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There is a tendency to think of individuals who can discover new ideas or
develop convincing arguments as having special “talent” or superior “in-
telligence.” This view of conjecturing and argumentation abilities as fixed
traits suggests that instruction directed toward such abilities is pointless
for all but the most gifted of students. In direct contrast to that view, this
chapter argues that successful conjecturing and argumentation perfor-
mances are the consequence of particular skills and knowledge. In an ap-
propriately structured learning environment, such skills can be acquired
by anyone.

One reason for doubt regarding the instructability of conjecturing
skills is our limited understanding of what these skills are. Developing a
model of these skills is a key step toward creating effective learning envi-
ronments for conjecturing. This model can then provide design guidance
in creating elements of a learning environment: conjecturing tasks that ap-
propriately challenge students and forms of assistance (including manip-
ulatives, facilitative talk, and computer software) that support student
learning. The learning approach being advocated here has important sim-
ilarities with the Vygotskian notion of assisted performance (Vygotsky,
1978) and more recent variations like cognitive apprenticeship (Collins,
Brown, & Newman, 1989).

This chapter presents a cognitive analysis of student conjecturing
that includes a task analysis and an initial model of conjecturing, observa-
tions of student performance in a dynamic assessment, and modifications
to the proposed model as guided by the results of this assessment. This
cognitive analysis is then used to suggest forms of student assistance, in-
cluding computer scitware tools, activities that draw out conjecturing
skills, and facilitative “talking points” (hints or prompts), to help students
through the most difficult terrain on their ways to conjecturing skill.
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A TASK ANALYSIS AND PRELIMINARY MODEL

.H?w cognitive analysis of conjecturing focuses on a representative conjec-
turing task called the Kite task, an adaptation of one that appears at the
end of Discovering Geometry (Serra, 1989):

Kite Task—Part 1.
A "kite” is a special kind of quadrilateral whose four sides form two
pairs of congruent adjacent segments. In other words, a kite is a quadri-
lateral ABCD with AB congruent to CB and AD congruent to CD.
Investigate these figures called kites using whatever tools you

would like and discover and write down what must be true of every
kite.

Kite Task—~Part 2.
Here is a statement that a student in another class made: “The dia-

gonals of every kite bisect each other.”” Do you believe it? Why or
why not?

The Kite task was designed as a dynamic assessment whereby stu-
dents are given a difficult open-ended problem in the presence of an in-
terviewer who plays the combined roles of assessor and tutor. The inter-
viewer was prepared with a set of prompts or hints that could be
cautiously given to students when they showed clear signs of being stuck.
These prompts were organized in a hierarchy of goals created through a
rational task analysis of the demands of the conjecturing task. The Kite in-
terviewer’s only-as-needed presentation of prompts ensures that we can see
some signs of success from all students.

A Preliminary Task Analysis of the Goals of Conjecturing

As a first step toward understanding the goals of conjecturing and argu-
mentation more generally, we performed a task analysis (Newell & Simon,
1972) to identify the major goals involved in performing the Kite task:

1. Draw an example of a kite.

2. Draw an example that is not overly specific (not a rhombus).
3. Make a conjecture.

4. Prove a conjecture.

5. Find a counterexample to reject a false conjecture.

We considered what knowledge was needed to achieve each goal
and, in particular, in what ways students were likely to have trouble. The
output of this analysis was a list of hints and prompts within each goal.
These hints were the basis for our dynamic assessment. The initial hints
within each goal are vague; subsequent hints get successively more spe-
cific. This approach has proven successful in our previous work on intelli-
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gent computer-based tutors (Anderson, Corbett, Koedinger, & Pelletier,
1995).

These goals and hints reflect our initial hypotheses about the nature
of students’ conjecturing and argumentation skills. One hypothesis was
that getting started on this open-ended problem would be difficult for stu-
dents who are used to 1-min. problems with a single right answer
(Schoenfeld, 1989). Thus, the hints for the first goal (“Draw an example of
a kite”) prompt the student toward getting started: “Think about what a
kite looks like” and then “Why don’t you draw an example of a kite?”

A second hypothesis was that students were likely to create and in-
vestigate overly specific instances of kites, in particular, drawing a rhom-
bus rather than a kite. Hints suggesting that students “Draw some more
kites” and, more explicitly, that “Your kites all have four congruent an-
gles” address this concern.

Third, we thought that focusing students’ attention on individual
geometric objects and on measuring these objects would help students
make conjectures. Thus, within the third goal are hints like “Look at the
angles in a kite” and “Use your protractor.”

Fourth, we hypothesized that students might not spontaneously
provide evidence for their conjectures and thus were prepared with the
prompts “How do you know the things you wrote down are always
true?” and “How would you convince someone else?” Further, we
thought students’ arguments might progress in sophistication from state-
ments of self-evidence, like “I just know,” through reference to a single
supporting example, then to multiple examples, and finally to a deductive
argument.

Fifth, based on the results of Senk (1983) we knew that even for stu-
dents who were successfully writing geometry proofs in class, formulat-
ing a proof problem from a conjecture was likely to cause considerable dif-
ficulty. Thus, we included the subgoals “4.2.1 Identify a reference
diagram,” “4.2.2 Identify the goal statement,” and “4.2.3 Identify the
given statements” and provided a substantial number of prompts within
each like “What do you know about kites? That should be your given.”

Sixth, we thought that a substantial number of students would not
generate a false conjecture and therefore not need spontaneously to en-
gage in conjecture-defeating argumentation. Thus, we added a conjecture
evaluation task (Part 2) to address the goal “Find a counterexample to re-
ject a false conjecture.”

THE QUALITATIVE STUDY
Method

About 60 students were interviewed at two sites in the Pittsburgh Public
Schools. One school was using the Discovering Geometry textbook (Serra,
1989) with its emphasis on introducing students to geometry through in-
ductive investigations often done in collaborative groups. The other
school was using a traditional geometry textbook with its emphasis on in-
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troducing definitions and postulates, proving and applying theorems.
About half the students at each site got a variation of the Kite task where
we changed the term “kite” to “tike.” Given the everyday meaning of the
term kite, which is suggestive of a particular form, we decided to see what
effect the term had on student behavior by comparing against a neutral
term “tike.”

Each of two interviewers performed two interviews during a 44-
min. class period. Interview time was about 20 min. Students were ran-
domly selected from the geometry classes and came to a separate, quiet of-
fice for the interview. The interviews were performed in late May at the
end of a year of geometry instruction. During the interview, students were
provided with the following tools: compass, ruler, protractor, pencil, and
as much paper as they needed. Students were asked to think out loud, and
we prompted them to “keep talking” whenever they fell silent (Ericsson &
Simon, 1984).

Procedure. The interviewer began by reading the statement:

[Student name], we are interested in how geometry students think
about problems. I am going to give you a problem to work on and
while you are working on the problem, I'd like you to think out loud.
In other words, I'd like you to say what you are thinking as you are
thinking it. You don’t have to worry about whether everything you
say is right or wrong, just tell me what you are thinking. Does that
make sense? [Pause and answer any student question.] If you don't
mind, we are going to record this. Of course, this data will be confi-
dential and we will not use your name when we refer to it. Do you
mind if we record this? [Pause and answer any questions.]

Occasionally I may say “keep talking” if you become silent.
Please talk loudly and clearly. [Start the tape.] For the tape, this is stu-
dent ID number [student’s ID number]. Here's the problem [give stu-
dent the problem] and there’s extra paper if you need it. Start by read-
ing the problem out loud and then keep talking. [Start timing]

The student then read the problem statement, “Draw an example of
a kite,” and was asked to think aloud as he or she worked. Our goal was
for students to do as much independent work as possible. However, when
the interviewer judged that student was at an impasse, he or she would
give one hint as guided by the interviewer form. Signs of a student im-
passe included long pauses, statements of confusion or frustration, or off-
task behavior.

The interviewer checked off hints as they were given and, if neces-
sary, indicated additional hints in the blanks provided. As much as possi-
ble, hints were chosen sequentially from the earliest goal not yet achieved
and, within each goal, from the earliest hint not yet checked off. Students,
however, would sometimes begin to pursue a “later goal” before complet-
ing an “earlier one,” for example, beginning to make conjectures (goal 3)
before having drawn a kite that is not overly specific (goal 2). If hints were
needed in such cases, the interviewers would follow through on the stu-
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dent’s goal if it made sense (e.g., if the student’s difficulty was in how to
achieve this goal). If, instead, the student wasn’t sure what to do next, the
interviewer would choose a prompt from the earliest goal that the student
had not yet achieved. In general, the interviewers put priority on coherent
interaction over strict adherence to the interview form.

The initial hints within each goal were vague, but further hints were
progressively more detailed and directive. The interviewer treated each
goal independently. A detailed hint might be provided on one goal, but on
the next goal the student was left on his or her own unless the student
showed clear evidence of another impasse.

The original plan was for interviewers to pace their hints such that
students achieved goal 3 within 10 min. and goal 4 within 15 min. After
achieving goal 4, the student was to be given Part 2 of the Kite Task, the
conjecture evaluation question. We found this schedule difficult to main-
tain. Further, we soon recognized that most students were making false
conjectures spontaneously; that is, goal 5 was being addressed in the con-
text of the other four goals. Thus, the pacing designed to ensure an op-
portunity for students to evaluate a false conjecture proved unnecessary.
We relaxed the timing constraints and, unless a student was going partic-
ularly fast, left off Part 2 in favor of giving students more time on the ear-
lier goals.

Overall Results

Curriculum Comparison. The comparison between students using the
Discovering Geometry text and those using a traditional text showed no
substantial difference. Although it remains possible that a more complete
and detailed quantitative analysis might yield some differences, we did
not see the kind of qualitative differences that might be expected from the
nontraditional approach of Discovering Geometry. This result should not be
interpreted as critical of this particular text, as at least three mediating fac-
tors reduced the likelihood of an effect: (a) greater teacher experience us-
ing the traditional text, (b) great variability in the way different teachers
implement the Discovering Geometry curriculum, and (c) high variability
and generally poor preparation of this urban student population. This re-
sult should be considered as evidence for substantial difficulties in imple-
menting curriculum reform in a way that yields substantial student
achievement gains. It takes much more than a textbook.

Kite~Tike Manipulation. The Kite versus Tike manipulation showed a
large difference in the initial example drawing (goals 1 and 2). Although
both groups were equally likely to draw overly specific diagrams (dis-
cussed later), the kinds of diagrams drawn were distinctly different in the
two groups. Figure 13.1 shows examples of the initial diagrams typical of
the Kite and Tike groups. The Kite group (see Fig. 13.1a) drew figures that
looked like rhombi with slanted sides such that the diagonals, if drawn,
would be horizontal and vertical. The Tike group (see Fig. 13.1b), on the
other hand, drew figures that looked like squares (sometimes rectangles
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FIG.13.1 (a) A sample of student work on the Kite task. (b) A sample of student work on the
“Tike” version of the Kite task.
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initially) with the sides drawn horizontally and vertically and the diago-
nals slanted.

Although quite strong, these differences were limited to the way the
figures were drawn and had little bearing on students” success. The Kite
condition might be expected to yield more fluent conjecturing because the
specialized world knowledge cued by “kite” might help generate ideas.
However, this expectation was not borne out. Similarly, there were no
signs of an effect of the Kite-Tike manipulation on conjecture evaluation
(goal 4).

Qualitative Analysis

We observed a wide range of performance in these urban high-school stu-
dents. At one extreme, we saw that there was plenty of room for improve-
ment in conjecturing skill—many students had difficulty right from the
start in simply creating an initial example to investigate (drawing an ex-
ample kite). At the other extreme, we saw a few students (2 or 3 out of 60)
exhibit a full range of conjecturing skills as they successfully performed
the task with little or no assistance, for example, by conjecturing and prov-
ing that the diagonals of a kite are perpendicular. In between these ex-
tremes, the dynamic assessment method allowed us to observe a wide va-
riety of skill levels across students and across goals. Because we provided
assistance only as needed, some students lacking skill in one aspect of
conjecturing (e.g., example creation) were able to exhibit skill in another
(e.g., conjecture induction). Although most students would have gotten
practically nowhere on their own, almost all students, with the support of
occasional prompts, were actively engaged in this task. Each-student
made reasonable progress, and many showed glimmers of talk and rea-
soning characteristic of mathematicians.

What follows is a descriptive analysis of the variety of student per-
formances within each of the major goals. The focus is to provide a quali-
tative characterization of what conjecturing skills were or were not exhib-
ited by students.

Goals 1 and 2: Drawing an Example That Is Not Overly Specific. As we
anticipated, many students had difficulty getting started. Twenty-five
percent of the students needed to be prompted before they began drawing
an example kite. Students had even more difficulty in drawing a kite that
was not overly specific. Only 15% did so without prompting, another 35%
were able to do so on their own after some prompting, and a full 50%
needed to be shown how to do so. Many of students’ overly specific initial
diagrams were the result of the same common pattern of behavior. Such
students would first draw two sides of equal length that shared a vertex
(Fig. 13.2a). When drawing a third side, they would invariably begin to
draw it parallel to an existing side (Fig. 13.2b). The consequence is that
when the student tried to make a fourth side equal to the third side, they
were forced to create a rhombus. (If 1 =2 and 2 || 3 and 3 = 4, then the fig-
ure is a rhombus.) Students’ tendency to draw a rhombus appeared to re-
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FIG. 13.2 A typical student’s attempt at constructing a kite. (a) Sides 1 and 2 are drawn
equal in length. (b) Side 3 tends to be drawn parallel to side 2 and thus, to make
sides 3 and 4 equal in length, both sides 3 and 4 end up equal in length to sides
1 and 2. (c) With prompting to make sides 3 and 4 different lengths from those of
1 and 2, the student reaches an impasse. (d) The impasse is resolved by swinging
the ruler to find a point where sides 3 and 4 intersect and are equal in length to
each other, but not to sides 1 and 2.

sult less from a preconceived notion of what the complete figure should
look like, than from a bias to draw parallel lines.

When prompted to draw a kite where sides 1 and 2 were different
from sides 3 and 4, the following behavior of one student provides an il-
lustration of the way many students struggled. This student picked 2 in.
as the length of sides 1 and 2, and then decided that sides 3 and 4 should
be 3 in. long. When he drew a longer side 3 (again parallel to side 2), he
reached an impasse (see Fig. 13.2¢). Putting his ruler between the unat-
tached end points of sides 2 and 3, he saw that side 4 would not be 3 in.

At this point many students decided it wasn’t possible to make sides
3 and 4 different from sides 1 and 2. But this student continued to experi-
ment trying different positions for side 3 (Fig. 13.2d). Some found the right
spot with such discrete experiments, but this student decided that he
could swing his ruler, fixed at the intersection with side 1, to mark off all
the possible points 3 inches from point A. Then he performed the same
ruler-sweeping procedure from point C and so found the point at which
sides 3 and 4 would each be 3 in. long. Indicative of how limited to partic-
ular temporal and situational contexts knowledge can sometimes be, this
student reinvented the standard compass construction procedure (using
his ruler) without recalling he had been taught this procedure the prior
fall and even though there was a compass in the tool set in front of him.

Goal 3: Making a Conjecture. Students did not have much trouble in
coming up with some conjecture, that is, in saying something they thought
would be true of every kite. However, many of these conjectures were
trivial, essentially repetitions of the givens (e.g., a kite “has four sides” or
“has AB = BC and CD = AD”). Most students were able to make a mean-
ingful, nontrivial conjecture, either on their own or with some prompting.
However, 25% were unable to do so within 20 min. These students typi-
cally had much difficulty in the drawing phase and were weak in their
knowledge of basic geometric concepts and notations (e.g., angles and
how to label them).
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Although we expected some students to draw overspecialized fig-
ures and, thus, be in a position to make false conjectures, we were sur-
prised to see how common such conjectures were. The most frequent false
conjecture was “£B = ZD.” Students who drew rhombi correctly observed
that these angles looked equal in their overspecialized version of a kite.
Some other false conjectures were also consequences of drawing a rhom-
bus (e.g., “All the ‘little triangles’ are congruent” from a student who had
drawn the diagonals).

Other conjectures, like “ZEAD = 60°,” seemed to have their source in
the particular examples the student drew or as variation of a geometry
theorem the student recalled (e.g., an equilateral triangle has 60° angles).
This second kind of memory-based influence on conjecture generation is
notable. It is not a form of inductive reasoning in the usual sense of gener-
alizing from instances, nor is it deductive, deriving logically from existing
postulates or theorems.

Goal 4: Prove a Conjecture. Almost all students seemed satisfied to stop
after making one or a few conjectures from the example(s) they had
drawn. Only a rare few showed any unprompted signs of thinking that
further evidence was necessary or desirable (goal 4.1), and, in at least one
such case, the student appeared to provide a proof more out of adherence
to classroom habit than out of a self-motivated desire to validate his con-
jecture. More often, students seemed confused when asked for further ev-
idence, as in the first hint for goal 4.1: “How do you know the things you
wrote down are always true?” The next prompt, “How would you con-
vince someone else?,” was considerably more effective in eliciting an at-
tempt to provide some justification.

Many students passed through the progression of first saying the ex-
ample they had drawn was enough evidence and then, with prompting,
that many positive examples are sufficient evidence. Most students had to
be asked explicitly to write a proof “like you do in class” before they made
such an attempt.

Students had clear difficulty in setting up proofs for their conjectures
(goal 4.2). Even though they had been exposed to many proofs during the
school year, they had difficulty expressing a conjecture in terms of the
“given statements” and the “goal statement.” Students’ conjectures were
usually stated just as a conclusion (e.g., “Angles A and C are always
equal”) without stating the premise (e.g., “In kite ABCD, angles A and C
are always equal”). Accordingly, students found it easier to specify the
goal of the proof problem, but establishing the givens, that ABCD is a
quadrilateral with AB = BC and AD = DC, was more difficult. Few stu-
dents spontaneously referred to or drew and labeled specific figures as
reference diagrams for the proofs.

Few students (about 10%) successfully formulated proof problems
and began to work on them. One of the big difficulties in coming up with
a proof (goal 4.3) was adding the segment BD (a “construction”) to create
congruent triangles. Even when told to draw this segment, a number of
students needed quite specific hints in order to finish the proof (e.g., hints
4 and 5 in goal 4.3.1: “What methods do you know for proving [congruent
triangles]?” and “Do you remember [Side-Side-Side]?”).
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At the other extreme, two students with little or no prompting were
able to conjecture and prove that the diagonals of a kite are perpendicular.
Interestingly, while working toward a proof of this conjecture, one student
deduced a new conjecture she hadn’t previously thought of. Although the
discovery of a conjecture is usually the product of induction from exam-
ples, this student’s work illustrates that proof itself can also serve as a dis-
covery tool.

Summary of Observations

We made the following observations of students’ performance on this
conjecturing task:

1. Experimenting with a class of figures by constructing and exam-
ining examples is a difficult but significant skill for students.

2. Example construction is strongly biased by subtle perceptual
(e.g., parallel-lines bias) and linguistic (e.g., analogical suggestiveness of
the label kite) influences. It is difficult for students to break out of the “set”
caused by these influences.

3. Generating conjectures is not difficult per se; however, many con-
jectures students generated were either trivial repetitions of the problem
conditions (e.g., AB = CB), not particular to kites (e.g., has 4 sides), or false
inferences from overspecialized examples (e.g., £B = £D).

4. Students have difficulty differentiating claims (conjectures) and
evidence for those claims (argument). When an argument is elicited, it is
much more likely to be in the form of failure to falsify, “Every time I tried
it, it worked,” than in the form of a deductive proof.

5. Formally stating conjectures is difficult.

6. Deductive proof can lead to new conjectures.

TOWARD A COGNITIVE MODEL OF CONJECTURING

Framework for a Conjecture Model

Figure 13.3 shows the hypothesized components of a cognitive model of
conjecturing, organized in a goal-structure diagram. As indicated by the
top goal, conjecturing skills are relevant not only for discovery, but also
for problem solving and recall. The two major subgoals are Generate Con-
jecture and Argue For Or Against. This goal-structure depiction indicates
the major component processes in an approximate ordering. The ordering,
however, is only suggestive. These processes or strategies are not executed
sequentially by students, by mathematicians, or by scientists; instead,
they are opportunistically applied based on specific problem demands. It
is also not the case that each subgoal has a unique process for achieving
it. A particular subgoal may have multiple processes or strategies for
achieving it. For example, to Generate Conjecture one can Analogize, In-
vestigate, or Deduce. Conversely, a particular strategy may be useful for
multiple subgoals; for example, Investigate can be used to Generate Con-
jecture or to Find Examples For or Find Counterexamples Against.
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FIG. 13.3 The goal structure for conjecturing and argumentation skills.

There is a temptation to associate empirical investigation with con-
jecture generation and deduction with conjecture evaluation; however,
evidence presented here and elsewhere suggests otherwise. Using termi-
nology more common to science, Klahr and Dunbar (1988) presented a
model of scientific discovery in which “experimentation” (a kind of In-
vestigate) is relevant for both generating hypotheses (Conjectures) and
for testing hypotheses (Examples For and Counterexamples Against).
Chazan (1993) documented “student preference for empirical arguments
over deductive arguments when presented with mathematical problems.”
In Chazan’s interviews with high-school students, he found students
were more likely to view empirical evidence as “proof” than they were to
see deductive proof as such.

The role of deduction in conjecture generation was not recognized in
these prior works. The possibility of deductively generated conjectures is
clear from rational grounds. Postulates and theorems can be used to chain
forward from the given premises of the investigation (e.g., In kite ABCD,
AB =BC and AD =CD) toward new conclusions (ones not previously gen-
erated by other means). When these processes are used to aid conjecture
recall or rediscovery, deduction provides an important avenue to recon-
struction of forgotten conjectures. The opportunistic and sometimes re-
dundant application of alternative strategies to achieve a variety of goals
is a crucial aspect of mathematical understanding (Koedinger & Ander-
son, 1991; Tabachneck, Koedinger, & Nathan, 1994),

Conjecture Generation

Conjecture generation includes generating an idea for a conjecture, mak-
ing sure it is “interesting,” and making sure it is at least consistent with
the examples that are being investigated. The simplest filter on the inter-
est of a conjecture is that it at least say something new, something beyond

repeating the premise. A number of students in the Kite study made triv-
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ial conjectures (“Kites are quadrilaterals” or “AB = BC and AD = BD") that
simply repeated an aspect of the definition. It may be that students are un-
able to distinguish between such trivial conjectures and potentially more
interesting ones, but it seems more likely that students were unable to ac-
cess more sophisticated strategies for conjecture generation than simply
repeating statements from the text. . . .

A slightly more sophisticated strategy, although still quite weak, is to
reason by analogy, using similar prior knowledge. We saw this mﬁ_uaomn_w
in the Kite study when students conjectured the conclusion “ZADC = 60>
by analogy to equilateral triangles. Klahr and Dunbar (1988) also found
analogy to be an important source for hypothesis generation in scientific
discovery. The analysis here, however, focuses on two more-systematic
approaches for conjecture generation, Investigate and Deduce.

Investigation Skills

One method for generating a conjecture involves investigating examples
and inducing any relationships that appear invariant. In the Kite task, stu-
dents drew examples of kites, inspected and sometimes measured them,
and noticed relationships (e.g., the two sets of opposite angles look con-
gruent, or the diagonals look perpendicular). More generally, to Investi-
gate, one must Model, Measure, and Induce (see Fig. 13.3).

Model Creation. One way scientists begin an investigation is to explore
examples or models in some general area of interest, like falling objects (to
study gravity) or the Escherichia coli bacteria (to study germ propagation).
An initial model can be created using that part of the conjecture that comes
from the research question, the premise in a premise-driven investigation,
or the conclusion in a conclusion-driven investigation. To investigate “If a
figure is a kite, then X,” we create diagrammatic models of kites and ex-
plore their characteristics. To investigate “If X, then success in college is
more likely,” we find models of college success (college graduates) and ex-
plore their characteristics. In both cases, it is also important to explore
nonexamples (quadrilaterals that are not kites or students that didn’t
graduate) to avoid conjectures that apply more generally (“Kites have
four sides” or “Students who can read are more likely to complete col-
lege”).

d An important general heuristic for modeling is to create or find models
that are not overspecialized (i.e., having more features than is nmnmmmm.aﬁ. For
instance, we don’t use a quadrilateral with all sides equal to explore kites; we
don’t use doctoral students to explore characteristics of undergraduate suc-
cess. Related to this “general model” heuristic is an “extreme model” heuris-
tic, which suggests investigating extreme cases, like a concave H.cﬁm (where D
appears “inside” the figure). Most students in the Kite study did not invoke
these heuristics. Many of their models were either overspecialized (e.g., all
sides equal, parallel sides, or right angles) or prototypical (e.g., horizon-
tal-vertical orientation, convex, average “thickness”).
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In many domains, like geometry, it is typical for researchers to con-
struct models to investigate. To solve all but the simplest construction
problems requires the following problem-solving steps: (a) decompose
the problem into solvable subproblems, (b) compose and integrate the so-
lutions to these subproblems, and (c) manage the inevitable interactions
between subproblem solutions. For instance, in the Kite task where the
construction problem is to create a quadrilateral ABCD with AB = BC and
AD =CD, successful students decomposed the task into simpler problems
of constructing segments. The subproblem of constructing segment AB
equal to segment BC is solved with little trouble. The typical student used
a ruler to draw two equal-length segments, say 2 in., that shared point B.
The third and fourth segments, AD and CD, present an analogous sub-
problem and students typically solved it in the same way, which resulted
in segments with symmetric orientations and the same lengths (i.e. , AD
and CD are also 2 in. long). Applying the general-model heuristic adds the
constraint that the pairs of segments should not be equal. Thus, the new
subproblem is to make AD and CD, say, 3 in. long. By itself, this subprob-
lem is as easy as the first (make AB and BC each 2 in. long); however, man-
aging the interaction between the two subproblems, that points A and C
must be shared, is difficult (as was illustrated earlier in this chapter).

Model construction is sometimes taught in science classes as part of
instruction on the “scientific method” or, more specifically but less com-
monly, instruction on “experimental design.” In geometry instruction, the
methodology for model construction is typically compass and straight-
edge construction. Traditional instruction has so isolated and overrefined
this method, however, that its function in empirical investigation is lost on
most students and teachers alike. Despite weeks of instruction on compass
and straight-edge constructions, students in the Kite study did not employ
this method when it was appropriate. However, students are capable of
less formal approaches to model construction, including freehand drawing
and the use of other measurement and drawing tools. Most students in the
Kite study were able to create adequate diagrammatic models, but did so
using the ruler and protractor.

By not presenting construction within the context of its use in inves-
tigations, traditional geometry instruction leads to student knowledge
structures that tie construction methods only to teacher-imposed goals.
Thus, students are not likely to access construction knowledge when it is
really needed to aid recall or help solve a problem.

Measurement. In premise-driven investigation, generating a conjecture
amounts to finding a conclusion that follows from the given premises. The
focus of measurement is on possible conclusions. The student can mea-
sure such things as segment lengths, angles, and areas. Looking for con-
stants or identities among such measures is a good way to find many in-
teresting results. Although there are results that are difficult to rediscover
empirically (e.g., the Pythagorean theorem), many conjectures in high-
school geometry are “rediscoverable” through straightforward measure-
ment strategies.
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Measurement strategies aid in the generation of conjectures that are
at least consistent with the examples that have been constructed. In the
Kite investigation, many students made the conjecture that angles A and
C were equal as the result of focusing their attention on these angles and
noticing that their measures looked the same. Having started with an
overly specific model (a thombus), many students also made the consis-
tent but false conjecture that angles B and D are equal. The investigation
process of noticing equivalence in measurements is the same for both con-
jectures.

Induction. Koedinger and Anderson (1990) presented a detailed cogni-
tive model of inductive competence in geometry as a key component of a
model proof planning. We found that despite years of contact with geo-
metric theorems, high-school geometry experts do not plan proofs by us-
ing heuristics to search iteratively through the space of possible theorem
applications, as was previously thought (e.g., Anderson, Greeno, Kline, &
Neves, 1981; Gelernter, 1963). Instead, they initially make an abstract
proof plan by using perceptually based knowledge to lay out the key
proof steps, leaving theorem application to fill in the details. They employ
a type of inductive reasoning to do so.

A key component of this planning ability is also critical to conject-
uring, namely, the use of perceptual knowledge of prototypical diagram
configurations to “parse” diagrams into useful parts (e.g., triangle pairs,
triangles, angles, and segments). This perceptual configuration knowl-
edge provides a source of guidance in conjecture generation. It cues what
parts of a diagram to look at, compare, and measure. Once a student sees
a diagram in terms of relevant parts, how they overlap and interconnect,
it is not difficult to go the next step and inquire what parts might have in-
variant properties alone or relative to other parts.

Using “Model and Measure” in Problem Solving. Investigation skills are
relevant not only for conjecturing, but also for problem solving. A “model
and measure” strategy can be used to solve problems without recourse to
the deductive application of theorems. Thus, it is possible to use this strat-
egy to solve problems prior to having learned the normative technique for
doing so. Consider a high-school geometry student who does not know
trigonometry and is faced with the following problem. He works for a
small company building customized stereo speaker boxes and needs a
method to figure out the length of boards needed to create a slanted roof
on the top of the box. He knows the angle of the slant (20°) and the hori-
zontal distance (10 in.). If he knew trigonometry, he could find the length
of the top by solving “cos 20° = 10/x” for x. Alternatively, the model-and-
measure strategy can be used (see Fig. 13.4). Draw a scale model of the sit-
uation (1 cm = 1 in.) so that it fits the givens of the problem: that is, the
width of the box is 10 cm and the angle of the slant (CAB) is 20°. Measure
the desired quantity, in this case segment AC, which is 10.6 cm, and apply
the scale factor. The top should be about 10.6 in.

Although this strategy sacrifices some precision and takes more time
to perform than the deductive application of a theorem, it is quite suffi-
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Model:

slanted top

A box width B

Length{box width) = 10.0 cm

Angle(CAB) =20 °

-5

Measure: Length(slanted top) = 10.6 cm

FIG. 13.4  Applying the “model and measure” strategy in problem solving. The goal is to
find the length of the slanted top (AC) of a speaker box given the box width
(AB = 10) and the angle of the slant (ZCAB = 20°). The strategy does not require
trigonometry: draw a scale model, measure the desired length, and apply the
scale factor.

cient for many problem situations. More importantly, the model-and-
measure strategy has three advantages over theorem application. First, it
is more general—a student doesn’t need to have learned a theorem to ap-
ply it. It can be applied, for example, to “trigonometry” problems prior to
having learned trigonometry theorems. Second, it is easier to learn and
apply than most theorems. For example, the model-and-measure alterna-
tive to the Pythagorean theorem does not require algebraic computations.
Third and most importantly, the model-and-measure strategy can play a
sense-making role in helping students learn new theorems, recall old the-
orems, and check solutions generated using those theorems.

Stating Conjectures

Articulating generalizations is difficult. Students can reason generally
about unknowns prior to being able to articulate the generalization with
which they are working (Koedinger & Anderson, 1996; Nathan, Koed-
inger, & Tabachneck, 1996). To do so requires self-reflection and extra cog-
nitive resources that come only from practice. In the Kite task, students’
initial conjectures tended to be stated simply as conclusions, with the
premise presumed. For example, they didn’t say “In kite ABCD, ZADC =
60°” but simply “ZADC = 60°”; not “Kites have four equal sides,” but
“four equal sides”; not “Opposite angles of kites are equal,” but “opposite
angles are equal.” By assuming the premise and essentially forgetting
about it, students are better able to focus their cognitive resources on what
they need to measure and generate. However, once a likely conclusion has
been discovered, the conjecture does need to be stated in full.

A The preceding examples illustrate two different ways of stating con-
jectures: one, more symbolic, referring to point labels, and one, more nat-
ural. The use of natural language tends to express better the generality of
the conjecture, whereas the symbolic form may contribute to some stu-
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dents’ difficulty in distinguishing evidence and claim, namely, in thinking
that the conjecture is about a particular figure rather than about kites in
general (see Chazan, 1993). On the other hand, the natural-language form
can become cumbersome and difficult to interpret. For instance, attempts
to find a natural-language form for “In kite ABCD with AB = BC and AD
=CD, angle A is congruent to angle C” can lead to jargon-laden statements
like “The opposite angles formed by noncongruent adjacent sides of a kite
are congruent.”

Argumentation

Argumentation involves making empirical or deductive arguments for or
against a conjecture. Mathematicians commonly convince themselves of a
conjecture by searching for a counterexample—if they do not find one af-
ter significant time and effort, this itself is reasonable evidence for the
truth of the conjecture, particularly when widely varying positive exam-
ples can be demonstrated. Extended failure to find a counterexample has
been the key source of argument for the conjecture referred to as Fermat's
Last “Theorem.” There is a recent well-substantiated claim of‘a proof of
this conjecture, but over the years the effort to find a proof has been less
justified by a need to convince us of its truth and more justified as a way
to facilitafe the generation of new mathematical ideas and conjectures.
Mathematicians also use deduction to aid conjecture generation. In rea-
soning outside of mathematics (and perhaps even within it), empirical ar-
guments are much more common than deductive ones (Kuhn, 1991).

In the Kite task, students rarely provided an argument for their con-
jectures without some prompting. As Kuhn (1991) found, many students
appear to lack epistemic knowledge that distinguishes between claims and
evidence and, further, lack an appreciation for the value of evidence in con-
vincing others. A key step in the development of argumentation skill is the
recognition of the importance of multiple examples as providing better ev-
idence than a single example. Testing a conjecture with multiple examples
involves the same Investigate skills—modeling and measuring—discussed
previously. In the Kite task, students often referred back to the instances
they used in conjecture generation. When pushed for a convincing argu-
ment, it was typical for them to invoke measurement (Chazan, 1993).

Few students spontaneously attempted a deductive proof. When
prompted to do so, most had trouble formulating their conjectures as
proof problems. The skills required for proof formulation are similar to
conjecture-stating skills discussed earlier. Skills for finding a proof were
more fully addressed in Koedinger and Anderson (1990), in which we pre-
sented a cognitive model and computer simulation of expertise in high-
school geometry proofs.

In addition to needing skills for performing investigation and de-
duction in the service of argument, students need knowledge to make
conclusions from these strategies, decide between them, and check their
conclusions:
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Drawing conclusions:
e IfI find a counterexample, the conjecture is false.
o IfIfind a proof, the conjecture is true.

Switching strategies:
¢ If many attempts to find a counterexample fail, perhaps the con-
jecture is true, and I should try to prove it.
e IfIcan’tfind a proof, perhaps the conjecture is false, and I should
look for a counterexample.

Checking for errors:

o If I've found a counterexample, I should still check that I cannot
find a proof.

e If I've found a proof, I should still check extreme examples to
make sure there is no counterexample.

o If I seem to have a proof and a counterexample, perhaps I've for-
mulated the proof problem wrong or made incorrect measure-
ments in my counterexample.

This higher-order knowledge about the nature of argument is lacking in
many students,

The model of conjecturing proposed here is intended to fall some-
where between a descriptive model of existing student conjecturing skills
and a normative model of what these conjecturing skills should be. The at-
tempt is to characterize the edge of high-school student competence, dis-
cover which skills are present and which are lacking, and provide a direc-
tion for instructional design efforts. In the following section, we discuss
some instructional implications of the model and, in particular, the role of
modern software in learning conjecturing.

MODEL-BASED DESIGN OF CONJECTURING
ACTIVITIES AND SOFTWARE

This section provides suggestions for instructional activities and software
directed at helping students acquire better conjecturing and argumenta-
tion skills. Most of the software suggestions concern ways to use existing
tools, but I also propose the design of new tools to address aspects of con-
jecturing not well addressed by existing software.

Activities and Software to Enhance Investigation

This section illustrates suggestions for software-related activities for In-
vestigation using the Kite activity as an example. Such an activity could
also be pursued with paper and pencil. I discuss how the activities differ
and what advantages and disadvantages the technology brings.
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Model Construction and Measurement Activities. 1argued earlier that in-
struction in traditional compass and straight-edge construction is too iso-
lated and overemphasized in typical high-school curricula. Other means
of construction can get students more quickly involved with activities di-
rected toward more general and powerful conjecturing and argumenta-
tion skills. The common placement of construction at the beginning of
courses does not allow students to acquire the goal structures that frame
construction techniques as useful knowledge. Instead students acquire
construction skills within an arbitrary school-imposed goal structure and,
as we saw in the Kite study, are not able to access these skills when they
are truly needed. By starting with simpler approaches to construction, stu-
dents can learn, first, when and where construction skills are needed.
More specialized approaches to construction can emerge later in the cur-
riculum with “pull” activities, in which there is a felt need for more effi-
cient methods or more precise diagrams.

I use diagram drawing to refer to the simplest approach to diagram-
matic modeling, in which figures are drawn by any method or tool set,
and diagram construction to refer to the use of Euclidean methods and a re-
stricted tool set. Examples of paper-based diagram drawing, from free-
hand to marked-ruler use, were given earlier. Students in the Kite study
showed a substantial preference for diagram drawing over construction.
When construction occurred, it was often prompted by other needs (e.g.,
to create a nonrhomboid kite).

Computer-Based Diagrammatic Modeling. The distinction between dia-
gram drawing and diagram construction in computer-based tools is illus-
trated in Figs. 13.5 and 13.6. The kite in Fig. 13.5a was drawn, whereas
the one in Fig. 13.6a was constructed. The steps to create Fig. 13.5a were
(a) use the segment tool to draw four connected segments, (b) use the
distance-measure tool to measure these segments, and (c) use the
selection/move arrow to adjust the points until the segments AB and BC
are equal, and AD and CD are equal. The steps to create Fig. 13.6a are anal-
ogous to a Euclidean construction: (a) draw a circle with center B that will
determine the lengths of segments AB and BC, (b) draw a second circle
with center D that intersects the first and determines the lengths of seg-
ments AD and CD, and (c) draw segments from the circle centers, B and D,
to the two points where the circles intersect (points A and C).

Tools like Geometer’s Sketchpad (Jackiw, 1991) make it easier to per-
form lower-level drawing, construction, and measurement steps. Thus,
students can better focus on conjecturing and argumentation. Another ad-
vantage of these tools is that diagrams are “dynamic,” making it easy for
students to perform numerous geometry experiments. The diagrammatic
models in Figs. 13.5 and 13.6 are dynamic in two ways: (a) the diagrams
can be moved with their structural features maintained, and (b) the mea-
surements of parts are dynamically updated. I illustrate two simple ex-
periments with the drawn and constructed kites in Figs. 13.5 and 13.6.

Diagram drawing, besides being easier to do, has the advantage of
facilitating the identification of “trivial conjectures” described earlier. Fig-
ure 13.5b shows the result of moving point A to modify the diagram in Fig,
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= Kite drawingl SSe—>-———07)

_ A=74°
Distance(A toB) = 45 cm B=117°
Distance(B to C)=45cm WC=T73"
Distance(Cto D) =52cm D=96"°

Distance(A to D) =52 cm

<A+<B+<C+<D = 360°

a
Kite drawing2
_ <A=67°
Distance(A toB) = 3.7 cm B=136°
Distance(Bto C)=45cm «C=73°
Distance(Cto D) =52 cm <D =84°
Distance(A to D) = 6.2 cm CAHCBHCH<D = 360 °
b

FIG. 13.5 Kite drawing (student work). (a) The points have been adjusted so that AB = BC
and CD = AD. This example is consistent with the conjecture “The angles of a
kite add to 360°.” (b) Moving point A creates a figure that is no longer a kite. The
angles still add to 360°, indicating that this property is not particular to kites.

13.5a. The diagram is no longer a kite, but one of the conjectured conclu-
sions about kites, that the angles sum to 360°, still appears to be true. Thus,
the experiment shows that this conclusion is not a characteristic particular
to kites.

The disadvantage of diagram drawing is that it is difficult to get the
premises exactly right. (In some cases it is impossible; e.g., an equilateral
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FIG. 13.6 The construction and measurement of a kite in Geometer’s Sketchpad. (a) The
Measure menu is illustrated, showing that when three points are selected (B, C, D
in order) the angle formed by them can be measured. The result is recorded on
the screen (e.g., “Angle(DCB) = 98°" at the bottom right). (b) The result of experi-
menting by moving point D. Sketchpad updates the measurements: Now angles
B and D are no longer equal, but angles A and C still are. The student has hidden
the circles used in the construction to better focus on the figure itself.
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triangle cannot by drawn precisely on the pixel grid of a computer screen).
A student must carefully move points and watch the measurements
change until the conditions of the premises are met. Further, each new ex-
periment usually requires that the same painstaking process is performed
again. For instance, to get Fig. 13.5b back to being a kite, say a nonconvex
one, would require moving points A and D until both AB = BC and AD =
CD again.

Diagram construction like that in Fig. 13.6a facilitates experimenta-
tion because the diagram not only looks like a kite, but it belaves like one
too. Sketchpad animates the movement of the diagram while maintaining
the constraints of the construction: Although other things may change,
segments AB and AC always stay equal because they are radii of the same
circle—similarly for segments BD and CD. Sketchpad also dynamically
updates the measurements as the diagram moves. Thus, in Fig. 13.6b we
see the result of moving point D and the updated measurement values.
Note that the student has “hidden” the circles used in the construction
(see Fig. 13.6a). The figure still behaves in the same way, but this “hide”
feature of Sketchpad allows the student to better focus on the figure itself.
As a result of this experimentation, students may begin to modify their
initial conjecture ideas and decide that although two of the opposite an-
gles (£A and £C) are congruent, the other two (£B and £D) are not.

One can see from this example that Sketchpad simplifies the process
of investigation in that a single construction can serve as a generator for
multiple experiments. This kind of functionality is a general feature of
many modern computational tools (e.g., spreadsheets, computer-aided
design), in which setting up a system of constraints gives the user the
power to automatically address “what if?” questions. Such dynamic mod-
els are a clear advantage over paper-based tools where exploring multiple
models is considerably more time-consuming,.

A Prototype Intelligent Tutor Agent for Investigation. We created a proto-
type cognitive Tutor Agent for diagram construction in Sketchpad (Ritter
& Koedinger, 1995). Figure 13.7 illustrates the prototype system on the
first exercise in chapter 3 of Discovering Geometry: copying a segment. The
window at the top is Sketchpad, and the Messages window below is pro-
vided by the Tutor Agent.

Instruction in investigation, whether from teacher, text, peer, or com-
puter tutor, needs to address two general classes of student errors: those
involving the use of the tool, and those involving the mathematical con-
tent. The Tutor Agent helps with both types of errors. Providing auto-
mated remediation of low-level errors frees both students and teachers to
focus on higher level content issues. Students may also get stuck in prob-
lem solving. As illustrated in Fig. 13.7, students can request a hint from the
Tutor Agent, which can provide successively more specific hints, much
like those in the Kite Interview Form, but specialized to each student’s
particular approach to a problem.

To summarize, computer-based tools for diagrammatic modeling
such as Geometer’s Sketchpad offer some increased benefits and reduced
costs over paper-based tools. The key benefit is that computer diagram-
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FIG. 13.7 Geometer's Sketchpad and an intelligent Tutor Agent for geometric construction.
The rightmost Tutor menu was added to Sketchpad and allows the student to re-
quest hints from the Tutor Agent. Hints then appear in the Messages window.

ming allows for the creation of a dynamic model through which investiga-
tion is greatly facilitated by making it easy for students to modify the dia-
grammatic model. On the cost side, many low-level concerns are reduced
or eliminated by providing automated nnmism\ measurement, and con-
struction capabilities. Errors due to compass slippage or protractor mis-
alignment are eliminated. Computer diagramming does have its own
unique tool errors, though. Such difficulties can be intimidating to students
and often even more so to teachers, who may encounter conflicts with their
paper-based construction methods. The creation of intelligent Tutor
Agents can help reduce these barriers for both students and teachers.

Activities and Software to Enhance Conjecturing

Although software tools for the other skill components are mﬁmmww_@:”rmnm
is.nothing that directly supports conjecturing. What is needed is a “Con-
jecture Editor” tool that aids students in formulating conjectures and
recording them for future reference. By analogy to structured editors in
computer programming environments, a Conjecture Editor could provide
support through displaying a list of context-sensitive conjecture tem-
plates. The need to support students in conjecture formulation is evi-
denced by the approach in the Discovering Geometry textbook, in which
students are given nearly completed conjectures to complete. For exam-
ple, in the first discovery, which investigates the properties of the angles
formed by crossing lines, students are prompted to make a conjecture that
starts: “If two angles are vertical angles, then the angles are__." Teach-
ers whom I have worked with at the urban schools report that when stu-
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dents are not given such prompts, they have great difficulty in expressing
their conjectures. However, such prompts have negative cognitive conse-
quences. Students are not engaged in the target skill of conjecturing, but in
a fill-in-the-blank task. Further, students lose the experience of creation
and discovery that conjecturing activities are intended to achieve. A Con-
jecture Editor could preserve the desired role of student as creator yet pro-
vide subtle support to make the task within reach of students.

Activities and Software to Enhance Argumentation

Following students’ greater readiness for empirical argument over deduc-
tive proof, initial activities should emphasize empirical argument. Such
arguments are a natural extension of conjecturing activities, but students
need to be pressed to provide multiple examples in support of their con-
jectures. Further, the importance of argument processes will not be recog-
nized by students unless they have numerous experiences with conjec-
tures that seem true but are false. We have used what we call “Truth
Judgment” activities to engage students in argument processes by asking
them to evaluate conjectures that may or may not be true: for instance, “Is
the following conjecture always true: ‘The diagonals of a quadrilateral
cross.”” The conjecture-evaluation skills needed for Truth Judgment prob-
lems are skills scientists use in reviewing a paper or listening to a talk. Re-
lated skills are used in evaluating claims in a newspaper article or a polit-
ical speech.

Both the Investigate and Deduce strategies are relevant to Truth
Judgment problems, but students are more likely to engage initially in in-
vestigation. A typical student or class might begin by arguing the conjec-
ture just given is true by drawing a diagrammatic model of a quadrilat-
eral, likely a rectangle, with crossing diagonals. When pressed “Do the
diagonals always cross?,” students will draw multiple quadrilaterals. Be-
cause of a bias toward convex quadrilaterals, it is likely that many stu-
dents will become convinced the conjecture is true. Teachers need to wait
and fight their urge to help, giving only vague hints if necessary (e.g.,
“Have you tried all kinds of examples, including weird ones?”). The more
time it takes for a student to find a counterexample and convince others,
the deeper will be the lesson. Activities like this, where intuitions are mis-
leading, enable students to experience the utility of the argument process.
In traditional geometry classes, students get few such opportunities be-
cause the predominant activity is to prove conjectures that are already
known to be true.

Earlier we illustrated the use of Geometer’s Sketchpad to support
the Investigation process to help both generate and test conjectures. In
previous work we built a software learning environment (ANGLE), which
provides a graphical interface for discovering geometry proofs and online
intelligent help (Koedinger & Anderson, 1993a, 1993b). Here we illustrate
how ANGLE supports the Deduce process, not only for the usual purpose
of verifying a conjecture, but also in finding evidence against a conjecture
and in facilitating the discovery of a new conjecture. Figure 13.8a shows
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Student work in ANGLE, an editor and intelligent tutor for geometry proof. {a) The
student has entered a conjecture. (b} The student has been unable to find a proof
for the entered conjecture (ZADC = ZCBA), but the attempt leads to a discovery
{and proof) of a related conjecture (ZBAD = £DCB).
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the ANGLE screen with a student-entered conjecture for the Kite prob-
lem—the most frequent false conjecture from the Kite study. Figure 13.8b
shows the screen some time later. After attempts to work forward from the
given (e.g., proving triangle ACB is isosceles) and backward from the goal
(e.g., posing the subgoal to prove triangles ABC and ADC congruent), the
student can find no way to prove her conjecture. In the process, however,
she deduces a new conjecture by finding she can prove triangles ABD and
CBD congruent and, in turn, angles BAD and DCB congruent,

Students can learn from independent use of ANGLE, but ANGLE is
more effective when well integrated into a classroom curriculum. In a lab-
oratory study where students worked independently with ANGLE for a
total of 8 hr, we found their proof-writing achievement increased dramat-
ically (by 60%) from pretest to posttest (Koedinger & Anderson, 1993a). In
a classroom study, students using ANGLE and Truth Judgment problems
with an experienced teacher performed one standard deviation better
than students in classes with the same teacher but without ANGLE
(Koedinger & Anderson, 1993b).

The Conjecture Editor, described earlier, could be combined with
ANGLE to create a “Conjecture Manager” tool. This tool not only would
provide students with the capabilities to enter conjectures and proofs, but
also would provide a way of recording new discoveries and building on
old ones. As students progress through the curriculum, they should es-
sentially “build a book” (see Healy, 1993) by recording conjectures, label-
ing some conjectures as postulates, and proving other conjectures using
these postulates. Figure 13.9 shows a mock-up menu for the Conjecture
Manager. The Conjecture menu would allow students to “enter” new con-
jectures, “see” previous conjectures, promote some as “postulates,” and
“prove” others as theorems.

Choosing the Prove menu item and selecting a conjecture would ini-
tiate ANGLE, in which students would draw a reference diagram, enter
the conjecture with reference to this diagram as Givens and a Goal, and
then search for a proof. The National Council of Teachers of Mathematics
(NCTM) Standards emphasize developing “short sequences of proofs”
that show how one conjecture can support another (NCTM, 1989). A Con-
jecture Manager would facilitate a build-a-book approach (Healy, 1993) in
which students could create their own sequencing of definitions, postu-
lates, and theorems in geometry.

& File Edit Conjecture RApply Aule Tutor

Enter Applicable Rules
See List Definitions »
Postulate | |flgebra »
Prove Postulates »

Theorems »

FIG.13.9  Menu items in the proposed Conjecture Manager.
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CONCLUSION

I have presented a model of conjecturing and argumentation skills based
on the analysis of student problem solving in an open-ended .noEmn%Ebm
task. Conjecturing is the process of generating generalizations about a
class of phenomena, whereas argumentation is the process of finding m:mu-
port for a generalization. Both processes are m:E.uoﬁ.ma by two mowﬁ M
mentary reasoning strategies: model-based investigation, and rule- wmﬂ
deduction. Conjectures can be generated by investigating models of the
phenomena and inducing new conjectures, or by chaining together MﬂoH
“rules” (well-supported conjectures) and deducing new conjectures. :.:H
ilarly, arguments for a conjecture can cite inductive support in wc_..n,__:nq% ex
amples (models) of the phenomenon, or nmn.._ﬁnc%m support in the chain-
ing together of prior rules that show the logical link between the premise
i the conjecture. o
o nm.ﬂMcw”MMMm& nonmn”E,.Em and argumentation has similarities to
cognitive models of scientific discovery (e.g., Klahr & U_.‘Ecmh 1988; ﬁw%-
gley, Simon, Bradshaw, & Zytkow, 1987) and argumentation (e.g., Cavalli-
Sforza, Lesgold, & Weiner, 1992). It is distinguished from these m.mmﬁmﬁ
models in its integration of both empirical and deductive methods for dis-
umentation. N
no<mnwnm”ﬁmmh.mmﬁmh I have attempted to provide evidence that the ability
to discover new ideas and develop convincing arguments is not talent, w:m
the consequence of particular skills and knowledge. The _.b.%ozmaﬁm )
such skills goes beyond mathematical discovery; conjecturing an M.m.ﬁ.
mentation skills are also relevant for nonroutine problem solving and for
aiding recall. The model-and-measure strategy (see Fig. 13.4) Eﬁmqmﬁm
the application of conjecturing skills in problem solving, %mnmm_ nmﬁr e
aided by both conjecturing m_wa .mammb»mamﬂon skills because forgotten
iscovered or rederived.
e %Mﬂw%sﬂmnwnm conjecturing and argumentation skills relevant for tasks
besides discovery, they are also relevant in other n_oEme” Further, there rﬁ
evidence that such skills are lacking in the adult population. Many of the
reasoning difficulties we observed in the Kite study show up in wrmHA mﬂﬂ
soning patterns of adults arguing for claims outside of mathematics. e
(1991) studied the argumentation skills of 160 U.S. adults who Emamm mﬂ e :
to defend claims about familiar social policy issues (e.g., causes of schoo
failure or unemployment). She found that more than half have poor rea-
soning abilities; in particular, they fail to make arguments that w.m&m_ on evi-
dence or accepted generalizations in a sound way. Like many stu Q.;M in
the Kite study, adults in Kuhn's study tended to cite single examples (often
personal experiences) as sufficient support for their claims. Both mmccmm
showed signs of confusion about the difference between claims and evi-
dence. In the Kite study, many students had difficulty seeing conjectures as
more than statements about a particular diagram, that is, as general claims
about all kites. In the Kuhn study, many adults talked about claims and ex-
amples as one and the same (e.g., I believe school failure results from ﬁo%uw.
teaching because when I was in school I had a lot of bad teachers). Ku
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(1991) commented that for many people “the evidence is not sufficiently
differentiated from the theory itself” (p. 285). She suggested that “to
progress beyond the fusion of theory and evidence to the full differentia-
tion and coordination of the two requires. .. thinking about theories, rather
than with them, and thinking about evidence and its bearing on a theory,
rather than merely being influenced by it” (Kuhn, 1991, p- 285).

If students who pass geometry tend to acquire better abilities to dif-
ferentiate and coordinate claims and evidence, then Pelavin (1990) may be
correct in his claim that high-school geometry provides a unique opportu-
nity to learn fundamental reasoning skills that are important for college
success. This claim is consistent, though not uniquely so, with the results
of his College Board study (Pelavin, 1990) where he found that among a
number of other potential factors, passing high-school geometry is the
best correlate with college success. An alternative explanation for this cor-
relation is that high-school geometry courses are uniquely difficult and
thus have served as a selection filter through which flow only those stu-
dents who enter the course with the reasoning and learning skills needed
for success in this difficult course and in college. Between these extremes
is the likely reality. Some general reasoning and learning skills are proba-
bly improved through successful experiences in geometry. We need fur-
ther empirical and theoretical research (cognitive models) to identify
clearly what these skills are and the extent to which they can be acquired
generally (i.e., not tied to the domain of instruction). Attempts to teach
general reasoning skills have often failed, but successes at “transfer” have
had in common a clear identification of the targeted general skills, often in
the form of a cognitive model, and this model has been the basis for care-
ful instructional design (e.g., Klahr & Carver, 1988; Lehrer, Randle, & San-
cilio, 1989; Schoenfeld, 1985; Singley & Anderson, 1989).

One example of a class of skills that appears relevant both in geome-
try and more generally is skills for “set breaking” that can be used to avoid
rigid thinking and lead to more flexible problem solving (Luchins &
Luchins, 1959). Geometry activities can help students address their own
biases toward prototypical figures and “perceptual set.” How well gen-
eral set-breaking skills and heuristics can be acquired in geometry is not
clear, but it is clear that such skills cannot be acquired without opportuni-
ties that illustrate the need for them. The Kite problem is one such activity.
It provides a good context for instruction on heuristics like the “general
model heuristic”: If your goal is to construct and investigate an example
or model of a phenomenon (e.g., a kite), then construct as general an ex-
ample as possible—avoid adding properties or constraints that are not re-
quired (e.g., making all four sides equal).

Designing instruction to help students learn discovery skills should
be distinguished from a discovery learning approach. Just giving students
discovery tasks and little support can lead to interesting results, but is too
slow and frustrating for many students (Healy, 1993). Instead, students
should learn discovery skills “by doing” in a supportive environment de-
liberately designed to achieve the skills outlined in the cognitive model.
The elements of this environment should include well-chosen activities
that elicit student thinking and classroom debate, well-timed instructor-
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facilitated introduction of better conjecturing and argumentation tech-
niques, and the use of modern software tools that facilitate the conjectur-
ing process and that include, where possible, the additional just-in-time
support of a computer-based Tutor Agent.
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