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Abstract. We present a vision for learning environments, called Science Learning
Spaces, that are rich in engaging content and activities, provide constructive
experiences in scientific process skills, and are as instructionally effective as a
personal tutor. A Science Learning Space combines three independent software
systems: 1) lab/field simulations in which experiments are run and data is collected, 2)
modeling/construction tools in which data representations are created, analyzed and
presented, and 3) tutor agents that provide just-in-time assistance in higher order skills
like experimental strategy, representational tool choice, conjecturing, and argument.
We believe that achieving this ambitious vision will require collaborative efforts
facilitated by a component-based software architecture. We have created a feasibility
demonstration that serves as an example and a call for further work toward achieving
this vision. In our demonstration, we combined 1) the Active Illustrations lab
simulation environment, 2) the Belvedere argumentation environment, and 3) a model-
tracing Experimentation Tutor Agent. We illustrate student interaction in this
Learning Space and discuss the requirements, advantages, and challenges in creating
one.

The Science Learning Space Vision
Imagine an Internet filled with possibility for student discovery. A vast array of simulations
are available to explore any scientific field you desire. Easy-to-use data representation and
visualization tools are at your fingertips. As you work, intelligent tutor agents are watching
silently in the background, available at any time to assist you as you engage in scientific
inquiry practices: experimentation, analysis, discovery, argumentation. This is our vision
for Science Learning Spaces. Table 1 summarizes how this vision contrasts with typical
classroom experience.

Table 1. What Science Learning Spaces Have to Offer
Typical Science Class Science Learning Space Vision

Content Lectures, fixed topics, fixed
pace, focus on facts

Vast options, student choice and pace, focus on
scientific process

Activity Inquiry process hampered by
mundane procedure & long waits

Simulations speed time, leave technique lessons
for later

Tools Paper and pencil Data representation & argument construction
Assistance Limited, 1 teacher for 30

students
Automated 1:1 assistance of tutor agents

                                                       
1 Work performed while at Learning Research and Development Center, University of Pittsburgh



Assessment Large grain, limited assessment-
instruction continuity

Tutor agents monitor student development at
action level

A Science Learning Space can be created by coordinating software components of three
types: 1) lab/field simulations in which experiments are run and data is collected, 2)
modeling/construction tools in which data representations are created, analyzed and
presented, and 3) tutor agents that provide just-in-time assistance in higher order skills like
experimental strategy, representational tool choice, conjecturing, and argument. Although
the full Science Learning Space vision is currently out of reach, we have created a
demonstration of its feasibility. This demonstration serves as a model for future work and a
call for further community authoring toward achieving this vision.

The Need for Collaborative Component-Based Development
Research in intelligent learning environments typically involves designing and
implementing an entire system from scratch. Time and resources spent on software
engineering is taken away from the education and research the software is designed to
support. Today the typical solution is for research labs to work within the context of an in-
house software investment, evolving each new system from previous work. This makes
replication and sharing more difficult and can lead to maintenance and deployment
difficulties as restrictive platform requirements accumulate over time.

This situation is growing intolerable, and so recently there has been a surge of interest in
architectures and frameworks for interoperable and component-based systems [Ritter &
Koedinger, 1997; Roschelle & Kaput, 1995; Suthers & Jones, 1997]. This has led to a
number of successful workshops on the topic (e.g., http://advlearn.lrdc.pitt.edu/its-arch/),
the emergence of several standards efforts specifically targeted to advanced educational
technology (e.g., www.manta.ieee.org/p1484/), and new repositories for educational object
components (e.g., trp.research.apple.com). These efforts gain leverage from the rise of
interactive Web technology and its associated emphasis on standards-based interoperability.
Solutions for component-based systems are arriving, in the form of shared communication
protocols, markup languages, and metadata formats. Although the component-based
solutions developed to date are useful, they are inadequate for those building component-
based intelligent learning environments in which the components must respond to the
meaning of the content as well as its form and presentation. We see the development of
techniques for sharing semantics across components and applications to be a critical
research direction for the field.

Recently we conducted a demonstration of the feasibility of integrating three different,
independently developed components. Two of the components were complete intelligent
learning environments in their own right: Active Illustrations [Forbus, 1997] enable
learners to experiment with simulations of scientific phenomena, and to receive
explanations about the causal influences behind the results [Forbus & Falkenhainer 1990;
1995]. Belvedere [Suthers & Jones, 1997; Suthers et al., 1997] provides learners with an
“evidence mapping” facility for recording relationships between statements labeled as
“hypotheses” and “data”. A Scientific Argumentation Coach [Paolucci et al., 1996] guides
students to seek empirical support, consider alternate hypotheses, and avoid confirmation
biases, among other things. The third component was an instance of a model-tracing Tutor
Agent [Ritter & Koedinger, 1997] that contains a cognitive model of general
experimentation and argumentation process skills. This “Experimentation Tutor Agent”
dynamically assesses student performance and is available to provide students with just-in-
time feedback and context-sensitive advice. Our Learning Space Demonstration took place



in the context of meetings of ARPA’s Computer Aided Education and Training Initiative
program contractors. Using a MOO as a communication infrastructure, we demonstrated a
scenario in which a student poses a hypothesis in the Belvedere evidence-mapping
environment, uses the simulation to test that hypothesis in the Active Illustration
environment and sends the results back to Belvedere for integration in the evidence map.
Throughout this activity the Experimentation Tutor Agent was monitoring student
performance and was available to provide assistance.

From this experience we abstracted the notion of a Science Learning Space. In our
demonstration, the Space was filled with Active Illustrations as the lab/field simulation
component, Belvedere as a modeling/construction tool, and the Experimentation Tutor
Agent and Argumentation Coach in tutor roles. In this paper we discuss how
interoperability of these components was achieved through the use of Translator
components that enable communication between existing functional components with little
or no modification to them. We begin by examining the constraints that developing
intelligent learning environments impose on the nature and types of components and their
interactions, focusing on the importance of semantic interoperability. We then describe the
demonstration configuration in detail, showing how it exploits a limited form of semantic
interoperability. Finally, we reflect on the requirements, advantages, and future directions in
creating Science Learning Spaces.

Components for Intelligent Learning Environments
Component-based development has a number purported economic and engineering benefits.
Component-based systems are more economical to build because prior components can be
re-used, saving time for new research and development efforts. They are easier to maintain
due to their modular design and easier to extend because the underlying frameworks that
make component-based development possible in the first place also make it easier to add
new components. We can also expect better quality systems as developers can focus their
efforts on their specialty, whether in simulation, tool, or tutor development.

However, there is a deeper reason why we believe component-based educational software
is important: It will enable us to construct, by composition, the multiple functionalities
needed for a pedagogically complete learning environment. Various genres of computer-
based learning environments have had their advocates. Each provides a valuable form of
support for learning, but are insufficient in themselves. Yet today, the high development
costs associated with building each type of environment leads to the deployment of systems
with only a small subset of desirable functionality.

For example, microworlds and simulations enable students to directly experience the
behavior of dynamic systems and in some cases to change that behavior, experimenting with
alternate models. These environments are consistent with the notion that deeper learning
takes place when learners construct their own knowledge through experience. However,
simulations lack guidance: Taken alone, they provide no tools for the articulation and
reflection on this knowledge and no learning agenda or intelligent assistance.

On the other hand, intelligent tutoring systems provide substantial guidance in the form
of a learning agenda, modeling of expert behavior, and intelligence assistance. This form of
guidance is particularly important in domains where the target knowledge is not an easy
induction from interactions with the artifact or system of interest. In such domains,
intelligent tutors can lead to dramatic, “one sigma”, increases in student achievement [e.g.,
Koedinger, Anderson, Hadley, & Mark, 1997].



However, tutoring systems are themselves subject to the criticism. Emphasis on
knowledge engineering usually leaves little time for careful design of performance tools to
enhance pedagogical goals. Thus, there is a third need for representational tools for
manipulating data, searching for patterns, or articulating and testing new knowledge.
Spreadsheets, outliners, graphers, and other such tools provide representational guidance
that help learners see certain patterns, express certain abstractions in concrete form, and
discover new relationships. Representational tools can be designed based on cognitive
analysis to address particular learning objectives [Koedinger, 1991; Reiser et al., 1991] and
can function as “epistemic forms” [Collins & Ferguson, 1993] that afford desirable
knowledge-building interactions. Yet representational tools provide only a subtle kind of
guidance. As with simulations and microworlds, direct tutoring interventions are sometimes
needed as well. Fortunately there is a double-synergy: Inspection of learners’
representations and simulation actions can provide a tutor with valuable information about
what kind of guidance is needed.

We believe that the ability to routinely synthesize new intelligent learning environments
from off-the-shelf components that combine multiple functionalities rarely found today is
sufficient justification for moving to a component-based development approach. The
potential advantages of component-based systems must, of course, be weighed against their
costs. Creating composable software components requires exposing enough of their internal
representations, through carefully designed protocols, so that effective communication is
possible. Doing this in ways that minimize communication overhead while maximizing
reuse is a subtle design problem which can require substantial extra work.

A Feasibility Demonstration of a Science Learning Space
In this section we describe the Science Learning Space demonstration that we undertook.
We begin with the learning activity that motivates our particular combination of tools; then
we describe the underlying architecture and step through an example interaction scenario.

The Learning Activity: Scientific Inquiry
There is no point in combining components unless the learner benefits - in particular, the
functionality provided by each component must contribute to the facilitation of effective
learning interactions in some way. Consider scientific inquiry. Students have difficulty with
the basic distinction between empirical observations and theoretical statements. They need
to learn that theories are posed to explain and predict occurrences and that theories are
evaluated with respect to how consistent they are with all of the relevant observed data.
They need to seek relevant evidence, both confirming and disconfirming, perform
observations, and conduct experiments to test hypotheses or to resolve theoretical arguments
between hypotheses. Experimentation requires certain process skills, such as the strategy of
varying one feature at a time. Evaluation of the results of experiments requires scientific
argumentation skills. Thus, this is a learning problem that could benefit from (1)
experimentation in simulation environments, aided by coaching based on a process model of
effective experimentation; and (2) articulation of and reflection upon one’s analysis of the
relationships between hypotheses and evidence, aided by coaching based on principles of
scientific argumentation.

In our demonstration scenario, we imagine a student engaging in an investigation of the
climate of Venus. She starts by posing a plausible hypothesis that Venus is cold because its
excessive cloud cover makes it so. Next, she uses the multiple tools and intelligent



assistance of the Science Learning Space to record, test, revise and argue for this
hypothesis.

The Implementation Architecture
We describe the abstract implementation architecture (see Figure 1) behind our
demonstration as one illustration of how several technologies enable the construction of
component-based systems. Our collaboration began with a Learning Space demonstration
involving an Experimentation Tutor Agent and Active Illustration [Forbus, 1997]
communicating through a Lambda-MOO derivative using the "MOO Communications
Protocol". Forbus had already made use of the MOO for communication between the Active
Illustration simulation engine and a simulation user interface (bottom right of Figure 1). A
MOO was chosen as the infrastructure because its notion of persistent objects and multi-user
design made it easy for participants in experiments (both human and software) to be in a
shared environment despite being on different machines, often in different parts of the
country. The open, ASCII-based MOO Communications Protocol made it easy to add a
Tutor Agent to monitor student performance as the basis for providing context-sensitive
assistance. Koedinger used the plug-in tutor agent architecture [Ritter & Koedinger, 1997]
which employs a simple Translator component (small box upper right of Figure 1) to
manage the communication between tools and tutor agents. The Translator watched for
messages between the
Simulation Interface
and the Active
Illustration server,
extracted messages
indicating relevant
student actions, and
translated these student
actions into the
“selection-action-input”
form appropriate for
semantic processing by
the Tutor Agent’s
model-tracing engine.

Subsequently, the
Belvedere system and
Argumentation Coach
were added (left side of
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Figure 1. Communication architecture used in the demonstration.

Figure 2. Opening situation: An initial hypothesis.



Figure 1). Belvedere itself provides a
communication architecture, described
in Suthers & Jones [1997] and
abstracted as "BORBI" in Figure 1.
Integration of the Belvedere subsystem
into the MOO required the addition of
one translator component (the other
small box in the figure): no
modification to Belvedere itself was
required. The translator watched the
MOO for Hypothesis and Simulation
Run objects sent by the Simulation
Interface. When seen, these were
converted to Belvedere Hypothesis and
Data objects and placed in the user’s
“in-box” for consideration.

Learning Scenario
Returning to our student who
is thinking about planetary
climate, we illustrate a
learning interaction scenario
supported by our multi-
application Learning Space. In
the opening situation (Figure
2), the student has recorded in
Belvedere’s evidence-mapping
facility the hypothesis that
Venus is cold because it is
cloudy. On the left are the
Active Illustration simulation
interface and the Tutor Agent’s
Skillometer showing initial
estimates of the student’s level
of skill on several subskills.
Next, Belvedere’s
Argumentation Coach
suggests that the student find
some evidence for this
hypothesis (Figure 3). Since
the student can’t go to Venus
to experiment, she decides to
use an Active Illustration
simulation of the Earth’s
atmosphere as an analog
instead.

In the Active Illustration interface, the student runs a baseline simulation using normal
cloud cover parameters for Earth. The Tutor Agent observes these events in the MOO and

Figure 3. Coaching scientific argumentation

Figure 4. Creating an experimental run of the
simulation.

Figure 5. Plotting the results of the experiment.



updates estimates of
baseline
experimentation skills
(lower portion of
Figure 4). Then the
student constructs a
comparison simulation
by increasing the
Earth’s cloud cover to
95%, much more like Venus (Figure 4). If the student had attempted to change more than
one parameter of the simulation, the Experimentation Tutor Agent would recognize this
action as an instance of the change-more-than-one-variable bug (see Table 2), and would
have generated a feedback message to prompt the student toward designing a more
discriminating experiment. Having created baseline and comparison experiments, the
student uses Active Illustration’s plotting facility to show the results (Figure 5). To her
surprise, Earth gets hotter when cloud cover increases. The student realizes that a new
hypothesis is required. Using Active Illustration’s hypothesis recording facility, the student
creates the hypothesis that the temperature of the atmosphere is affected positively by cloud
cover and marks it as confirmed (Figure 6).

The student then decides to send this hypothesis along with the results of the two
experiments back to the Belvedere application. She does this by selecting these objects and
clicking a “send to other tools” button. The objects are sent out on the MOO, where they are
observed by the Belvedere-MOO Translator. It filters messages and translates hypothesis
and data objects into Belvedere's representations and places them in Belvedere’s “in-box”.
The in-box is a place where new information is kept until the student is ready to integrate it
into the evidence map. The student
selects information objects from the
in-box and places them in her
evidence map. At this point she uses
Belvedere to construct the argument
shown in Figure 7. The two
experiments are connected with an
“and” link and then connected to the
hypothesis that temperature increases
with cloud cover using an evidential
“for” link. Finally, this experimentally
derived hypothesis is used to argue
against the original idea that Venus is
cold because it is cloudy by making an
evidential “against” link.

The Experimentation Tutor Agent
is able to understand the semantics of
the experiment and hypothesis objects
because it observed the history of the
creation of these objects in the
Simulation. As a consequence, this
agent can provide the student with
advice on the semantics of the

Figure 6. Making a new hypothesis in Active Illustration.

Figure 7. Evidence map with experimental results.



argument. If, for instance, the student were to try to use only the comparison experiment as
evidence for the hypothesis, the agent can remediate this argumentation bug (see Table 2):
“Just because the temperature was high with high cloud cover is not enough to argue for
your hypothesis; you must also cite the contrasting baseline experiment where the
temperature was lower with normal cloud cover.”

Semantic Interoperability for Constructive Learning Interactions
Since all three systems made reference to the same set of objects (e.g., experiments, data,
hypotheses), it was critical that a shared semantics was achieved. Below we discuss some
alternate solutions and their roles.

Shared Ontologies
One possible approach to achieving semantic interoperability is to have a common ontology
of educational objects that each system accesses. Significant portions of our communications
were in effect a process of negotiating an informal shared ontology. The process may have
been more efficient and involved fewer misunderstandings if a standard ontology or even
reference vocabulary were available and known to all.

However, while shared ontologies may be worthy goals in the long term, they require a
high level of community consensus and standardization that is still well out of reach (if not
in defining the standards, certainly in having them take hold). Furthermore, there is good
reason to believe that multiple alternative representations of the same objects or concepts
are not only inevitable, but useful. Different representations afford different kinds of
processing. For example, the representation of an experiment in the simulation stores
numerous simulation-related details whereas the Tutor Agent's representation of an
experiment is at a more abstract level appropriate for reasoning with, rather than about,
experiments.

Translators to Preserve Advantages of Alternative Representations
The use of Translator components allow developers of component systems to make their
own representational decisions. Once these decisions have been made, developers can get

Table 2. Domain-Independent Productions for Experiments and Argument
Change-more-than-one-variable-bug (Pre-conception)
IF the goal is to discover a hypothesis and you have a first experiment
THEN change some variable values to create a second experiment

Change-one-variable
IF the goal is to discover a hypothesis
   and you have a baseline experiment
THEN change one variable value to create a comparison experiment

One-trial-generalization-bug (Pre-conception)
IF the goal is argue for hypothesis "The greater the <cloud cover>
     the higher the <atmospheric temperature>"
   and you did an experiment where <cloud cover> was high
   and the resulting <atmospheric temperature> was high
THEN argue the hypothesis is true by citing this experiment

Argue-from-controlled-comparison
IF the goal is argue for hypothesis "The greater the <cloud cover>
     the higher the <atmospheric temperature>"
   and you did two experiments, a baseline and comparison
   and in one <cloud cover> was low and <temp> was low
   and in the other <cloud cover> was higher and <temp> was higher
THEN argue the hypothesis is true by citing these two experiments



together to identify the shared semantics and specify translators to implement them. It is not
necessary to work out ahead of time the precise meaning and structure of all symbol
structures in a shared ontology. The Translator components were critical to the relative ease
in which we composed the three systems. Our composition task would not have been as
easy, however, if Active Illustrations and Belvedere had not built from the start in an open
client-server architecture. These tools were “recordable” and “scriptable” by the Tutor
Agent [Ritter & Koedinger, 1997] and by each other. Unfortunately, too few office
applications or educational objects are currently built in this open architecture.

Granularity and Persistence of Identity
The Active Illustrations simulation and Simulation Interface used the MOO to communicate
in terms of the multiple parameter settings that define a simulation run or experimental
trial, however, we wanted experimental trials to appear in Belvedere as single nodes in the
evidence map. We needed a way to coordinate this difference in granularity while
preserving the essential semantic identity of object representations as they are moved from
tool to tool. This design problem ultimately led us to better understand how the software
need for persistence of identity can sometimes be solved by addressing the learner's same
need.

We initially considered solving this problem by using the Belvedere-MOO Translator to
aggregate individual parameter setting and simulation events into “data” objects that record
the results of a particular trial. These data objects would then appear automatically in
Belvedere’s in-box. However, focusing on the needs of the learner, we elected to follow a
different approach for three major reasons. (1) Not all simulation runs will be informative
enough to use. We wanted to avoid cluttering the in-box with many not so useful objects. (2)
We wanted to encourage the learner to reflect on which runs were worth recording, by
requiring that the learner make the decision of which to record. (3) The learner needs to
make the connection between her experiences in the simulation environment and the
representational objects that she manipulates in Belvedere. Hence the aggregated objects
representing simulation runs should be created while still in the simulation environment
and given visual identities recognizable to the learner, preferably by learner herself.

The Simulation Interface already enabled the user to provide textual labels for simulation
runs and we took advantage of that. We modified the Simulation Interface to provide a
facility for broadcasting labeled simulation summary objects to the MOO (and hence to the
Belvedere in-box) thereby enabling the learner to select relevant results without leaving the
simulation context. This example reveals one limitation of a pure “plug and play” approach
to component based systems: Communication protocols cannot anticipate all future needs.

Conclusions
We described a case study of component-based construction of a Science Learning Space,
consisting of a simulation tool (Active Illustrations), a modeling tool (Belvedere), and
tutoring agents (the Experimentation Tutor Agent and Argumentation Coach). We
discussed several approaches to reducing the effort required to “hook up” diverse
components and demonstrated the value of sharing semantics between applications.
Information objects created with particular semantic identities in Active Illustrations
retained their identity in their treatment in Belvedere and its Argumentation Coach.
Furthermore, the Experimentation Tutor Agent treated these objects as having the same
semantics in both situations.



The Science Learning Space vision is to combine the pedagogical benefits of simulations,
modeling tools, and intelligent assistance to support students in cycles of inquiry --
questioning, hypothesizing, modeling, reflecting and revising -- to both acquire new
scientific content and to improve reasoning and learning skills. A major obstacle at this
point is that too few developers are creating open components that are recordable and
scriptable by other applications. Although media interoperability is widely available
between “office” tools in current software environments, our vision is of a semantic
interoperability between knowledge-based software for learning. In this vision, learner-
constructed objects will maintain their meaning (though not necessarily the same
underlying representation) when moved from one tool to another. They will remain
meaningful not only to the human user, but also to the software agents that interact with
each tool. Consistent treatment of the learner’s constructions in different contexts by
different software agents reinforces the deep semantics that we want learners to extract and
generalize from specific experiences. At the same time, the contextual semantics of these
objects accumulate as they are used. In a Science Learning Space, students experience the
concept of experimental trial, for instance, by first thinking about it, designing
discriminating trials in the simulation, and then thinking with it, using these trials to
construct an argument. Tutor agents support students in properly encoding these learning
experiences and in engaging in effective scientific reasoning processes. We hope our initial
efforts to integrate components in a Science Learning Space point the way to future, more
complete efforts.
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