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Abstract. The examination of user data as a basis for developing production models of
user behavior has been a major focus in the PAT Algebra I Tutor's development. In recent
work, we have investigated relationships between related tasks and the solution strategies
displayed by students. To solve a PAT Algebra I problem, students must complete several
related arithmetic and algebraic tasks. The sequences in which these tasks are completed
suggest problem-solving strategies of students. We have observed a characteristic pattern
of students' success rates on related tasks. We have also observed that students' success on
specific skills (e.g. constructing a symbolic representation) may differ depending on
whether students previously carried out related tasks in the same problem (e.g. solving an
analogous arithmetic question). This information has important implications for our user
model and our modeling approach.

1 Introduction

Users with different experience and expertise may interact quite differently with the same appli-
cation. As users move up the not-so-gentle slope from novice to expert, the strategies they use
often change (Siegler and Jenkins, 1989). Ideally, user modeling applications should be able to
track the use of multiple strategies by users, and suggest desirable strategies for individual users.

One ubiquitous pattern of change in the process of skill acquisition is the transition from more
concrete instance-based modes of interaction (e.g. direct manipulation in spreadsheets or word
processors) to the use of more abstract symbols and functions (e.g. use of formulas and style
specifications). In mathematics, the concrete-instance to abstract-symbol transition corresponds
broadly to the advance from arithmetic to algebraic competence. We are investigating this pattern
of development with an intelligent tutoring system for grade 9 algebra, the PAT Algebra I Tutor.

In traditional views of problem-solving in this domain, students must first develop equation
solving competence and then use equations to solve story problems. Even research into multiple
solution strategies has focused on symbolic manipulations (Mayer, 1982). However, cognitive
research by Koedinger and Nathan (1999) shows that initially students can comprehend and solve
quantitative constraints better when constraints are presented in concrete verbal and numerical
form rather than abstract symbolic form. Students use concrete instance-based strategies to solve
quantitative constraints, in addition to the formal translate-to-algebra strategy. Instruction which
connects concrete strategies to abstract ones is more effective (Koedinger and Anderson, 1998).

In this paper we present a detailed analysis of on-line data collected by PAT's user model. We
focus on a set of skills related to the concrete-instance to abstract-symbol transition in mathe-
matics, involving solution of concrete cases and writing of abstract expressions. The data
collected enables us to identify different strategies chosen by students, the proportion of students



choosing them, and student success rates at the tasks involved. One concern is to compare the
relative difficulty of these skills. We also want to know if solving one task in a problem enables
students to more successfully complete related tasks in the same problem. Is writing an expres-
sion after successful completion of a related skill really the same task as writing an expression
without previously completing a related skill? How should this be modeled? Also, at a strategic
level, do students prefer certain solution paths?  If working on concrete cases can help students to
write expressions, are students making strategic choices that reflect this? To what extent can our
existing tutors track and support more effective strategy use by students? What implications does
this have for our approach to student modeling?

2 The PAT Algebra I Tutor

The PAT Algebra I tutor focuses on the mathematical analysis of real world situations and the use
of multiple representations for problem-solving. Checking charges on a phone bill and comparing
the costs of different car rentals are examples of such real-world situations. To solve a PAT
problem, students read a textual description of a situation with some questions. Students use
multiple representations of the situation including words, numbers, symbols, tables, and graphs,
to reason about the situation and answer questions. (Koedinger et al., 1997). At the tutor's core is
a production rule model of student behavior which enables the tutor to diagnose correct and in-
correct actions, provide help and feedback, and control the student’s progress through the
curriculum. Previous papers discuss the overall educational impact of PAT (Koedinger et al.,
1997; Koedinger and Sueker, 1996) and learning of expression writing skills (Mark et al., 1998).

Figure 1 shows a partial solution for a single linear equation problem from Lesson 1 of the
PAT Algebra I curriculum for the 1996-1997 school year. In Lesson 1 the student must construct
a table by finding solutions to questions and by writing an expression. More complex problems
and additional tools are introduced in later lessons. The Problem Description (upper left of Figure
1) describes the cost of skating at Sky Rink, based on a flat fee for renting skates and a per-hour
fee for time at the rink. Students investigate the situation using a spreadsheet tool (the "Work-
sheet" window) and a specialized tool for identifying algebraic expressions from concrete cases
(the "Pattern Finder" window). Students construct the Worksheet (lower left) by labeling the
columns with quantities from the situation, entering units, writing an algebraic expression, identi-
fying givens, and answering the numbered result unknown questions. Once the relevant quantities
have been identified a student can complete the rest of the table in any order desired. The Pattern
Finder (center right) can be used at any time to work out the form of the algebraic expression. On
average, students spend about twelve minutes solving a tutor problem like this.

The tutor monitors and responds to students through the use of a production rule based user
model. As detailed in previous papers (Koedinger et al., 1997; Mark et al., 1998), model tracing
monitors student behavior within a problem, diagnosing student success and failure on individual
skills, and generating help and feedback, through the matching and firing of production rules. The
"Messages" Window (lower right of Figure 2) displays these messages to the student. Knowledge
tracing monitors learning across problems. Information about the success and failure of a stu-
dent's attempts at a skill is incorporated through mathematical modeling into a current assessment
of the likelihood that the student has learned the skill. Assessments of what the student knows are
used to individualize the tutor's curriculum, assigning remedial problems in areas where the stu-



dent is weak. The tutor's current assessment of the student's learning is shown in the skillometer
window (upper right: entitled with the student's name, e.g. "Mary Mark".)

Figure 1. The PAT Algebra I Tutor, Lesson 1.

3 Expression Writing and Related Skills

One of the primary skills that the student is expected to learn is the writing of an algebraic ex-
pression to describe a problem situation. The ability to capture complex mathematical
relationships in a concise algebraic form is seen as a meaningful indicator of students' under-
standing of a situation and the mathematical relationships involved. The ability to translate a
quantitative problem situation into algebraic symbols and to use that symbolic form is important
for effective use of real-world tools like symbolic calculators (Koedinger and Anderson, 1998).

Writing an expression requires the composition of an algebraic representation involving a
variable, numbers, and operators. To experts, writing an algebraic expression like "8.0*x+3.50"
to describe the Sky Rink problem seems like a fairly obvious process: you read the problem
statement, identify the changing quantity and rate of change in the problem, check for an initial
value, and put the appropriate numbers into the appropriate places in the formula. Novices find it
considerably more difficult, and are affected by features of the problem situation such as the use
of integer vs. non-integer numbers, and the presence and sign of y-intercepts (Mark et al., 1998).



Novices display more success with the type of concrete case called a Result Unknown (Ko-
edinger and Anderson, 1998). Question 2 in the "Problem Statement" window involves a result
unknown: "If you spent two hours skating at Sky Rink, how much would it cost you?" The stu-
dent is given a numeric value for the number of hours skated and asked to find the resulting value
for the cost. Correct answers include the final calculated value, (e.g. "19.50") and any arithmetic
expressions evaluating to this answer (e.g. "3.5+16" or "8+8+3.5"). Students may solve result
unknowns by translating the problem into symbolic form and then substituting a value for the
variable.  They may also engage in a process of arithmetic problem-solving in which the problem
is broken down into arithmetically tractable sub-tasks which are completed to obtain a result
without ever combining the sub-tasks in ways that symbolically relate them. For example, a stu-
dent calculating the cost of skating at Sky Rink for 2 hours might multiply 2 times 8 first, and
then take this intermediate result and add 3.5 to get 19.5. These two operations are usually per-
formed as separate arithmetic steps with equal signs in a calculator, or as separate summations in
column arithmetic on paper. When asked how they obtained their answer, students will often
respond "I added 16 and 3.5" and have trouble remembering how they got 16. This strategy
avoids the application of skills for composing the two operators into a single symbolic sentence.
Work by Heffernan and Koedinger (1997) suggests that composing an arithmetic symbolization
may be almost as hard for students as writing an expression with a variable.

The "Pattern Finder" isolates this composition skill by asking students to write a concrete
symbolization, a Pattern Instance. In the first concrete case in the "Pattern Finder" window, stu-
dents are asked "How would you calculate the cost of skating at Sky Rink for 2 hours?" The
student must indicate how he or she would get an answer, by entering a symbolic mathematical
expression as a solution for the cost (e.g. "2*8+3.5").  The numeric result (e.g. "19.5") or a ran-
dom mathematical expression which yields it (e.g. "10+9.5") will not be accepted. When a correct
answer is given by the student (e.g. "2*8+3.5"), the Pattern Finder displays the calculation and its
result as an equation (e.g. "2*8+3.5=19.5").

The Pattern Finder is structured so that students work through a progression of pattern in-
stances, using a fixed sequence of values for x of 2, 3, and 4. After the student has solved three or
more such concrete cases, he is requested to "Write an expression which describes your calcula-
tions, using a variable." In this final Generalization step the student is expected to examine the
preceding arithmetic symbolizations for underlying patterns, and make the generalization to using
a variable in place of the changing numeric value.

Consider which of these the steps in the Pattern Finder window is likely to be the most diffi-
cult for students. Is it writing an expression when x=2, x=3, x=4, or explicitly using the variable
x? Most people, when asked this question, predict that the final step of generalizing from the
arithmetic expressions to the algebraic expression is the most difficult. Indeed, this was our origi-
nal intuition when designing the Pattern Finder. We hoped that doing multiple instances (2, 3, 4)
would help students make this difficult generalization step. Data collected by PAT's user model is
particularly interesting with respect to this question!

4 Student Success Rates on Related Skills

Data was collected by the PAT tutoring system during the 1996-1997 school year at Langley, a
typical urban high school. Classes at Langley used the PAT tutor as part of their regular grade



nine algebra I program, spending two out of five 40-minute classes per week on the tutor. As
students worked, the PAT tutor saved protocol files recording student actions, their success or
failure, and the production rules fired. The production model of the 1996-1997 tutor did not iden-
tify skills by order of completion, so we generated the necessary sequence-based production
information from the protocol data during analysis. The data presented comes from 75 students,
who completed a total of 1026 problems in the first lesson of the grade nine tutor curriculum (an
average of 13.68 per student). Lesson 1 contained a demonstration problem (ignored in this
analysis), 8 required problems, and a pool of 16 remedial problems. Students worked independ-
ently through the lesson. The basic curriculum was individualized for each student as the tutor
assigned differing orders and numbers of problems. Not all students completed the lesson.

Figure 2. Student solution paths.

Figure 2 shows a partial graph of the sequences in which a student can complete the related
skills when working through a problem. A node in the graph represents a state in which certain
tasks have been successfully completed. A student may begin the problem by writing the expres-
sion, or do one or more result unknowns first, or use the Pattern Finder. In the Pattern Finder, a
student must complete at least three pattern instances before the generalizing step. It is also possi-
ble to change course mid-way and skip from the Pattern Finder to writing the expression in the
Worksheet, for example. Unrelated skills such as identifying quantities and units and entering
givens were ignored. Since our main concern was to examine the effect of concrete cases on
writing of expressions, we also ignored activities which occurred after writing Worksheet expres-
sions.

For any transition in the graph, we can calculate the percentage of students in a state who
follow a particular solution path out of that state by successfully completing a related action. We
can also calculate the percentage of students who make this transition successfully on their first
attempt at the transition skill. For the purposes of this analysis, to ensure that the success rates are
comparable, succeeding at one of the related skills causes the other related skills to be treated as if



they have not been previously attempted. Thus, success rates at any transition reflect the most
immediate state of the student's knowledge and abilities. In this way, we avoid the problem of
contamination due to a change in strategy: unsuccessfully attempting a skill early on will not
affect the success rate calculated for that skill after completing a sequence of other related tasks.
Table 1 contains a summary of these skill transitions, the cognitive task components which we
believe are involved, and the strategy choice and success rates observed.

Table 1. Success rates and strategy choices.

Sequence of Skills Completed Cognitive Task Components Success
Rate

Strategy
Choice

1. Problem -> Result Unknown Concrete case: Symbolization or
Arithmetic problem solving

53% 22%

2. Problem -> 1st Pattern Instance Concrete case: Symbolization 43% 10%
3. Problem -> Expression Symbolization and Generaliza-

tion
36% 68%

4. Result unknown -> Result un-
known

Concrete case: Symbolization or
Arithmetic problem solving

82% 80%

5. Result unknown -> Pattern Concrete case: Symbolization 33% 8%
6. Result unknown -> Expression Symbolization and Generaliza-

tion
63% 92%

7. Pattern -> Pattern Concrete case: Symbolization 84% 86%
8. Pattern -> Generalization Generalization 82% 55%
9. Generalization -> Expression Transfer 67% 100%
10. Pattern -> Expression Generalization 73% 45%

The students' first actions give us a comparison of the relative difficulty of writing an expres-
sion, a pattern instance, and a result unknown. Students succeeded 36% of the time on their first
attempt to write an expression, 43% on their first attempt at a pattern instance, and 53% on their
first attempt at a result unknown. This supports our hypothesis that abstract symbolizations in-
volving variables (expression writing) are harder for students than the solution of concrete cases
(result unknown, pattern instance). This replicates the pre-and-post-test results for symbolization
and result unknown skills of Koedinger and Anderson (1998), at the level of specific traceable
skills. Students also found it harder to write their first pattern instance (a concrete case requiring
symbolization) than to solve their first result unknown (a concrete case not requiring symboliza-
tion). This agrees with the composition effect reported by Heffernan and Koedinger (1997), in
which solving the whole was more difficult than finding the sum of its parts, independent of
variable use. However, PAT students found it easier to write a pattern instance than an expression
when using the tutor. Somewhat in contrast, Heffernan and Koedinger reported only a small not
significant effect of variable (abstract symbolization) vs. no variable (pattern instance) problems.

If we follow students through a sequence of tasks in the Pattern Finder (center right of Figure
1), we can see that students improve substantially from their first pattern instance (43%), to sub-
sequent pattern instances (84%). Breaking this out into the first, second, third, etc. pattern



instances showed a substantial increase after the first pattern was solved, and a much smaller
increase for each successive instance. This supports the hypothesis that completing the arithmetic
symbolization in the first concrete case is a important step enabling students to more effectively
solve further pattern instances. However, the transition from the concrete cases to the abstract
symbolization (82% success) is only marginally harder than doing another concrete case (84%).
In contrast to our expectation, students did not have great difficulty making this generalization
step (82%); rather, it was writing the first pattern instance (43%) that was most difficult for them.

Comparing the first result unknown in a sequence with later result unknowns we see that stu-
dents have the most difficulty solving their first result unknown (53%), and improve considerably
on later result unknowns (82%). Again, the first concrete case was the most crucial, with small
increments in success rate for each later concrete case. However, after writing a result unknown,
it is still substantially harder to write an expression (63%) than to do another result unknown
(82%). This supports the idea that students who solve result unknowns may be doing so either by
engaging in a concrete case symbolization, or through a process of arithmetic problem solving
which does not involve symbolization, while students who write pattern instances are required to
compose symbolic representations.

Students are more successful when writing an expression after completing some result un-
knowns (63%) than when writing an expression without completing any concrete cases (36%).
Students using the Pattern Finder were more successful at writing expressions in the Worksheet
after completing only pattern instances (73%) or both pattern instances and the generalization
step (67%). While these two success rates are similar, the types of errors displayed on the transi-
tions are different. Students who completed the generalization in the Pattern Finder had more
difficulty transferring the expression back to the Worksheet than we expected.  However, they did
tend to make errors consistent with a transfer attempt (e.g. "Y=X*8+3.5" for "X*8+3.5"). The
errors of students who went from a pattern instance to writing a Worksheet expression suggest
serious difficulties in symbolization. Such students are 20% more likely to enter unrelated or
unparseable solutions, and 22% more likely to request help. Protocols suggest that we may have
two populations of students on this arc: one which is somewhat skillful, and one which has great
difficulties.

5 Solution Paths and Strategic Choices

An examination of solution paths shows that 68% of the time, students successfully wrote the
expression before completing any concrete instances in the Pattern Finder or the Worksheet. This
preference may partly reflect the layout of the Worksheet: the expression appeared at the top as in
a spreadsheet. Twenty-two percent of the time, students successfully calculated a result unknown
first. Only 10% of the time did students begin by completing the first pattern instance in the Pat-
tern Finder. Eighty percent of the time, students who successfully calculated one result unknown
did additional result unknowns before writing the expression. After one or more result unknowns,
92% of students wrote the expression, while 8% did further concrete cases with the Pattern
Finder. Eighty-six percent of the time, students who completed one pattern instance did addi-
tional concrete cases with the Pattern Finder before generalizing in the Pattern Finder or writing
an expression in the Worksheet. Fifty-five percent of students who completed at least one pattern
instance went on to generalize an expression in the Pattern Finder, while 45% went from the



concrete instances to writing the expression in the Worksheet. Although there is evidence to
suggest that students can benefit by doing concrete instances before writing expressions, students
do not generally use the Pattern Finder for this. More often they solve result unknowns, but in
general they follow the layout of the table and immediately try to write an expression.

A student may not depend on a single strategy while using the tutor. "Student A" is a particu-
larly good case study for demonstrating that a student may acquire strategic knowledge about
what solution paths to follow, as well as learning individual skills. "Student A" illustrates several
solution strategies which students may use when working on tutor problems. Her early solution
paths are somewhat erratic, but she starts to use the Pattern Finder consistently as a support tool,
and then, as she becomes more proficient, leaves it behind.

In Lesson 1 the teacher introduced the tutor by working through a demonstration problem in a
recommended sequence, identifying quantities and units in the Worksheet, and then completing
the Pattern Finder. The Pattern Finder was recommended as a tool which students could use to
find expressions if they were having difficulty. "Student A" follows the teacher through the MX
demonstration problem without difficulty. She then solves her first randomly assigned problem,
following the suggested sequence of steps, and starts a third problem before the class adjourns.

Despite this promising beginning, she has considerable difficulty in subsequent classes. Her
initial answers are often correct or nearly correct but she frequently enters them in inappropriate
cells, putting an expression in place of a variable or switching a given and a result. She is easily
distracted by additional information in the problem (other givens or distractors). Once she gets
off-track, she tends to flounder, and to generate increasingly unlikely solutions.

In her fourth problem, "Student A" enters a sequence of pattern instances and then, without
entering an abstraction, goes directly to entering an expression in the Worksheet. She gets it
wrong because she puts the expression in the wrong column. Several similar error sequences
seem to convince her that it is better to work through a complete Pattern Finder sequence before
entering the expression in the Worksheet.

In problems 8-12, "Student A" consistently goes to the Pattern Finder before attempting the
expression or any of the concrete cases in the table. She succeeds about 50% of the time in her
first attempt at a pattern instance, but once she has completed one (e.g. "8.0*2+3.5"), she almost
invariably writes the rest without difficulty (90% success), and generalizes correctly (100% suc-
cess). She is increasingly successful at transferring the expression back to the Worksheet.

In problems 11 and 12, "Student A" is able to write the first pattern instance without errors,
even though she sees a problem of the form MX-B for the first time in Problem 12. These suc-
cesses appear to give her confidence, and in problems 13 and 14, she labels the Worksheet
columns, enters units, indicates the variable (X) and correctly enters the MX expression, without
using the Pattern Finder. Her next problem is an MX+B form. Unfortunately she overgeneralizes
from the previous two problems, and her initial MX solution is incorrect.

In many ways, "Student A" displays an ideal pattern of strategy choice. When in difficulties,
she turns to the Pattern Finder as a useful tool, and uses it until she considers herself to be mas-
tering the relevant skills, at which point she discards it. In the same way, an expert tutor might
suggest that a student use tools for support on an as-needed basis.

Other students find the result unknowns in the table useful as concrete cases. "Student B"
shows a consistent pattern of strategy choice (19/24 problems) in which he solves result un-
knowns in the Worksheet before entering an expression. In other cases (4/24), he asks for help for



a result unknown and then attempts the expression directly, without completing a result unknown.
His success rates show a characteristic pattern: he is successful on 30% of his first result un-
knowns, but his success rate on subsequent result unknowns improves to 70%. His success rate
for entering a subsequent expression, however, is only 60%, indicating that symbolization with a
variable still gives him difficulty. When he attempts an expression without first completing con-
crete cases, his success rate is only 50%.

Students who tend to go straight for the expression without doing concrete cases vary consid-
erably in skill. Students "C" and "D" consistently complete the expression before doing other
work, and succeed on 64% and 80% of their first attempts at expression writing, respectively. In
contrast, Students "E" and "F" succeed about 24% and 30% of the time. These low-achieving
students could potentially benefit from working out concrete cases first, but tend not to do so.

6 Conclusions

Deriving expressions through induction. We hypothesized that the cognitive tasks of symbolic
composition and generalization of variables would affect students' success at expression writing
and other related skills. Our results show that students find it easier to solve concrete cases that do
not require symbolization than concrete cases that do; and that either type of concrete case is
easier than writing an expression with a variable. Our results support the idea that students learn
to construct expressions through induction from concrete cases. Requiring students to show their
work symbolically can help them to make this transition. We found further support for the sur-
prising result that students find composition much more difficult than generalization.

Several changes were made to the 1998-1999 PAT tutor and curriculum as a result of these
observations. We reduced the number of concrete cases in each problem, since results suggest
that solving the first concrete case in either the Pattern Finder or the Worksheet has the most
impact, and subsequent cases yield little further improvement. We also moved the expression
writing row to the bottom of the Worksheet after the result unknowns. This may prompt students
to solve result unknowns before writing the expression. More substantial changes can also sug-
gested:

Refining production models to reflect cognition. Our comparison of solution paths and
success rates leads us to the conclusion that expression writing is not always the same skill. De-
pending on the sequence in which tasks are completed, tasks like expression writing may involve
various cognitive components. PAT's productions should be redesigned to model both surface
goals that students are trying to satisfy (expression writing, solving result unknowns, and writing
pattern instances), and deeper underlying cognitive skills (symbolization, generalization, and
transfer). However, a behavior like solving result unknowns, which is ambiguously related to
underlying skills, may considerably complicate the tracing and attribution of production skills.
Luckily, other researchers are already dealing with some of the issues this may involve, such as
uncertain knowledge (Katz et al, 1994), and relating subskills and factors (VanLehn et al, 1998).

Identifying strategic behavior. As case studies for "Student A" and "Student B" suggest,
students may strategically select solution paths when working on a problem. Students can learn
strategic knowledge about approaching an overall problem, just as they learn individual skills.
Many students, however, remain unaware of the possible benefits of strategic choices. Currently,
the tutor allows students to follow a variety of strategies, but does not attempt to track their use of



such strategies. Diagnosis of strategic choices along solution paths within problems could be
achieved by writing production rules which are more sensitive to information about the student's
current working context and solution state. We can diagnose strategic behavior within problems
in the same way that we diagnose a student's current actions, in our existing modeling paradigm.

Reflective modeling of strategic behavior. A student makes strategic choices about how to
solve a problem in part on the basis of self-assessments of his or her skills, as shown by "Student
A" and "Student B". In our current modeling approach, information about the problem structure,
the current solution state, and the student's behavior, is available to model tracing for diagnosis.
Information that captures student behavior across problems is not accessible to model tracing.
The tutor's assessments of what the student knows are available only to the knowledge tracing
component which individualizes the curriculum. To determine not only what strategy choice a
student is making, but what strategy choices a student should make, and when to recommend
such actions, further information about the student is needed.  Assessments of student knowledge
are an important source of information, available in the tutor, which could be accessed by the
production model. A reflective model that used assessments of a student's learning of skills could
provide students with individualized strategic advice about desirable solution processes. "Student
A", who experiences success with pattern instances, but not with result unknowns, could be given
different help from "Student B", who is successful at writing result unknowns. Such a tutor could
also distinguish between "Student D", who displays considerable skill at expression writing, and
"Student E", who is unsuccessful at this skill. Developing a more self-reflective user model,
which could utilize knowledge tracing information about individual students to teach strategic
skills, would be an exciting extension of our current user modeling approach.
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