THE NATURE OF GEOMETRY EXPERTISE:
A CHALLENGE FOR SPEEDUP LEARNING

Kenneth R. Koedinger

Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213 USA

koedinger@psy.cmu.edu

Abstract

While speedup learning mechanisms are typically
evaluated in terms of their ability to improve the
efficiency of a problem solving system, another
source of evaluation is to check the results of
learning against the knowledge content and
organization of expert problem solvers.
Investigating the knowledge organization of
human or computer experts can not only provide
an independent evaluation of speedup learning
mechanisms, it may also suggest new approaches
to speedup learning. Following this strategy,
this paper reviews our cognitive model of
expertise in geometry theorem proving
(Koedinger & Anderson, 1990) and discusses its
implications for speedup learning. In particular,
we found the organization of expert knowledge in
Geometry to be distinctly different from the
knowledge organization that results from
traditional speedup learning mechanisms. While
the knowledge resulting from such mechanisms
usually reflects the goal-structure organization of
problem solutions, expert geometry knowledge is
organized in terms of the perceptual structure of
geometric objects. It is suggested that perceptual
structure may provide a useful alterative to goal-
structure as a source of guidance in the formation
of efficient knowledge during speedup learning.

1 INTRODUCTION

Koedinger and Anderson (1990) presented a cognitive
model of geometry expertise (called DC) that is not only a
more accurate account of the abstract planning abilities of
human experts, but is also a more efficient problem solver
than previous models. The knowledge in DC is organized
around "perceptual chunks" that provide a way to cue
clusters of relevant geometric knowledge from prototypic
images in geometry diagrams. This knowledge is
represented in what we call "diagram configuration
schemas”. The model presents a challenge for theories of
skill acquisition and speedup learning in that current

theories may be inadequate to achieve the particular kind
of highly organized knowledge we have found geometry
experts to have.

Speedup learning mechanisms, like chunking in Soar
(Newell, 1990), compilation in ACT* (Anderson, 1983),
or explanation-based learning in general, can be viewed as
methods of composing and/cr specializing the basic
operators in the domain theory to come up with macro-
operators that lead to more efficient problem solving.
While the diagram configuration schemas that make up
the DC model can certainly be described as macro-
operators of the basic domain operators, it is unclear how
they can be derived or learned by composing basic
operators (and whether human experts learn them in this
way). Macro-operators resulting from traditional speedup
learning mechanisms will typically reflect the goal-
structure organization in problem solutions. In contrast,
diagram configuration schemas reflect the perceptual
organization of object-structures in the domain.

This paper presents the DC model and poses the challenge
for speedup learning. I also describe an analysis of the
geometry learning environment that puts constraints on
potential solutions to the challenge. Finally, I propose a
partial solution to the challenge and frame the
characteristics of a more satisfying solution.

2 THE DIAGRAM CONFIGURATION
MODEL (DC)

In Koedinger and Anderson (1990), we described a study of
geometry expertise in which we found the approach of
human problem solvers to be distinctly different from the
typical approach taken in previous cognitive models and
expert systems for geometry theorem proving (Gelernter,
1963; Goldstein, 1973; Anderson, Boyle & Yost, 1985).
Most previous models found proofs by performing a
heuristic search in a problem space made up of formal
geometry rules (i.e., definitions, postulates, or theorems)
— the same rules that appear in the “reasons” column of a
textbook proof (see Figure 1). In contrast to this rule-by-
rule approach, we found that human experts take an
abstract planning approach (Newell & Simon, 1972;
Sacerdoti, 1974) — they initially make leaps of inference

Appears in the proceedings of the Machine Learning workshop on Knowledge Compilation and Speedup Learning, Aberdeen,

Scotland, July 4, 1992.

to identify the key steps in a solution. In the process they
skip detailed formal steps that they later fill-in to produce
a complete proof solution. In developing a plan for the
problem in Figure 1, an expert would mention the key
steps 5, 7, and 10 and tend to skip the others.

There was a real regularity in the kinds of steps experts
were skipping and we argued that simple macro-operator
or abstraction methods could not provide a good
explanation for this step-skipping regularity. Instead we
found that experts’ knowledge appeared to be organized
around certain prototypical geometric configurations.
These configurations group together clusters of geometric
knowledge that can be cued by the diagram and can lead to
numerous inferences in a single step. These
configurations were the basis of the DC model and we
showed how they provided an accurate account of our step-
skipping data and how they lead to a drastic reduction in
the size of the geometry search space.

2.1 DIAGRAM CONFIGURATION SCHEMAS

Figure 2 shows two example configuration schemas. The
configuration slot contains recognition knowledge that can
pick out potential instances of the configuration in
geometry diagrams. These configurations are perceptual

chunks (Chase & Simon, 1973) that experts have acquired
from considerable experience in solving geometry
problems. Examples of instances of the CONGRUENT-
TRIANGLES-SHARED-SIDE configuration (3) and the
PERPENDICULAR-CROSS configuration (1) can be seen in
the top row of Figure 3. The whole-statement slot
indicates the geometry statement usually associated with
this configuration (if there is one — not all configurations
have labels in the conventional curriculum). The names
of the next two slots have been generalized from
Koedinger and Anderson (1990) to facilitate application of
configuration schemas to other domains (see Koedinger,
1992 for an example). The part-properties slot indicate
properties of parts of this configuration. They are true
(i.e., can be proven) whenever the whole-statement is true
or whenever one of the sufficient-conditions can be
satisfied. These part-properties are shown in the bottom
row of the network in Figure 3 and may occur in other
configuration-schemas. The sufficient-conditions slot
indicates subsets of the part-properties that are sufficient
to prove the whole-statement and the remaining part-
statements. This pattern completion nature of these
configuration schemas explains one way in which experts
can skip steps.

C
GIVEN: AC E AD
AXB bisects CXD
A X x PROVE: LCBX £ ZDBX
D
PROOF SOLUTION:
Statements: _ Reasons:
1.ACE AD 1. Given
2. AXB bisects CXD 2. Given
3.CX= DX 3. Def=bisector (2)
4.AX £ AX 4. Reflexive

S. AACX E AADX

9.BXEBX
10. ABCX 2 ABDX
11. ZCBX £ ZDBX

5. Side-Side-Side (13 4)

6. Corresponding=Parts (5)

7. Congruent-Adjacent-Angs (6)
8. Congruent-Adjacent-Angs (7)
9. Reflexive

10. Side=Angle-Side (3 8 9)

11. Corresponding=Parts (10)

Figure 1. A geometry proof problem and example solution.

CONGRUENT-TRIANGLES-SHARED-SIDE :

Configuration: X

w
Whole-statement: AYXW £ AZXW

Part-properties: 1. XY = XZ
2.YW=2ZW
3.LY= /L2
4. LYRW = LZXW
5. LXWY = ZXWZ

Sufficient-conditions:

{12} {14) {25}
{45} {34} {35}

PERPENDICULAR-CROSS

Configuration: N

Q
Whole-statement: T/ L NG

Part-properties: {1, vt ZLPN

2.rt ZMPN

3. rt ZLPQ

4.rt ZMPQ

5. ZLPN = ZMPN
6. ZMPN = ZMPQ
7. ZMPQ = ZLPQ
8. ZLPQ = ZLPN

Sufficient conditions:
{1} {2} {3} {4}
{5} {6} {7} {8}

Figure 2. Two examples of diagram configuration schemas. The numbers in the sufficient-conditions
indicate part-properties. Thus, in the congruent-triangles-shared-side schema {1 2} means that if the part-
properties XY=XZ and YW=ZW are proven, all the properties of the schema can be proven.

2.2 RECOGNITION AND SEARCH IN DC

DC’s processing combines a recognition process that
identifies configuration instances in a problem diagram
(see Koedinger, 1992 for a discussion of how the diagram
is used to achieve efficient problem solving) and a search
process that looks for a chain of schema instances that
link a problem’s givens to its goal in a logically sound
way (as specified in the other slots of the schema). In
theory the schema recognition and search processes are
interleaved, but in practice the computer simulation of DC
does all the recognition first — producing a network like
the one shown in Figure 3 — and then searches this
network for a problem solution.

In solving the problem in Figure 1, DC recognizes 14
configurations and, in the process of recognition, connects
them with other configurations based on overlapping part-
properties. The result is a network, most of which is
shown in Figure 3 (the remainder is not relevant to the
solution of this particular problem). The task of the
search process is to find a path through this network that
connects the problem givens to the problem goal subject
to the sufficient-conditions of the schema traversed. For

example, the given AXB bisects CXD leads 1o CX £
DX (not shown in Figure 3). CX £ DX and the other
given AC £ AD are enough to satisfy a sufficient-
condition of the CONGRUENT-TRIANGLES-SHARED-SIDE
schema AACX = AADX. As a result, the remaining
part-statements of &ACX £ AADX are known. One
of these, ZAXC = LAZXD, satisfies a sufficient-
condition of the PERPENDICULAR-CROSS schema AB L
€D and so it’s part-properties are known. (Alternatively,
at this point ZCAX £ ZDAX and AC £ AD satisfy
AACB £ AADB which has the goal £CBX £
ZDBX as a part-property — leading to an aliernative
solution.) Lastly, ZBXC £ ZBXD and CX £ DX
satisfly &ABCX £ ABDX so its part-properties are
known, one of which is the problem goal ZCBX £
£LDBX.

2.3 EVALUATION OF DC

A summary of our evaluation of DC as both a
computational system and a psychological model appears
below — for more detail see Koedinger and Anderson
(1990).

c c c c c c
< - I - e | - > O D
Isos ADAC: X midpoint DC AACK £ AADX AB L DC | | AABC £ AABD | ABCX £ ABDX | | Isos ADBC

ZADX & ZDCA ZXADE ZCAX DXEXC ACZDA LAXCE LDXA /BXD = LCXB LABC = LDBA BCEDB

Figure 3. A portion of the network formed by DC’s diagram parsing and configuration conjecturing
components for the problem in Figure 1.

2.3.1 Relative Search Space Size

A task analysis was performed on a problem of about
similar difficulty to the one in Figure 1 to compare the
size of the domain theory search space with that of the
space of DC schemas. The final domain theory solution
to this problem involves 7 steps. There are 45 possible
domain rules inferences that can be made from the givens
of this problem, from these inferences another 563
inference can be made, from these greater than 100,000
can be made. The search space explodes yielding more
than 106 rule applications in a breadth-first search to the
solution. In contrast, the final solution in DC schemas
involves only 3 steps and the breadth-first search explores
8 schema applications.

2.3.2 Modeling Human Experts

We established the psychological accuracy of DC by
showing that it does a good job of accounting for the
steps that subjects mention or skip in their verbal reports
of proof planning. In the verbal reports of 5 experts’
proof planning on a total of 12 problems, we found that
less than half of the steps were mentioned (37/98) and
more were skipped (61/98). In proof planning on these
same problems, DC wound mention 29 of these steps and
skip 69. Of the 29 steps that DC predicts will be
mentioned, 23 were actually mentioned and only 6 were
not. Of the 69 that DC predicts will be skipped, 55 were
skipped and only 14 mentioned. Clearly there is a
regularity in the steps being skipped and DC captures a lot
of this regularity.

2.4 COMPARISON TO
APPROACHES

It is worthwhile to consider whether the step-skipping
behavior of geometry experts could be explained in terms
of an alternative abstract problem space to the diagram
configuration space. Two possible approaches to
generating an abstract problem space are abstraction of
domain rules and composition of domain rules into macro-
operators. An abstract space can be created from the

TRADITIONAL

domain rules by an abstraction process where the
conditions (if-part) of domain rules are generalized, for
example, by dropping a clause which, ideally, refers to
some detail that can be temporarily ignored (e.g.,
Sacerdoti, 1974; Unruh, Rosenbloom, & Laird, 1987).
Such “minor” clauses in the domain rules of geometry are
rare — dropping clauses most often results in operators that
can propose future states which cannot be proven. Such
incorrect plans can cause significant efficiency problems,
however, this is not the only criticism of the adequacy of
this abstraction method. In addition, this method is
inconsistent with the observation that the abstract plans of
DC and our expert subjects as well were always correct.
That is, the abstract inferences they made don’t produce
unprovable statements. Thus, a “clause-dropping” type
abstraction process is unlikely to yield an expert-quality
knowledge representation.

A second approach to building an abstract problem space
is by composition of consecutively applicable domain
rules. This general approach has received numerous
instantiations, for example, ACT*’s composition
(Anderson, 1983), Soar’s chunking (Newell, 1990), Korf’s
macro-operator learning (Korf, 1987). Although most of
these approaches have some stipulations of the appropriate
context in which composition can occur, there is little in
them that indicates whether or when some pairs of
consecutively applicable operators are more likely to be
composed than other pairs. Thus, we would not expect
any regularity in the kinds of steps that would be skipped
in an abstract problem space of composed domain rules.
However, such a regularity is exactly what we observed of
subjects.

One way this regularity might be achieved, for example,
in the the Soar architecture, is by having the initial
problem solver/domain theory contain a hierarchy of
problem spaces corresponding DC schemas. However,
this approach simply puts off the question of how would
this hierarchy be learned in the first place.

Below I elaborate on the argument that traditional speedup
mechanisms cannot explain the acquisition of DC’s
schemas. The problem results from the fact that the basic
domain rules are organized in a very specific way within
the DC model. Traditional approaches provide no clear
reason why this organization would evolve in contrast to
the numerous other possibilities. This problem of lack
of constraint in macro-operator formation is similar to the
“utility problem” (e.g., Minton, 1990; Tambe & Newell,
1989). In that case the problem was identified by finding
that existing mechanisms may not always lead to speedup
as expected. In this case we have recognized this problem
in considering whether speedup learning could achieve a
specific expert representation. It seems likely that if
standard speedup techniques were applied to geometry they
would not only fail to reach a state of knowledge that
corresponds with DC, they would also run into severe
efficiency problems along the way.

3 THE CHALLENGE

The challenge posed by the DC model is to find a learning
mechanism that can acquire DC schemas from the initial
domain theory of geometry rules. Since most speedup
mechanisms are rule-based, an initial problem is to find a
way to express DC schemas as rules. Section 3.1
addresses this problem. A more serious problem is that
the set of macro-operators that correspond with DC's

DC SCHEMA INFERENCE
LY = L2 LYRM = LZRW LRUY = LXWZ

XY =Xz Yw=2¢

schemas is a small and particular subset of the possible
ways to combine the domain theory operators into
macros. This problem is discussed in Section 3.2.

3.1 DC SCHEMAS AS RULES

This can be done by having a rule for each of a schema’s
sufficient-conditions whose left-hand side contains the
configuration and one of the sufficient-conditions and the
right-hand side contains the whole-statement and the part-
properties that are not a part of this sufficient-condition.
For example, the schema in Figure 1 would need 6 rules
for each of the sufficient-conditions. The rule
corresponding with the first sufficient-condition would be:

If triangles A YXW and A ZXW share a side and
look congruent in the diagram,
and XY £ XZ is known,
and YW 2 ZW is known,
then conclude AYXW = AZXW
and ZY & L2z
and ZYXW £ LZXW
and ZXWY = £LXWZ.

This is a composition of five domain rules as shown in
Figure 4.

DOMAIN RULE EQUIVALENT

LY =S LT LYRW = LZXW LRUY = LXWZ

" { /

CORRES- gg:gs- ORRES-
PARTS PARTS

AXYMW E AXZW

$SS
XKW =XW
REFLEXIVE
/ e
XY =RZ Yw=¢

Figure 4. Illustration of a how a DC schema can be thought of as a macro of five domain rules.

3.2 DC SCHEMAS AND THE SPACE OF
MACRO-OPERATORS

The collection of macro-operators that correspond with
DC schemas, call it S, is a restricted subset of the space
of possible macro-operators. S is restricted in two ways.
First, S does not contain any of the possible macro-
operators which could make inferences between statements

Domain Theory Solution
GOAL: ZCBX = ZDBX

t R9Y.CORRES-PARTS
ABCX £ ABDX

R8.SAS
BX

£LBXC £ £BXD
R7.REFLEXIVE

AB L1 CD

LARC E LAXD

AACK £ AADX

XED
R1.DEF-BISECTOR
GIVENS: AXB bisects CXD AC =

R5.CONG-ADJ-ANGS

which are whole-statements of schemas, for example, it
doesn't contain an operator that could infer
perpendicularity directly from triangle congruence in a
problem like the one in Figure 1. Second, S does not
contain any of the macro-operators with fewer then-part
actions than macro-operators like the ones corresponding
with the TRIANGLE-CONGRUENCE-SHARED-SIDE schema
that have 4 then-part actions.

Corresponding

G

R6 .CONG-ADJ-ANGS ‘

R4 .CORRES-PARTS

Figure 5. Perceptual chunks break up solutions in a particular way corresponding to only a small set of the
potential macro-operators for the problem.

Figure 5 and Table 1 provide an illustration of this
reduction. On the left in Figure 5 is a proof-graph
solution to the problem in Figure 1. On the right are
the perceptual chunks (configurations) that correspond
with subsets of domain rule applications in the
solution. For example, the first TRIANGLE-
CONGRUENCE-SHARED-SIDE configuration &AACX £
A ADX corresponds with the rules R2, R3, and R4.
Forming a macro-operator of these rules, call it R234,
would have the same effect in this problem as this
schema. However, forming a macro-operator R45 of
R4 and RS, for example, would not correspond with a
schema.

Table 1 shows the possible macro-operators that could
be formed from the proof-graph in Figure 5 and whether
they correspond or not with DC schemas. Of the 51
possible macro-operators, 3 correspond with DC
schemas while 48 do not.

The key point is that adding “non-schema” macro-
operators to a problem solver that already has “schema”
macros would have negative utility. It would not
increase the system’s ability to solve problems in fewer
steps and at the same time it would increase the
matching time necessary to decide on the next operator

to apply.

Table 1. Expert-like macro-operators are a small subset
of the possible macro-operators.

[Total Macro-operator content
[R234, R56, R789

acro-operators3
orresponding
DC schemas.

emaining 48 13, R18, R23, R34, R45, R68,
acro- 78, R89, R123, R134, R189,
perators. 345, R456, R568, R678, R689,

789, R1234, R1345, R2345,
3456, R4568, R5678, R6789,
R123456789

While most variations of traditional speedup
mechanisms have some stipulations on the appropriate
context in which macro-operators are formed, there is
little in them that indicates precisely which sequences of
consecutively applicable operators are more likely to be
composed than others. Thus, it is unclear how such
mechanisms would yield the highly organized and small
subset of possible macro-operators that constitutes DC.

To be more precise, many speedup mechanisms (e.g.,
Soar's chunking or ACT*'s composition) stipulate that
macro-operator formation occurs within a goal structure,
that is, macro-operators are formed of consecutive
operators applied to achieve the same goal. Thus, the
clustering of operators into macro-operators will reflect

the organization of a problem solver's goals and
subgoals and to the extent that this goal structure is
consistent across many problems in the problem
solver's environment, a small and highly organized set
of macro-operators might emerge. Whether there is
such a consistency in goal structures across geometry
problems is an empirical question (and one that demands
a characterization of the goal structure that doesn't
presuppose DC-like operators).

I've done some preliminary analysis of a database of
geometry problems to try to address this empirical
question -- that is, to see if there is any strong
regularity in operator composition opportunities across
problems.

3.3 PRELIMINARY ANALYSIS OF
LEARNING ENVIRONMENT

It is clear that unguided macro-operator formation will
not yield expert-like knowledge nor efficient problem
solving. One straightforward approach is to use the
number of times operators are used in a sequence while
problem solving as an empirical guide to whether they
should be composed into a macro-operator. For
example, the composition mechanism of the ACT*
theory takes such an approach (Anderson, 1983). The
analysis below is intended both to show to what extent
such an approach can work and to identify some
characteristics of the learning environment that might
constrain other proposed speedup mechanisms.

3.3.1 Method

The analysis involved counting the number of times a
pair of domain rules occur in a two-rule sequence (i.e.,
when the conclusion of the first rule matches a premise
of the second) in the solutions to a set of geometry
proof problems. For example in Figure 5 the rules
R8.SAS and R9.CORRES-PARTS appear in a sequence as
do R6.CONG-ADJ-ANGS and R8.SAS. In all there are 9
possible two operator sequences in that solution. The
solutions to 427 problems were analyzed. The
problems were drawn from the curriculum of an
Intelligent Tutoring System (ITS) for geometry
(Anderson, et. al., 1985) and are representative of the
problems a high school student would be given in a
traditional geometry course. The solutions were
generated from the expert system component of the ITS.
The analysis was focussed on the 33 rules that overlap
with the scope of the DC model (this eliminates rules
corresponding with quadrilaterals). The two-rule
sequences or “compositions” were categorized as either
being within-schema compositions (e.g., R89 is within
schema ABCX = ABDX) or between-schema
compositions (e.g., R68 is between schemas AB L
CD and ABCX £ ABDX).

3.3.2 Results

The analysis provided evidence that there is a reliable
statistical difference in the number of within-schema
compositions (about 30 occurrences on average) versus
between-schema compositions (about 20 occurrences on
average). However, the distributions are largely
overlapping and many within-schema compositions
occur quite rarely (once or twice) while a number of
between-schema compositions occur quite often (> 30
times). Many between-schema compositions occur
more often than within-in schema compositions —
enough so that a system relying only on this subtle
difference to select macro-operators would continue to
get bogged down in creating unnecessary macros. On
the other hand, using this statistical regularity might
provide a useful supplement to other heuristics for
macro formation.

3.4 SUMMARY

Many speedup mechanisms form macro-operators by
composing domain rules that are used in achieving a
particular goal. Thus, these macro-operators will reflect
the organization of goal structures in solutions to
problems in that domain. However, in geometry at
least, it appears more likely that macro-operator-like
knowledge is not primarily organized around goals but
is organized around objects and aggregations of objects
in the domain. DC's schemas are not really macro-
operators in the sense of being derived from the basic
domain operators. Rather, they seem to derive from
perceptual chunking of domain objects and they merely
bear a macro-operator relation with the domain rules.

4 POTENTIAL SOLUTIONS

4.1 HAVE GOAL-STRUCTURE REFLECT
OBJECT-STRUCTURE

If it is true that expert knowledge is organized in terms
of perceptual chunks rather than goal-based chunks as
appears to be the case in geometry, this would seem to
be a serious blow to unified theories like Soar or ACT*
that are based on a goal-based learning mechanism.
However, one potential fix to this apparent
inconsistency is to find a way to frame geometry
problem solving in such a way that the goal-subgoal
structure becomes analogous to the perceptual or object
structure. For example, this might be possible if an
attention mechanism drove goal setting and this
attention mechanism was responding to the perceptual
structure in geometry diagrams.

4.2 OBJECT-STRUCTURE AS MACRO-
OPERATOR SELECTION HEURISTIC

Relaxing the constraint of finding a solution consistent
with a unified theory, there are other possible
approaches to developing a learning model capable of
producing DC-like knowledge. One promising

approach is to use the perceptual structure of geometry
diagrams (or, for example, inclined planes in physics) as
a guide to macro-operator formation. This idea is an
extension of Suwa and Motoda (1991) and came about
in discussions with Suwa. In addition to the domain
rules, the learning system would require a has-part
hierarchy of objects in the domain (called “recognition
rules” in Suwa & Motoda’s system). For example:
triangle ABC has-parts {segment AB, segment BC,
segment AC}
angle ABC has-parts {segment AB, segment BC}
These has-part rules can be used to simulate the process
of drawing a particular figure (e.g., a triangle QRS and
segment ST) and determining what other objects are or
are not visible in that figure (e.g., segment QR, angle
RQS, angle RST ..., but not angle SRT). Using these
rules, the system can take advantage of the structural
constraints in geometry diagrams to guide how to chunk
together domain rules into macro-operators. The
system inputs a proof graph like the one in Figure 5
and outputs a particular set of macro-operators selected
from that proof graph as guided by the has-part rules.
The algorithm is essentially as follows:
For each domain rule in the proof graph:
1. “Draw” a focus-figure that includes just the objects
in the premises and conclusion of that rule.
2. Let connected-statements be all statements that are
directly connected to the premises and conclusion.
3. For each connected-statement determine, using the
has-part rules, which ones are visible in the focus-
figure. Add any rules that connect to the visible

statements to a set of rules that will form the
macro.

4. Let connected-statements be all statements directly
connected to the visible statements identified
above. Go to step 3.

The focus-figure need not be drawn as described in step
1, rather the has-part rules can be used as described
above to perform the analogous process. Consider how
these steps apply to R9 in Figure 5:

1: The focus-figure is drawn including & BCX,
ABDX, ZCBX, and ZDBX. It looks like the
perceptual chunk on the top right of Figure 5.

2: Connected-statements = {EF_C = EE, CX = DX,
LBXC £ ZBXD)

3: All 3 connected-statements are visible and are all
reached by R8, so R8 is added to {R9} as the set of
rules to be composed.

4: Connected-statements = {NIL, AXB bisects
cxD,AB .l CD)

3': The empty premise of R7, NIL, is visible by

convention so R7 is added to {R8, R9}. The other
2 connected-statements are not visible — both

because AX is not part of the focus-figure — so no
other rules are added.

4’: Connected-statements is empty, so the iteration
stops and returns {R7, R8, R9} as the rules to be
composed into a macro.

The resulting macro R789 corresponds with one of the
rules in the rule-based version of the CONGRUENT-
TRIANGLE-SHARED-SIDE schema (see Section 3.1).
Applying the algorithm to R8 yields the same result:
R789. Applying it to R6 yields R56 which
corresponds with the PERPENDICULAR-CROSS schema
and to R4 yields R234 which is another instance of the
CONGRUENT-TRIANGLE-SHARED-SIDE schema (R1 is
not included because the AX in AXB bisects CXD is
not a part of the focus-figure). Applying it to R1 yields
nothing more than R1.

This algorithm limits a proliferation of macro-operators
by only forming macros out of consecutive rules that
refer to parts within the same overall whole and not
across wholes. For the most part these macros are
isomorphic to DC schemas, however, they do deviate
from them in a couple of ways. First, there needs to be
a way to merge macros which refer to the same abstract
configuration, like R789 and R234 in the example, but
which are acquired at different times and may involve
different part-properties and/or sufficient-conditions.
Without such a mechanism, the pattern completion
nature of DC schemas will not be achieved. Second,
under certain circumstances this algorithm will produce
macros that are larger than those in DC. For example,
if the solution in Figure 5 had another step at the end
concluding XB bisects ZCBD from ZCBX £
ZDBX by R10.DEF-BISECTOR, the resulting macro
would have included R10 since XB and ZCBD would
both be a part of the focus-figure. Such a macro does
not correspond with a single DC schema (in this case
it’s a combination of the CONGRUENT-TRIANGLE-
SHARED-SIDE schema and the BISECTED-ANGLE
schema), however, it is not clear at this point whether
such macros would have a positive or negative effect on
the efficiency of the resulting problem solver.

One interesting question that this approach raises is
how the whole-part relations expressed in has-part rules
might be learned. A mechanism like Servan-Schreiber
and Anderson's (in press) CC model provides at least
one possible answer. There is evidence to suggest that
such learning is “implicit” or non-deliberate indicating a
non-goal-based learning mechanism. Supporting this
VanLehn (1989) found that certain learning events in
human acquisition of strategies for the Tower of Hanoi
puzzle are not marked by an impasse. The perceptual
chunking of disks into “pyramids” account for a number
of such events.

4.3 AN INDUCTIVE APPROACH TO DC
SCHEMA LEARNING

The discussion above has taken as a premise that the
initial domain theory will contain rules corresponding
with the definitions, postulates, and theorems that

appear in geometry textbooks. Learning such rules is
knowledge level learning (Dietterich, 1986) and not
typically the realm of speedup learning. However,
given that DC schemas are much more like categories
than rules, it seems plausible that inductive learning
mechanisms might lead more directly to a DC-like
representation than the indirect route of first learning the
textbook domain rules and then deductively combining
them into schemas as discussed in the previous
solutions. Rather than simply interpreting textbook
geometry rules and learning how to better syntactically
apply them, geometry experts come to understand the
semantic relationship between textbook formalisms and
the classes of objects to which these formalisms refer.
One possibility for capturing some of this is to take a
more empirical approach like that of Yoo and Fisher
(1991). Much like Yoo and Fisher's system categorizes
algebra word problems, it appears expert knowledge
may derive more from categorizing geometry diagrams
and inducing general formal properties than it does from
compiling and composing basic domain rules. One
limitation of the Yoo & Fisher system is that it
categorizes whole problems. DC's schemas are
essentially subproblem categories so there is a need for
a way to identify subproblems. Again something like
knowledge of perceptual chunks or has-part structure
might help guide this.

References

Anderson, J. R. (1983). The Architecture of
Cognition. Cambridge, MA: Harvard University
Press.

Anderson, J. R., Boyle, C. F., & Yost, G. (1985).
The geometry tutor. In Proceedings of the
International Joint Conference on Artificial
Intelligence-85. Los Angelos: International Joint
Conference on Artificial Intelligence.

Dietterich, T. G. (1986). Learning at the knowledge
level. Machine Learning, 1, 287-316.

Gelernter, H. (1963). Realization of a geometry
theorem proving machine. In E. A. Feigenbaum &
J. Feldman (Eds.), Computers and Thought. New
York: McGraw-Hill Book Company.

Goldstein, 1. (1973). Elementary geometry theorem
proving. MIT Al Memo 280.

Koedinger, K. R., & Anderson, J. R. (1990). Abstract
planning and perceptual chunks: Elements of
expertise in geometry. Cognitive Science, 14, 511-
550.

Koedinger, K. R. (1992). Emergent properties and
structural constraints: Advantages of diagrammatic
representations for reasoning and learning. In the
working notes of the AAAI Spring Symposium on
Reasoning with Diagrammatic Representations,
Stanford University, March 27-29,

Korf, R. E. (1987). Macro-operators: A weak method
for learning. Artificial Intelligence, 27, 35-717.

Minton, S. (1990). Quantitative results concerning the
utility of explanation-based leaming. Artificial
Intelligence, 44, 1469-1481.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Sacerdoti, E. D. (1974). Planning in a hierarchy of
abstraction spaces. Artificial Intelligence, 5, 115-
136.

Servan-Schreiber, E. & Anderson, J. R. (in press).
Learning artificial grammars with competitive
chunking. Journal of Experimental Psychology:
Learning, Memory, and Cognition.

Suwa, M., & Motoda, H. (1991). Learning abductive
strategies from an example. Ohio State University
technical report 91-JJ-WORKSHOP.

Tambe, M. & Newell, A. (1988). Some chunks are
expensive. In Proceedings of the Fifth International
Conference on Machine Learning, pp.451-458.

Unruh, A., Rosenbloom, P. S., & Laird, J. E. (1987).
Dynamic abstraction problem solving in Soar. In
Proceedings of the AOG/AAAIC Joint Conference,
Dayton, OH.

VanLehn, K. (1989). Learning events in the
acquisition of three skills. In Proceedings of the
Eleventh Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: LEA.

Yoo, J. & Fisher, D. (1991). Concept formation over
problem-solving experience. In Concept Formation:
Knowledge and Experience in Unsupervised Learning.
San Mateo, CA: Morgan Kaufman.

