Theoretical and Empirical Motivations for the Design of ANGLE:
A New Geometry Learning Environment

Kenneth R. Koedinger and John R. Anderson

Psychology Department
Carnegie Mellon University
Pittsburgh, PA 15217

Cognitively Sound Tutor Design

Quite often the design of Intelligent Tutoring Systems
(ITS) has been a seat-of-the-pants venture in which
designers have relied mainly on their beliefs and
intuitions to guide their decisions. Expert component
design has sometimes been aided by consultation with
domain experts, but typically the major emphasis has
been on getting the program to work. The situation
with respect to the design of the interface and tutoring
components is worse: theoretical justification or
empirical testing of design decisions are rare at best.

Of course seat-of-the-pants design can lead to
innovation, but it more often leads to bad artifacts
(Norman, 1989). Unfortunately for the ITS field, little
follow-up empiricai work has been done with ITSs to
determine whether they are actually useful. Even less
work has been done to identify what aspects of their
design account for their usefulness.

Some researchers claim that the most important
factor in the success of an ITS is the quality of the
expert component or cognitive model that underlies it
(Anderson, 1988; Lesgold, et. al., in press). The ITS
presented in this paper, called ANGLE, takes this claim
to heart as it is based on a second generation cognitive
model of geometry procf problem solving. In addition,
with ANGLE we are in a position to test this claim as
ANGLE can be compared with the Geometry Tutor, an
existing ITS based on a less accurate cognitive model.

ANGLE’s expert component has grown out of
detailed problem solving research, in particular,
protocol analysis. In addition, ANGLE's interface
design has been theoretically driven by three goals: 1)
students’ interface actions should mirror the actions of
the cognitive model, 2) the unique ability of computer
interfaces to allow the dynamic manipulation of display
objects should be exploited, and 3) ease of use
should not be compromised in pursuit of the
preceding goals.

Background

The Geometry Tutor (Anderson, Boyle, & Yost, 1985}
resulted from basic problem solving research and the
application of the ACT* theory (Anderson, 1983). It

has proven effective in the high school classroom —
students using the Geometry Tutor in their classroom
outperformed those in a normal classroom by about 1
standard deviation (Anderson, Boyle, Corbett, &
Lewis, in press). The apparent reason for the tutor's
success was the shift in the focus of instruction from
the product of problem solving, i.e., the definitions,
postulates, and theorems that make up the steps of a
proof, to the process of problem solving, i.e., how can
I, as a student, generate those steps. In other words,
while textbook instruction provides the facts or what of
geometry, the Geometry Tutor shows students how
they can use these facts to solve problems. The
strategic advice the tutor provides reflects the search
control heuristics in the cognitive model.

Whiie it appears the Geometry Tutor's success was
largely a resuit of explicating a process or method for
problem solving, it turns out that this is not the only
effective methoc! for doing geometry proofs. In fact,
recent research on skilled geometry problem solving
(Koedinger & Anderson, in press) has identified a
geometry proof method (called DC) which is not only a
more accurate accouint of human problem solving, but
is also more effective. This paper describes this model
and its fundamental role in the design of ANGLE: A
New Geometry Learning Environment.

DC: A New Approach to Geometry

Koedinger and Anderson (in press) report on the DC
model in detail: describing a cemputer simulation of it
and evaluating it in comparison with other methods.
This section reviews DC and its evaluation as
background and motivation for its use in ANGLE.

The DC Method

Like most previous models of geometry theorem
proving (Gelernter, 1963; Goldstein, 1973; Anderson,
Boyle, & Yost, 1985), the expert component of the
Geometry Tutor works in a problem space based on
the formal rules of geometry: the definitions,
postulates, and theorems. We call this the execution
space because these rules correspond with the steps

To be presented at the Knowledge-Based Environments for Learning and Teaching, AAAI Spring Symposium Series, Standford

University, March 27-29, 1990.

that are written down in the final execution of a proof
plan.

The DC model grew out of the analysis of verbal
reports given by skilled subjects as they solved
geometry proof problems. We were surprised to find
that while the steps subjects wrote down in their final
solution corresponded with the execution space, they
skipped many of these steps earlier in the process of
planning a solution. The problem solving protocols of
all the skilled subjects had this flavor where there were
phases of planning where steps were skipped and
phases of execution where these steps were filled in.
It was clear that subjects were not searching step-by-
step in the execution space. Rather, subjects were
planning in some other more abstract problem space
(Newell & Simon, 1972; Sacerdoti, 1974) using
knowledge that allowed them to focus on the key
inferences and ignore the minor inferences. We have
characterized the nature of this knowledge in a
computer simulation called the Diagram Configuration
model (DC).

CONGRUENT-TRIANGLES-SHARED-SIDE :

Configuration: X

w
Whole-statement: AYRYW £ AZXW

Part-statements: 1. XY = X2
2. YW=2W
3.27= 27
4. LYEW = L2HEW
5. LXMWY = LRWZ

Ways-to-prove: {1 2} {1 4} {2 5}
{45} {34} {35}

Figure 1. A diagram configuration schema.

Model Description. The core idea of DC is that the
knowledge of skilled geometry problem solvers is
organized around certain prototypical geometric
figures we call diagram configurations. Clustered
around each diagram configuration are related
geometry facts. We call such clusters of geometry
information diagram configuration schemas.

Diagram configuration schemas have four
attributes as shown in Figure 1. The whole-statement
and part-statements attributes contain statements
which refer to the geometric figure stored in the
configuration attribute. The whole-statement refers to
the configuration as a whole, while the part-statements
are relationships among segment and angle parts of
the configuration. The ways-fo-prove attribute
contains possible subsets of the part-statements
which need to be proven (or given) in order to “prove

the schema”. Whenever a schema is “proven” the
whole-statement and all the part-statements of the
schema can be proven. Thus, these schemas have a
pattern completion character such that if some portion
of the part-statements are proven, the rest of the part-
statements can be proven. For example, one of the
ways-to-prove of the TRIANGLE-CONGRUENCE-
SHARED-SIDE schema is {1 2} which indicates that if
part-statements 1. X¥=XZ and 2. Y'W=Z' are proven,
the whole-statement and the rest of the part-
statements are proven. Such a use of this schema
corresponds with five steps in the execution space:
the application of the REFLEXIVE property and the
SIDE-SIDE-SIDE postulate to prove the whole-
statement, AXYW = AXZW, followed by three
applications of the CORRESPONDING-PARTS rule to
prove the other three part-statements (3, 4, and 5).
This chunking illustrates the power of DC's abstract
planning.

Besides abstract planning, another feature
essential to the success of the DC method is the use
of the problem diagram as a guide for generating
candidate inferences. Figure 2 shows a proof problem
in the ANGLE interface — the problem diagram is in the
upper-left corner, the problem givens are on the
bottom, and the problem goal is on the top. A number
of instances of the TRIANGLE-CONGRUENCE-SHARED-
SIDE schema can be seen in this diagram, for example,
AACK = ABCK and AGCK = AHCK. While it is not the
case that any configuration that appears in a problem
diagram can be proven (e.g., AGCK = AHCK in the
problem in Figure 2), it is a fact that, given a properly
drawn diagram, any configuration which can be proven
appears in the diagram (e.g., AACK = ABCK). By only
considering configurations which appear in the
diagram, DC effectively prunes out a tremendous
number of logically well-formed statements that might
otherwise be considered (see analysis below).

Contrary to many problem solving systems, DC's
power does not come from clever search control
heuristics applied to the basic problem space. Instead,
it comes from an abstract problem space
representation. Thus, a simple depth-first search is
sufficient to find proofs in DC’s problem space.

Empirical Validation. To provide empirical support
for DC, we analyzed 12 protocols coming from the
concurrent verbal reports (Ericsson and Simon, 1984)
of five skilled subjects. The protocols were divided
into 1) planning episodes in which subjects developed
an initial sketch for part or all of the solution and 2)
execution episodes in which they reported the details
of part or all of their final solution. We identified the
steps in subjects’ final solutions that they mentioned
during the planning.

We found that subjects mentioned only 37 of the
98 total steps in the final solutions of the 12 problems
—they skipped 61. If DC is a good model of abstract
planning in geometry, the planning steps of skilled

subjects should tend to correspond with DC-schemas.
Indeed, we found that 23 of the 29 steps the model
predicts will be mentioned were actually mentioned,
while 55 of the 69 steps the model predicts will be
skipped were actually skipped. A Chi square test
(X=(1) = 30.3) indicates it is unlikely that the models fit
to the data is a chance occurrence (p <.001).

Computational Effectiveness. The relative
effectiveness of DC compared to models that work in
the execution space is demonstrated by a task analysis
we did of one of the more difficult problems the
subjects solved (shown in Figure 2). The shortest
solution to this problem in the execution space is 7
steps and we estimated that a breadth-first search for
this solution visits more than a million states. The
shortest solution to this problem in the diagram
configuration space is 3 steps and a breadth-first
search for this solution visits only 8 states in the worst
case. Of course, the immense size of the execution
space can be somewhat reduced by adding search
control heuristics, for example, as was done in
previous models including the Geometry Tutor expert.
However, our experience has been that DC easily
solves problems that are quite difficult for the
Geometry Tutor expert even with its heuristics.

ANGLE

In this section we discuss the implications of DC for the
design of ANGLE. DC also has implications for the

design of other instructional factors, including
curriculum organization, text materials, and classroom
lessons. While we feel that such factors are crucial to
the success of a complete ITS package, limited space
prevents us from discussing them here. Suffice it to
say that a major role of these supplementary materials
is to provide students with the declarative information
they need to use the DC method. ANGLE, in turn,
provides an environment where students can learn to
understand and appropriately use DC-schemas in the
context of problem solving.

Tutor Design: From DC to ANGLE

The Implicit Plan Problem. One of the difficulties
involved in building an ITS is finding a way to
communicate about the thinking that students do
between their observable problem solving actions. We
call this the “implicit plan” problem. If aspects of
student planning cannot be articulated in the system
interface, it is not possible for the system to monitor
this planning nor provide relevant advice. For
example, in data collected from the Geometry Tutor, it
was found that the better performing students were
taking significantly more time at the beginning of a
problem before making their first interface action.
Presumably, they were trying to develop a solution
plan. In contrast, the poorer students would often
blindly try any rule that could be applied to the problem
givens.

E

% File Edit Eval Tools Windows GEOproof

ANGLE: i New Geometry Learning Environment ==

£LGAK = LKBH

-
£BCD = LDCA \

GoAL ABLDE

6Dl B

/

LADK =|l LKDB

Figure 2. Tutor window after a solution was found. Notice off-path moves and schema instances
that were identified but never proven.

In support of this interpretation, a common
complaint about the Geometry Tutor is that it does not
provide very good global feedback. The feedback
focuses locally on the next proof step the student
might take rather than more globally at the next few
steps or an overall plan. Many critics have the intuition
that proof ideas can be born at a more global level. Our
current research on geometry experts has identified
this more global level and has characterized it in terms
of DC's diagram configuration schemas. Thus, ANGLE
can address the implicit plan problem — we can reify the
planning process in the interface and so, open it up for
discussion and instruction.

Reifying Planning. Some ITS designers have
addressed the problem of communicating about the
abstract planning occurring above the level at which
solution steps are executed. Examples of the
resulting tutoring systems include Bridge (Bonar &
Cunningham, 1988), GIL (Reiser, et. al., 1988), and
Sherlock (Lesgold, et. al., 1988). The basic approach
is to develop a command language, usually menu-
based and possibly graphical, which makes this
planning level concrete. Conveniently, we do not
need to invent such a command language to reify DC's
abstract problem space. Essentially, it already exists in
the form of the problem diagram.

The ANGLE Interface

Figure 2 shows ANGLE interface after the completion
of a solution. Students enter proof steps in this tutor
by selecting a diagram configuration from the icon
menu on the left of the screen. Next, they mouse-click
on lines in the problem diagram to indicate a particular
instance of this configuration. The lines they select are
highlighted as shown in Figure 3. The figure shows
the selection of an instance of the TRIANGLE-
CONGRUENCE-SHARED-SIDE schema — this particular
instance is the first step along the solution path shown
in Figure 2. After the student mouse-clicks on the
Done button, the schema instance appears on the
screen and the student can drag it (using the mouse)
over into the proof tree. A schema is proven by
selecting statements (using the mouse) that justify the
schema — a line is drawn between the schema and
each statement selected. The system checks whether
or not the selected statements correspond with one of
the ways-to-prove of the schema. The current
prototype gives error feedback when the selections
are not necessary and sufficient to prove the schema.
A more sophisticated feedback scheme is in the works.

The statements shown in Figure 2, e.g., ZBCD =
ZDCA, are entered using the bottom two icons in the
icon menu. The bottom-most icon is used to mark
segments equal and the one above it is used to mark
angles equal. A statement is proven by indicating the
schema that justifies it. When a statement is proven,
the result is marked on the diagram using the
conventional hash marks.

ANGLE illustrates one of the potential advantages
of computer tutors, namely the dynamic and
manipulatable nature of computer interfaces. ANGLE
allows students to move schemas and statements
around on the screen (all attached lines are
maintained). On one hand, this feature is simply a way
for students to keep their proof graph neatly
organized. On other hand, students appear to use this
feature in a more cognitively meaningful way. Without
any explicit direction from us, the students who have
worked with the prototype system have used different
localities on the screen to implicitly record the status of
the schema instances they have selected. When a
schema instance is initially selected, students place it
above the givens and any previously proven
statements. Sometimes they discover they cannot
prove the schema at the moment either because 1)
more statements need to be proven before the
schema can be, or 2) the schema cannot be proven
and/or is irrelevant to the proof. In case (1), students
have left the schema in the proof tree area unlinked
but posted as a goal for future problem solving. In case
(2), students have moved the schema off to the left
(like the schemas for ISOS AGCH and AAKD = ABKD in
Figure 2) to indicate that it is no longer useful.

A second example of the potential advantages of a
computer interface over paper and chalkboard
concerns the way different schema instances can be
highlighted in the context of the overall diagram as
shown in Figure 3. Such temporary highlighting is
impossible to do on paper, but may be quite valuable in
facilitating the learning of the perceptual skill of
extracting particular objects from a complex
background. Finding the particular schema instance
shown in Figure 3 is one of the difficulties we've
observed subjects experience in solving the problem
shown.

D=7 [HIAN

i

Figure 3. The selection of an instance of the
TRIANGLE-CONGRUENCE-SHARED-SIDE schema.

Conclusion and Future Work

We are planning to compare ANGLE to the Geometry
Tutor in an evaluation study. We are optimistic that the
ANGLE tutor can exceed the 1 standard deviation
improvement achieved by the Geometry Tutor and
perhaps approach or even exceed the 2 standard
deviation improvement gained by individual human
tutoring (Bloom, 1984). In addition to the interface
benefits mentioned above, the major advantage of
ANGLE may derive from the cognitive science
research that inspired it.

We can think of a tutor as a model of problem
solving which students can emulate. To the extent
that the tutor's problem solving method is a good one
and students successfully emulate it, then they will be
good problem solvers as well. Because DC is a more
powerful method than the one in the previous tutor,
we believe that students who successfully emulate it
will be even better problem solvers than those who
successfully emulated the problem solving method
taught by the Geometry Tutor.

Besides being a more powerful problem solving
method than one that focuses on single steps, our
basic research suggests that the DC method may be

easier to learn. Koedinger and Anderson (1989) argue

that DC-schema's are not learned, in any direct way,
from the formal rules of the domain — what we call the
execution space. Instead, they appear to be learned

by identifying useful categories of domain objects (i.e.,

the configuration) and learning their properties (i.e.,
the part-statements and ways-to-prove). These
categories carry the load of recognition: indicating
when particular knowledge should be brought to bear
and having the effect of drastically reducing the search
space. The properties carry the load of inferencing —
indicating what can be concluded (part-statements)
and under what conditions (ways-to-prove).

We believe this type of learning, that is, abstraction

from domain objects, is a more natural extension of
students' prior knowledge. Thus, contrary to the
concern that DC represents an expert method that will
be too difficult for students to understand, we believe
the DC method will be easier to learn. The instruction
in the Geometry Tutor is focussed on the formal rules
of geometry which are totally new and unfamiliar to
students. In contrast, the focus of instruction in
ANGLE would be on diagram configurations and their

properties. Pre-geometry students already have some

prior perceptual intuitions about geometric figures.
Diagram configuration schemas can be taught by
building off this familiar ground. Clearly students will

have to refine their perceptual knowledge to learn how

to encode problem diagrams into diagram
configurations. However, having students plan proofs
by selecting diagram configuration icons and
instantiating them in the problem diagram will aid them
in learning this encoding.

References

Anderson, J. R. (1983). The Architecture of
Cognition. Cambridge, MA: Harvard University
Press.

Anderson, J. R. (1988). The expert module. In M. C.
Polson & J. J. Richardson (Eds), Foundations of
Intelligent Tutoring Systems. Hillsdale, NJ: LEA.

Anderson, J. R., Boyle, C. F., & Yost, G. (1985). The
geometry tutor. In Proceedings of the
International Joint Conference on Artificial
Intelligence-85. Los Angelos: [JCAI

Anderson, J. R., Boyle, C. F., Corbett, A., & Lewis, M.
(in press). Cognitive modelling and intelligent
tutoring. Artificial Intelligence.

Bloom, B. S. (1984). The 2 sigma problem: The
search for methods of group instruction as
effective as one-to-one tutoring. Educational
Researcher, 13, 3-16.

Bonar, J. G., & Cunningham, R. (1988). Intelligent
tutoring with intermediate representations. Paper
presented at ITS-88. Montreal.

Ericsson, K. A., & Simon, H. A. (1984). Protocol
Analysis: Verbal Reports as Data. Cambridge, MA:
The MIT Press.

Gelernter, H. (1963). Realization of a geometry
theorem proving machine. In E. A. Feigenbaum &
J. Feldman (Eds.), Computers and Thought. New
York: McGraw-Hill Book Company.

Coldstein, I. (1973). Elementary geometry theorem
proving. MIT Al Memo 280.

Koedinger, K. R., & Anderson, J. R. (in press).
Abstract planning and perceptual chunks:
Elements of expertise in geometry. Cognitive
Science.

Koedinger, K.R., & Anderson, J.R. (1989).
Perceptual chunks in geometry problem solving: A
challenge to theories of skill acquisition. In
Proceedings of the Eleventh Annual Conference
of the Cognitive Science Society. Hillsdale, NJ:
LEA.

Lesgold, A. M., Lajoie, S. P., Bunzo, M., & Eggan, G.
(In press). SHERLOCK: A coached practice
environment for an electronics troubleshooting
job. InJ. Larkin, R. Chabay, & C. Scheftic (Eds.),
Computer Assisted Instruction and Intelligent
Tutoring Systems: Establishing Communication
and Collaboration. Hillsdale, NJ: LEA.

Newell, A., & Simon, H. A. (1972). Human problem
solving. Englewood Cliffs, NJ: Prentice-Hall.

Norman, D. A. (1989). The Psychology of Everyday
Things. New York, NY: Basic Books.

Reiser, B. J., Friedmann, P., Gevins, J., Kimberg, D.
Y., Ranney, M., & Romero, A. (1988). A graphical
programming language interface for an intelligent
LISP tutor. Proceedings CHI'88.

Sacerdoti, E. D. (1974). Planning in a hierarchy of
abstraction spaces. Artificial Intelligence, 5, 115-
136.

