of the representation-complexity trade-off

Toward a causal explanation of the representation-complexity trade-off, we turn next to
a detailed analysis of students’ performance and errors. Across both experiments, students

Fig. 4. Student work illustrating the verbal advantage on single-reference problems. (a) Student 87 successfully
using unwind on the Donuts single-reference story problem. (b) Student 87 (same as in a) incorrectly using
equation solving on the single-reference Lottery equation. The conceptual error is in the second step where the
student subtracts 64 rather than adding 64 to both sides. (c) Student 46 successfully using unwind on the Lottery
single-reference story problem. Note indications of money semantics in the addition of “$ ” in the final answer and
of “.00” to the given value of “64.” Such extra semantic relations coming from the grounded story may explain the
contrast between the student’s success here and the same student’s error on an abstract equation, shown just below
(d). (d) Student 46 (same as in c) incorrectly using equation solving on the single-reference Donuts equation. The
error is in the first step where the student is “multiplying through” to convert decimal terms, .12 and 2.57, to whole
numbers but does not know or retrieve the semantic requirement that the conversion must be applied to all terms,
including converting 7x to 700x. (Continued)
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Fig. 4. (Continued)

succeeded more often on single-reference problems when the problems were presented in
grounded story form than when they were presented as abstract equations. This verbal advan-
tage on simple problems is illustrated with examples of student work in Fig. 4. Each student
succeeded on a story version of a single-reference problem (donuts for student 87, lottery for
student 46) but failed on an equation version of these same problems (lottery for student 87,
donuts for student 46). Both students correctly solved each story problem without using formal
algebra. Instead, each successfully applied the informal unwind strategy, exploiting grounded
relations. Consider the contrast between the error in Fig. 4b of subtracting 64 rather than
adding it when given an abstract equation and the success in Fig. 4c when given a grounded
story. The student in 4c has the benefit of the grounded relations that the amount Mom won is
made up of, and thus must be more than, the $64 she kept for herself.

In addition to finding a verbal advantage for simple problems, we also found a symbolic
advantage for complex problems in both experiments. Representative examples of student
work are shown in Fig. 5. Both students succeeded on an equation version of a double-
reference problem (discount for student 19, exchange for student 82), whereas each failed on
a story version of these problems (exchange for student 19, discount for student 82). Both
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students attempted to translate the story problem into an equation but made errors in this
symbolization process. However, both succeeded in solving equivalent equations.

What are the sources of the verbal advantage for single-reference problems and the symbolic
advantage for double-reference problems? To better understand the patterns illustrated in
Figs. 4 and 5, we examined the nature of students’ errors and compared these with predictions
from our analysis of the computational characteristics of grounded and abstract representations
(Table 1).

Following Koedinger and Nathan (2004), we categorized student errors into three broad
categories: (a) no response, (b) arithmetic error, and (c) conceptual errors. A solution was

Fig. 5. Student work illustrating the symbolic advantage on double-reference problems. (a) Student 19 successfully
solves the double-reference equation for the discount problem. (b) Student 19 fails on the double-reference story
problem (Exchange story). The student performs an incorrect translation to an equation (the “+ 22” should be
added to 5.4x, not 5.7x) and then does not appear to notice that the negative result of equation-solving (−7.33) is
an unlikely answer to this problem situation. (c) Student 82 successfully solves the double-reference equation for
the Exchange problem. (d) Student 82 fails on the Discount story problem. The student attempts both an incorrect
informal strategy (multiplying 38.24 by.15 on the left) and an incorrect translation to an equation (“x + .15” should
be “x − .15x”). (Continued)
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Fig. 5. (Continued)

coded as No Response if nothing was written down for that problem. A solution was coded
as an Arithmetic Error if the solution was conceptually correct; that is, all required arithmetic
operations are written down correctly but one of these arithmetic operations was incorrectly
performed. Apart from some rare nonarithmetic “copy slips” such as incorrectly copying a
digit from the problem statement (1.5% of solutions in Experiment 1 and 0.5% of solutions
in Experiment 2), all other errors were coded as Conceptual Errors. See Table 4. (Note that
answer-only errors were extremely rare, only 0.7% or 6 of 918 solutions, and answers given
were not consistent with other observed arithmetic errors; such errors were categorized as
conceptual errors to indicate greater severity.)

6.1. Sources of the verbal advantage on single-reference problems

The familiarity property of grounded representations (Table 1, row 1) makes it more likely
that grounded knowledge is retrieved from long-term memory when needed. If students fail
to retrieve relevant knowledge, they may give up and not respond. Thus, for single-reference
problems, we expect to see more No Response errors on equations than on story problems,
particularly for students with less algebra background.

The redundancy property of grounded representations (Table 1, row 2) makes it more likely
that grounded knowledge is applied reliably. Students can use the semantic cues available in
grounded representations to facilitate reliable performance on arithmetic operations (Baranes
et al., 1989; Nunes et al., 1993). For instance, Koedinger and Nathan (2004) found that
students were less likely to make place-value alignment errors (e.g., add 15.90 and 66 and get
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16.56) when these numbers are grounded as money quantities (they do not add 66 dollars to
90 cents). Because equations do not provide such semantic redundancy, we expect to see
more Arithmetic Errors on equations than on story problems. We predicted that this reliability
benefit of grounded representations would facilitate arithmetic performance even for the well-
prepared students in Experiment 2.

While No Response errors indicate low familiarity and Arithmetic Errors indicate low
reliability, Conceptual Errors may result from either. A solution with a conceptual error
involves at least some response, but it has at least one error more severe than an arithmetic
error.

We predict a shift in the kinds of errors underlying the verbal advantage on single-reference
problems. With increasing algebra skill, we should see a shift from a predominance of
familiarity-related errors (mostly No Response) to a mix of familiarity- and reliability-related
errors (mostly Conceptual) and eventually to a predominance of reliability-related errors
(mostly Arithmetic) on equations. This pattern is just what we see across three student pop-
ulations of increasing competence for single-reference problems: (a) high school students’
difficulties with equations are reflected mostly in No Response errors (Koedinger & Nathan,
2004), (b) less prepared college students’ equation difficulties are reflected mostly in Con-
ceptual Errors (Experiment 1, Fig. 6, top), and (c) highly prepared college students’ equation
difficulties are reflected mostly in Arithmetic Errors (Experiment 2, Fig. 6, bottom).

For students in Experiment 1 with intermediate algebra experience (Fig. 6, top), the verbal
advantage is driven primarily by more Conceptual Errors on equations (21%) than on story
problems (8%). Unlike the high school students in Koedinger and Nathan (2004), for whom
the verbal advantage was driven primarily by more No Response errors on equations, these
college-level algebra students have developed enough familiarity with symbolic equations to
at least attempt most problems. However, their still-limited familiarity with equations may
lead to Conceptual Errors, like subtracting from both sides of the plus sign (not equal sign)
or multiplying through to get rid of decimals but ignoring the whole numbers (see Fig. 4d).
Students may also make reliability-related Conceptual Errors (e.g., Inversion in Table 4) while
performing algebraic operations on equations without the redundancy support of the grounded
story representation.

For students in Experiment 2 with lots of algebra experience (Fig. 6, bottom), the verbal
advantage is driven primarily by more Arithmetic Errors on equations (6.2%) than on story
problems (1.5%). Even for students who are very familiar with formal symbols (note the
complete absence of No Response errors), the redundancy benefit of the grounded story
representation helps them avoid or correct arithmetic errors that they might make in solving
ungrounded equations.

6.2. Sources of the symbolic advantage on double-reference problems

What factors led to the symbolic advantage observed on double-reference problems? In
predicting errors on the double-reference problems, we considered the positive characteristics
of abstract representations (Table 1, first two columns), but focus here on working memory
support. Because we did not collect solution-time data, we cannot directly address the issue
of efficiency.
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Fig. 6. Percentage of single-reference problems with errors of different types. In Experiment 1 (top), the verbal
advantage is driven primarily by fewer Conceptual Errors on story problems than equations. In Experiment 2
(bottom), it is driven primarily by fewer Arithmetic Errors on story problems than equations.

As illustrated in Fig. 1, the particular complexity of double-reference problems makes the
unwind strategy impossible to successfully apply. Although other informal strategies may work
on double-reference problems, applying such strategies in the grounded story representation
is more taxing on working memory than performing equation solving using abstract algebra



388 K. R. Koedinger et al./Cognitive Science 32 (2008)

symbols (we illustrate why below). Thus, we hypothesized that students would avoid informal
strategies on double-reference story problems. As predicted, in Experiment 1, students used
informal strategies on only 27% on the double-reference story problems but 55% of single-
reference story problems. In Experiment 2, students used informal strategies on only 12% on
the double-reference story problems but 62% of single-reference story problems.

When students do apply informal strategies to double-reference stories, they tend to make
errors. The student solution in the first (crossed-out) attempt in Fig. 5d illustrates the typical
outcome. On the discount problem, many students made inappropriate attempts to unwind by
taking 15% of the sale price and adding the result to the sale price to get the original price.
Such failures to represent the correct arithmetic operations were common when students
attempted informal strategies on double-reference story problems (80% in Experiment 1, 25%
in Experiment 2).

Fundamental to a theoretical explanation of the representation-complexity trade-off is
this question: Why do students perform better on stories than equations for single-reference
problems but worse for double-reference problems? Task analysis reveals that an informal
solution is much more taxing on working memory when performed on a double-reference
problem than on a single-reference problem.

Consider the number of mental transformations (cf. Mayer, 1982) needed to informally un-
wind a single-reference problem versus those needed to untangle a double-reference problem.5

First consider the single-reference Lottery problem (see Fig. 1a). Focusing on the last part of
the problem, the student needs to transform “some number divided by 3 gives 20.50” into “the
number is 20.50 times 3.” This transformation involves manipulating three quantities (some
number, 3, and 20.5) and one operator, “divided by.” In contrast, the mental transformations
needed to informally untangle a double-reference problem like the Discount problem are
much more numerous. The student needs to transform “some number minus .15 times the
number” into “1 times some number minus .15 times the number” and eventually into “.85
times the number.” This transformation involves three steps and, at the peak, manipulation of
four quantities (1, .15, and two references to the number), and three operators (a “minus” and
two “times”). Equations make double-reference problems easier because the analogous com-
plex transformations need not be performed mentally but can be externalized in the concise
equation representation: “x − .15x = 1x − .15x = (1 − .15)x = .85x.”

As we saw, students appear sensitive to the differential costs and benefits of going abstract
vs. staying grounded. They used formal algebra more often than not on the taxing double-
reference problems but much less so on single-reference problems. Despite the extra difficulty
of translating a story problem to an equation, students were more willing to pay this cost on
double-reference than single-reference story problems.

7. General discussion

Our findings extend previous work that showed that, early in the development of alge-
bra skill, students often succeed with grounded representations but fail with more abstract
ones (Koedinger & Nathan, 2004). The present experiments have shown that, on more com-
plex problems, students demonstrate an advantage for symbolic representations. Thus, we
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uncovered a representation-complexity trade-off, such that students show a verbal advantage
on simple problems and a symbolic advantage on more complex problems. The present work
generalizes past results by demonstrating a verbal advantage not only for younger elementary
students (Baranes et al., 1989; Nunes et al., 1993) and beginning high school algebra students
(Koedinger & Nathan, 2004) but also for students who are quite advanced in their mathemat-
ical skills (those in Experiment 2). More importantly, we identified boundary conditions on
the verbal advantage by showing how increased problem complexity can yield a performance
crossover whereby a symbolic advantage emerges.

Consistent with other recent efforts (Glenberg, Jaworski, Rischal, & Levin, 2007; Goldstone
& Son, 2005; D. L. Schwartz, Martin, & Pfaffman, 2005; Sloutsky et al., 2005), we wished
to move beyond the false dichotomy of whether grounded representations are generally better
or worse than abstract representations. By decomposing the benefits along various cogni-
tive dimensions and considering how these factors are affected by problem complexity and
prior knowledge, we have taken steps toward an explanatory account of when, why, and
how grounded and abstract representations provide benefits for performance. Our theoretical
proposal for why the representation-complexity trade-off occurs (see Table 1) yields a set
of hypotheses that are consistent with the results presented here. However, some alternative
explanations for these results are possible, and we consider these below. We also discuss
limitations of the current studies and open questions to be addressed in further research.

7.1. Benefits of grounded representations

One hypothesized benefit for grounded representations is that they put few demands on long-
term memory because they involve familiar terms. But why should grounded representations
be more familiar than abstract ones? The reason is because abstract formal representations tend
to be used less frequently in everyday life, and they are usually introduced later in schooling.
For instance, abstract representations for unknowns, like “x,” are used less frequently and
encountered later in life than grounded representations for unknowns, like “how much.”

It is important to emphasize that the familiarity benefit of grounded representation does not
require situated knowledge of particular story objects (Baranes et al., 1989; Nunes et al., 1993)
and in particular predicts that familiar but less concrete representations will show benefits even
for unfamiliar content. In addition to story problems, Koedinger and Nathan (2004) found
that situation-less word problems (e.g., “Starting with some number, if I subtract 64 and
then divide by 3, I get 20.5. What’s the number?”) were also solved more successfully than
equations. Students had enough familiarity with the English descriptions of quantities and
relations (e.g., “some number” is more familiar than “x”; “and then” is more familiar than
the order of operations rules) that they did not exhibit the comprehension failures seen on
equations.

The situation-less word problem manipulation also eliminates other hypotheses for why
story problems are easier; for instance, that students have had more experience with story
problems of particular types or overall forms (e.g., simple money problems) or that stories
are more “embodied” or “enacted” (Glenberg et al., 2007; Lakoff & Núñez, 2000). The word
problems we used are not of a single type and teachers report that they are not familiar
in overall form (though they do involve familiar words and syntactic forms). Nor do these
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situation-less word problems involve embodiment and enactment, at least not as much as
situated story problems.6 Nevertheless, they are easier than equations.

Another test of the familiarity benefit would be to specifically manipulate familiarity within
story problems. Cummins et al. (1988) found that particular words, like “altogether,” cause
elementary students greater difficulty in solving story problems than matched equations. Even
for older students, with much better English knowledge, we have sometimes found particular
story problems to be harder than others because of unfamiliar words, like “withhold.”

While the familiarity benefit of grounded story representations was well addressed by
Koedinger and Nathan (2004), the current studies highlight a second benefit. Grounded repre-
sentations also help students to avoid and detect errors. The redundant semantic cues provided
by grounded representations can support students in more reliable inferences about the prob-
lem structure and more reliable arithmetic performance.

We predicted that as a consequence of this reliability benefit, single-reference story prob-
lems would be easier than matched equations, even for students who have extensive algebra
experience and thus are not lacking in familiarity with algebraic symbolism. This prediction
was confirmed in Experiment 2 with highly skilled participants. Our error analysis further
highlights how the two benefits play out at different stages in problem solving and acquisition.
For low-skill students, reduction in No Response errors, due to the familiarity benefit, mostly
accounts for better story performance (Koedinger & Nathan, 2004), whereas for high-skill
students No Response errors disappear (due to high familiarity with algebra), but now a re-
duction in arithmetic errors, due to the reliability benefit, still yields better story performance
(Fig. 6).

7.2. Is it just about translation?

Our theoretical analysis holds that performance on double-reference equations outstrips
performance on double-reference story problems because equations are easier to manipulate
and easier to externalize. More specifically, the conciseness of equations makes recombining
unknown quantity relationships less taxing on working memory.

One might argue, instead, that equations provide benefit simply because they save par-
ticipants from having to translate the word problems into equations themselves. Translation
is indeed challenging. However, this line of reasoning is based on the false premise that
story problem solving boils down to translating to an equation and solving it and, thus, story
problems are necessarily harder than matched equations. As shown in Experiments 1 and 2,
some story problems are actually easier than matched equations, and students use informal
strategies as an alternative to the formal translate-and-solve strategy. Other kinds of story
problems, such as double-reference problems, are harder than matched equations.

We have shown that double-reference equations are easier than double-reference stories.
However, we have not directly shown that using equations makes double-reference story prob-
lems easier than when informal strategies are used. We could test this by requiring participants
to solve story problems either with equations or informally and comparing performance under
these conditions. We predict that on double-reference story problems, students will perform
better when asked to solve using equations, whereas on single-reference story problems they
will perform better when asked to solve informally. In support of this prediction, in the present
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study, when participants chose equation-solving on double-reference stories, they were much
more successful than when they chose informal strategies (37 vs. 7% in Experiment 1; 80
vs. 55% in Experiment 2). We made efforts to address the potential selection bias inherent
in this comparison by narrowing the analysis to students who used both strategies on differ-
ent double-reference stories—these students showed the same benefit for equation solving.
Nevertheless, an experimental follow-up would be worthwhile.

7.3. Does the representation-complexity trade-off extend to other forms
of complexity?

In testing the representation-complexity trade-off hypothesis, we investigated a single
source of complexity, namely, the unknown being referenced twice (double reference). There
is evidence that the trade-off extends to other forms of complexity but not to all forms of com-
plexity. The particular informal strategies that are afforded by a given grounded representation
should continue to work unless there is a particular complex task demand that thwarts their
use. For example, multiple references to the unknown thwarts unwind, and a requirement for
precise solutions may thwart guess-and-test and graphical methods.

But not all forms of complexity thwart informal solutions and lead to crossover. Indeed,
some single-reference problems are more complex on other dimensions than some double-
reference problems. And in fact, the single-reference equations “600 − 20 ∗ x = 260” and
“(X − 64) ÷ 3 = 20.50” were solved less successfully than the double-reference equation
“x + (x + 6) = 38.” The forms of complexity in the single-reference problems (e.g., harder
numbers, more kinds of arithmetic operators) are not the kind that thwart informal strategy
use and demand abstraction.

Nevertheless, double reference is not the only form of complexity that we have found to
bring out benefits of abstract representations. Verzoni and Koedinger (1997) found that for
negative number problems, moving from one to two operations brought out the benefits of
abstract representations. Stories were easier than equations for one-operator negative number
problems, but the reverse held true for two-operator negative number problems. Combining
negative numbers and two operators resulted in a symbolic advantage.7 Similarly, Nathan and
colleagues found that moving from linear problems to nonlinear problems (involving expo-
nentials) also brought out benefits for abstract representations (Nathan, Stephens, Masarik,
Alibali, & Koedinger, 2002).

We want to emphasize that the effect of complexity is not simply about preventing informal
strategies but rather about the extra mental effort it takes or would take to address complex task
demands within a grounded representation. As we illustrated, it is indeed possible to apply
informal strategies on double-reference problems, but it is much more taxing on working
memory to perform manipulations in the cumbersome, grounded verbal representation than it
is in the concise, abstract equation representation.

In general, whether a particular form of complexity will cause a trade-off depends on the
relationship between the nature of the complexity and the particular features of the strategies
afforded by grounded and abstract representations. Table 1 suggests some relevant features,
but we suspect this table will need to be extended to account for other benefits of grounded and
abstract representations that might be revealed by other studies. Another row might be added,
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for instance, to characterize the purported benefit of abstraction that comes from uniformity,
which lifts away from details of particular situations that can sometimes be misleading. Both
Goldstone and Son (2005) and Sloutsky et al. (2005) demonstrated benefits of abstraction
(or idealization) that are perhaps better explained by uniformity than externalizability or
conciseness.

To illustrate in the algebra domain, one may be tempted by the grounded problem “If my
investment increases by 10% one month and then decreases by 10% the next, where I am left?”
to incorrectly answer “where you started.” However, the abstract representation “Simplify (X +
.1X) − .1(X + .1X)” is unlikely to yield the analogous error “X.” The uniform or conventional
mathematical operators lift away from the tempting particular associations of the everyday
terms increase and decrease. Along these lines, in a closer item analysis of the implicit vs.
explicit operator distinction on the discount problem in Experiment 1 (Table 3), we found
that no student succeeded on the more grounded implicit operator problem, many reasoning
informally and making the error of treating a decrease by 15% as the inverse of an increase by
15%. However, on the more abstract explicit operator version (where more abstract terms like
multiplied and subtracted are used in addition to the grounded term discount), many students
succeeded (14%) and they used formal equation solving to do so. The uniform mathematical
operators prevent the incorrect inferences afforded by the terms used in the implicit-operator
version of the problem. So, here we see a uniformity benefit of abstraction above and beyond
the conciseness benefit that aids double-reference processing.

7.4. A developmental model of algebra problem-solving skill acquisition

Building on the present results, we propose a developmental model that specifies the
sequence in which skills for solving problems are acquired in the domain of algebra. This
sequence is (a) verbal single-reference problems, (b) symbolic single-reference problems,
(c) symbolic double-reference problems, and finally (d) verbal double-reference problems.
Early in the course of learning algebra, students tend to acquire skills for solving simple
verbal problems before they acquire skills for solving comparable symbolic problems. Later
in the course of learning algebra, students tend to acquire skills for solving complex symbolic
problems before they acquire skills for solving comparable verbal problems.

Our proposed developmental model is reminiscent of others’ research on shifts from
grounded to abstract reasoning. For example, D. L. Schwartz and Black (1996) have demon-
strated that, in learning to correctly solve problems about gears, people initially work with a
grounded, depictive model (revealed in their spontaneous gesture production), and they even-
tually shift to a more abstract, computational strategy. Similarly, Case and colleagues have
argued for a developmental progression from concrete, analog representations to more ab-
stract, digital representations and integration of these representations (e.g., Kalchman, Moss,
& Case, 2000). Indeed, the notion that concrete, grounded reasoning precedes and forms the
basis for more abstract reasoning is one of the central tenets of Piaget’s theory of intellectual
development. However, although many studies have explored the advantages of grounded
representations, until recently little research has focused on the complementary advantages of
abstract representations (Goldstone & Son, 2005; D. L. Schwartz et al., 2005; Sloutsky et al.,
2005).
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7.4.1. Instructional implications
Developmental models like the one we have proposed can be useful in designing instruction,

for instance, by providing guidance about the appropriate sequencing of topics in a curriculum.
Such models can help curriculum designers to overcome the “expert blind spot” that occurs
when experts’ ideas about what may be difficult for students differ from reality (Koedinger
& Nathan, 2004). Our model suggests that, at least for the early parts of learning algebra,
the sequence of topics in most current algebra textbooks is inappropriate (Nathan, Long, &
Alibali, 2002). Instead of learning to solve equations first and story problems later, our analysis
suggests that it might be more effective for students to learn to solve simple story problems
first and then bridge from this prior knowledge (Bransford, Brown, & Cocking, 1999) to a
better understanding of equations.

Several experiments support this “bridging” idea (e.g., Brenner et al., 1997; Kalchman
et al., 2000; Nathan, 1998; Nathan et al., 1992). For example, Koedinger and Anderson (1998)
compared two versions of a computer-based cognitive tutor that contrasted a bridging approach
with a textbook instructional approach to algebraic symbolization. In the bridging version, the
cognitive tutor encouraged students to solve story problems numerically prior to attempting
to translate the same problem to algebraic symbols. The cognitive tutor supports students in
forming algebraic sentences (e.g., “42 ∗ h + 35”) by helping them to induce or generalize from
examples of analogous arithmetic procedures (e.g., “42 ∗ 3 + 35” and “42 ∗ 4.5 + 35”) they
have just performed. In this situation, grounding is provided both by the situational context of
the story problems and by working with concrete, numerical instances before moving to the
abstract variable. The experimental comparison demonstrated that students learned more from
this approach than from a textbook approach in which students symbolize prior to problem
solving.

Understanding students’ representational competencies and the order in which they
are acquired is critical to effective instructional design. However, the relationship be-
tween grounded and abstract representations is not simply one of a progressive abstrac-
tion from grounded to abstract representations (cf. Bransford et al., 1999). This relation-
ship is also important during more immediate problem solving, learning, and instructional
events where a student may need to shift back and forth between grounded and abstract
representations to take advantage of their complementary strengths (e.g., D. L. Schwartz
& Black, 1996). Thus, from an instructional perspective, this relationship may be impor-
tant both in the macrostructure of curriculum design and in the microstructure of lesson
design.

Notes

1. How grounded a particular problem is for a particular student depends on that student’s
past experiences with the particular objects and events in a problem as well as the
words or symbols used to refer to them. To the extent that there is substantial overlap in
common experience across students, we can expect general effects of grounding. Our
results suggest that this assumption holds.
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2. We do not suggest that algebra students are more familiar with all ways of expressing
quantitative relationships in English. Learning the mathematical meanings of some
words and phrases, such as “profit” or “percent off,” is indeed still difficult.

3. Although the unwind strategy does not work on double-reference problems, other infor-
mal strategies can be successful on such problems. For instance, by realizing that the
sale price is 85% of the original, the student can, in effect, mentally combine the like
terms x and 0.15x (this is a verbal reasoning analogy of the algebraic transformation of
x − 0.15x into .85x). This informal constraint combination, called untangle (see Table
3), is more sophisticated and memory demanding than the simpler unwind strategy.

4. Recall that the single-reference problems in Experiment 2 included both result-unknown
and start-unknown problems, whereas in Experiment 1, all single-reference problems
were start-unknowns. Students often used informal strategies, primarily arithmetic, to
solve result-unknown stories (44 of 65, 68%). However, they used informal strategies,
that is, not writing any new equations and going directly to the arithmetic, even more
often on the corresponding equations (59 of 65, 91%).

5. Recall that our strategy analysis differentiates the informal unwind and untangle strate-
gies (see Table 3). Untangle uniquely involves the combining of constraints needed to
solve double-reference problems, analogous to combining like terms in an equation.

6. There is some level of enactment in terms like “starting with,” “and then,” and “I get”;
however, in an unpublished study (Alibali, Koedinger, & Rose, in preparation) we found
no performance decrement when these enactment terms were eliminated (e.g., “Some
number minus 64 divided by 3 is 20.5. What’s the number?”).

7. This symbolic advantage for two-operator negative number problems differentiates from
Koedinger and Nathan (2004) where two-operator positive number problems still show
a verbal advantage.
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