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ABSTRACT 
This paper describes design strategies that led to significant 
improvements in the usability and learnability of an end-
user programming environment called RIDES. These 
strategies may be viewed as concrete procedures for 
building easily learned interfaces and were derived from 
Polson and Lewis' CE+ theory.   

RIDES was designed to make it possible for US Air Force 
training experts, with minimal programming experience, to 
author simulation-based Intelligent Tutoring Systems. 
Tutors created using RIDES facilitate guided learning-by-
doing. Such an instructional approach has been validated as 
an effective way of acquiring complex procedural skills in 
various contexts. Instruction created using RIDES has the 
potential for addressing training problems associated with 
the operation of highly automated aviation systems. 
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INTRODUCTION 
Deficiencies in the knowledge and skill required to operate 
flight deck avionics have been highlighted as factors that 
compromise operational efficiency and safety [3]. Research 
indicates that these deficiencies, in part, stem from 
inadequate training. Training departments often expect a 
substantial amount of avionics specific skills to be acquired 
on the job [3]. While many skills may in fact be built and 
maintained in such a manner, many others may fail to be 
acquired. Resulting deficiencies may contribute to increased 
workload and impact efficiency and safety in certain 
operational situations. 

The training concerns noted above are not unique to flight 
training, similar observations been made in ground-based 
aviation tasks that are supported by high levels of 
automation (e.g. Lesgold [5] et al., who describe issues 
associated with the training of F-15 avionics technicians). 

Intelligent Tutoring Systems (ITS) represent an area of 
research aimed at addressing training problems. A web 
based autopilot tutor developed by Sherry et al is a recent 
example of such an effort. These systems allow learners to 
acquire skills by actually performing complex tasks likely 
to be encountered on the job. Context specific hints and 
error feedback keep problem solving productive and 
efficient by minimizing floundering and associated 
frustration. Such an instructional approach has been shown 
to be a very effective and efficient way of acquiring 
complex procedural skills in various training contexts [1].  

The tutoring systems just described support guided 
learning-by-doing. At the heart of these systems is a 

cognitive model that represents the skills required to 
perform complex tasks. Cognitive models underlying these 
tutors are typically based on a systematic analysis of the 
skills required to perform complex tasks. These models 
serve as the basis for developing curriculum. Furthermore, 
they aid in the interpretation of student actions so as to 
provide context-specific assistance. 

Intelligent Tutoring Systems have been successfully applied 
in the aviation domain. For example, an independent 
evaluation of SHERLOCK, a trouble shooting tutor, 
demonstrated that US Air Force F-15 avionics technicians, 
with about 20 to 25 hours of training on the system, were 
able to perform as well in trouble shooting avionics test 
equipment failure situations as colleagues with 4 years of 
on-the-job experience [5]. Despite such success, intelligent 
tutoring systems have not been widely adopted in aviation 
training contexts. One factor has been the expense involved 
in creating such systems — SHERLOCK took several 
programmer-years of development resources. Moreover, 
training experts often lack the substantial programming 
expertise required to develop such instruction. 

RIDES [6], the system that forms the focus of the design 
effort reported in this paper, was designed to simplify the 
development of computer tutors. It was designed to allow 
subject matter experts in the US Air Force, with little or no 
programming experience, to develop interactive device 
simulations and associated tutorials. It has been used to 
create graphical simulations and tutorials associated with 
complex devices such as air traffic control panels, aircraft 
hydraulic circuits, and cockpit controls, to name a few. 

Although the functionality offered by RIDES has the 
potential for addressing vital instructional needs within the 
military and industry, it has not been widely used. It has 
been speculated that usability problems have been a limiting 
factor in its adoption, particularly by subject matter experts 
with little programming experience. Thus, we undertook a 
design effort to improve the usability of the system. 

In the following pages we describe concrete design 
strategies derived from Lewis and Polson's CE+ theory. We 
illustrate practical application of these strategies in the 
design of RIDES. Furthermore, we demonstrate the efficacy 
of our design by reporting on the results of two 
experimental studies. 

Identifying Design Strategies 
Norman has characterized problems involved in human 
interaction with computer systems as arising from two gulfs 
[7]. These are: the "gulf of execution", which separates a 
user's goals from the actions needed to accomplish them, 
and the "gulf of evaluation" which impedes appropriate 
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interpretation of system state. Bridging each of these gulfs 
calls for distinct design strategies — strategies for bringing 
the user closer to the system and those for bringing the 
system closer to the user. These gulfs are particularly 
pronounced in the case of end-user programming systems; 
programming environments are intrinsically complex and 
the entry characteristics of end-users often leave them 
unprepared to deal with such complexity. 

One way to bridge the gulfs separating users from computer 
systems is to build systems that are amenable to learning by 
exploration. Polson and Lewis laid a foundation for the 
design of easily learned interfaces in their CE+ theory [8]. 
CE+ provides an account of exploratory learning of 
computer systems. Such an approach to developing 
proficiency exploits the fact that, in problem solving 
contexts, people learn best by doing [1].  CE+ assumes the 
following four premises about user interaction (which 
correspond with the four questions in a Cognitive 
Walkthrough [11]): 1) The user sets a goal to be 
accomplished with the system, 2) the user searches the 
interface for currently available actions, 3) the user selects 
action that seems likely to progress towards goal, 4) the user 
performs selected action and evaluates progress being made 
towards current goal.  

Our approach was to consider each of the 4 premises of user 
interaction offered by CE+, and in association with design 
principles specified by Polson and Lewis [8], attempt to 
derive concrete interface design strategies.  

User Sets Goals to Be Accomplished With the System  
This premise of CE+ calls for a user interface that is 
congruent with likely goal structures held by system users. 
However, Polson and Lewis do not prescribe specific 
techniques for ascertaining goal structures and determining 
the extent to which user and system goal structures overlap. 
We adopted elements of the design approach suggested by 
Kieras & Polson [4]. Kieras & Polson illustrate formal 
usability techniques of writing production rules and goal 
trees to characterize user performance.  In particular, 
constructing and comparing goal trees that characterize 
anticipated user expectations on one hand and the 
procedures implicit in a candidate design on the other. Such 
an approach provides the basis for structuring the system so 
that the temporal sequence of steps required of a user 
conform more closely to a user's goals and expectations.  

User searches the interface for currently available actions 
and selects actions likely to make progress towards goal. 
CE+ suggests that in the course of learning to use a system 
by exploration, interface elements such as prompts and 
buttons serve to create sub goals that become components 
of the overall task goal held by a user [9]. These goals 
typically involve selection of actions that will enable the 
user to make progress on the task. To facilitate the 
formation of appropriate goals and enable selection of 
appropriate actions, Polson and Lewis call for making 
available actions salient, using identity cues between 
actions and goals, making actions easy to discriminate, 
offering few action alternatives in specific goal contexts, 
and keeping sequences of action choices short [8]. The 
space of interpretations for enabling these suggestions in an 
interface is large. We made these principles concrete in our 

design by:  

§ Creating task oriented dialogs consolidate functionality 
necessary for accomplishing specific tasks and situating 
these to facilitate easy discovery. 

§ Organizing the spatial layout in our dialogs to parallel 
the temporal sequence of actions required to 
accomplish a task. 

§ Communicating the sequence of goals by redundantly 
coding the interface with verbal prompts  

§ Locating controls necessary for executing actions in 
close proximity to these prompts 

§ Explicitly stating the actions to be performed by users 
in specific goal contexts. 

User performs selected action and evaluates progress being 
made towards current goal. 
Feedback from the system following a user action serves to 
initiate the selection of error correction goals or new goals 
relevant to the completion of a task.  Polson et. al 
recommend using identity cues that link responses and user 
goals and providing an obvious ways to undo actions [9]. In 
our implementation we provided feedback following actions 
by:  

§ Displaying the result of actions in close physical 
proximity to the goal prompt  

§ Making the area of the interface associated with the 
next goal in the sequence visually salient through 
means such as highlighting and change of focus  

§ Alerting users through descriptive error messages. 

Later in this paper we illustrate the application of these 
strategies in the context of the design of two interfaces and 
compare these with the original system in two experimental 
user studies.  

The Design Context 
RIDES is an environment for authoring and delivering 
interactive computer-based instruction associated with 
complex devices [6]. Based on a few user-specified 
parameters, the system can automatically generate training 
lessons that are appropriate for device simulations. These 
exercises, known as "patterned exercises", teach students 
how to find device components, identify components, check 
for malfunctions, diagnose malfunctions, and manipulate 
controls to execute device procedures or place the device in 
particular states. These exercises can be played back to 
students in three modes. In demo mode, the system 
demonstrates a particular skill to students; practice mode 
allows students to practice skills with some guidance from 
the system. In test mode students are tested on skills 
embodied in the exercise. In addition to automatically 
generated patterned exercises, RIDES provides enhanced 
lesson authoring facilities for users to customize patterned 
exercises they have generated, or to craft novel exercises 
from scratch.  

REDESIGN EXPERIMENT 1 
Interface Description 
Our design efforts were first directed at patterned exercise 
authoring in RIDES. Patterned exercise functionality allows 
authors to generate a variety of predefined exercise types.  
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These include exercises for finding or naming components 
in a simulated device, performing device operation 
procedures, achieving device state goals (e.g., turning a CD 
player on) or finding the possible causes for a device fault.  
The steps for creating an exercise vary somewhat depending 
on the type of exercise.  However, as one of the more 
complicated patterned exercises, the Possible Causes 
Exercise is representative of most of the steps involved in 
authoring any type of patterned exercise. A Possible Causes 
Exercise teaches students to check for, and diagnose 
problems with a device. 

Figure 2a shows the key steps in Possible Causes Exercise 
authoring, organized in terms of the major goals that must 
be fulfilled.  First, the author must create a "knowledge 
unit" that specifies causal relationships between objects that 
will be used in instruction about finding potential system 
faults.  For instance, in the CD Player simulation an author 
could indicate that the SpeakerWire object affects the 
Speaker (this information is used in generating instruction 
about diagnosing why the Speaker isn't functioning).  The 
second major goal is to create any "configurations" needed 
in instruction.  Configurations are fixed states of the 

simulation (e.g., a CD Player with the power off and a bad 
speaker wire) that will play role in the exercise.  The third 
major goal is to author the patterned exercise itself using the 
patterned exercise dialog (see Figure 1, right).  This process 
involves a number of substeps -- as shown in the rightmost 
branch of Figure 2a. 

We performed a goal tree analysis of the patterned exercise 
procedure, both as required in RIDES (Figure 2a), and as a 
novice user might expect (Figure 2b).  The goal tree 
analysis revealed a fundamental problem with the RIDES 
interface. The organization of the RIDES interface often 
requires users to accomplish subtasks before creating a 
patterned exercise using the patterned exercise editor. For 
instance, in order to author a Possible Causes Exercise, 
users must create a configuration and knowledge unit before 
using the Possible Causes Exercise authoring interface. 
Such subtasks do not correspond to a user's likely prior 
conception of the steps needed to achieve their goal of 
creating an exercise. 

Figure 1 (left) depicts a redesigned patterned exercise 
dialog. The following design revisions are evident: 

Dialog consolidates all 
functionality necessary for 
task 

 
Temporal sequence of 
steps conforms more 
closely to a users goals 
and expectations 

 

Spatial layout parallels 
temporal sequence of 
actions required to 
complete the task 

 

Goal sequence 
redundantly coded with 
verbal prompts [e.g. 
Step1, Step 2] 

 

Controls for executing 
actions are situated in 
close proximity to goal 
prompts 

 

Means for performing 
actions are made explicit 
[e.g. select objects by 
pointing] 
 

Results of actions are 
displayed in close 
proximity to goal prompt 
[e.g. Speaker next to Indicator 
to be checked] 

Figure 1: Redesigned Patterned Exercise Dialog (left) Original Patterned Exercise Dialog (right) 

Figure 2: Steps in authoring a Patterned Exercise Figure 3: Time on task comparisons -- RIDES vs. Redesign 
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§ Successive steps are labeled in this dialog and widgets 
associated with each step are clearly indicated within a 
border drawn around each step.   

§ Important system specific subtasks, such as creating a 
new configuration or knowledge unit, can be 
accomplished in the context of a task oriented interface 
with prompts from the system  

§ All actions required of the user is communicated using 
descriptive labels. Multiple ways of specifying 
information are presented to users.  

§ Highlighting and application focus changes provide 
feedback on the successful execution of actions. (e.g. 
Step 4 become active after Step 3) 

Experimental Validation 
We conducted a usability study to evaluate the efficacy of 
our solution. We implemented Visual Basic™ prototypes of 
the original and redesigned Patterned Exercise authoring 
interfaces. The original version of RIDES runs under the X 
windows environment. Our decision to implement a high 
fidelity mockup of the original system was an attempt to 
control for the possible influence of the window manager on 
user performance.  

Subjects 
Fourteen Carnegie Mellon University students participated 
as paid volunteers. Each subject used one of the two 
patterned exercise authoring designs (RIDES or Redesigned 
Interface) to author exercises associated with a CD player 
simulation. Like intended RIDES users, all subjects were 
computer literate, and experts in the simulation domain. The 
first four participants acted as pilot subjects. Pilot 
evaluations allowed us to make iterative improvements to 
the redesigned interface, training procedure and other test 
materials. Of the remaining ten subjects, five worked with 
RIDES and five with the Redesign prototype. 

Procedure 
After a reading a brief handout describing some basic 
Microsoft Windows 95™ concepts, test participants walked 
through a tutorial document designed to introduce users to 
some fundamental concepts in RIDES. The document 
facilitated guided exploration of the interface. Following the 
tutorial, test participants performed three authoring tasks. 
Users were asked to create a Goal Exercise (exercise 
designed to teach students to accomplish the goal of playing 
a CD on a CD player), Find Exercise (exercise designed to 
show students how to find various CD player components), 
and a Possible Causes Exercise (exercise designed to teach 
students to identify possible causes for a speaker failure). 
The first authoring task was a training task; subjects 
followed step-by-step instructions in authoring the Goal 
Exercise. The remaining two tasks tested user ability to 
transfer skills acquired to authoring patterned exercises on 
their own. A two-hour time limit was imposed for 
completing the three exercises. 

Results 
The total time required for subjects to complete the training 
task and two transfer tasks was 49.1 minutes on average for 
the RIDES Original subjects and 18.7 minutes on average 
for the redesign subjects.  Thus, the redesign cut total 
training and transfer time down to less than a half, nearly 
one third (38%), the RIDES time.  As Figure 3a (previous 

page) depicts, there was no overlap in performance times 
between subjects in the two groups. The slowest Redesign 
subject (20.8 minutes) was still faster than the fastest 
RIDES subject (31.8 minutes). 

Although the formal comparison portion of the user study 
involved only 10 subjects, the differences were large 
enough and consistent enough to be statistically significant.  
We performed two way ANOVA with Interface Condition 
(RIDES Original vs. redesign) as a between subjects factor 
and Authoring Task (Training vs. Near Transfer vs. Far 
Transfer) as a within-subjects factor.  Figure 3b (previous 
page) illustrates the two Condition means across the three 
tasks.  The main effect of Condition was statistically 
significant (F(1, 8) = 27.39, p < .001) confirming the large 
observed difference described above in favor of the 
redesign.  The main effect of Task was also statistically 
significant (F(2, 16) = 9.22, p < .01) with the Far Transfer 
task requiring significantly longer than the other two.  
Interestingly, the interaction of Condition and Task was also 
significant (F(2, 16) = 6.94, p < .01).  As can be seen in 
Figure 3b, there was no difference in the Training task 
where subjects in both conditions executed steps described 
in walkthrough provided in the manual (F(1,8) = 3.00, p > 
.10).  However, already on the Near Transfer task, a 
significant difference emerges (F(1,8) = 13.04, p < .01).  
Subjects using the RIDES Original interface had trouble 
both in remembering what they had learned and in 
rediscovering new or forgotten action procedures.  In 
contrast, subjects using the redesign interface had little 
trouble transferring what they had learned or rediscovering 
action procedures as needed.  The differences on the Far 
Transfer task are even more dramatic (F(1,8) = 16.90, p < 
.01).  Subjects using the RIDES Original interface 
floundered considerably. However, subjects using the 
redesign progressed smoothly performing the greater 
number of actions in the Far Transfer task at about the same 
rate they had done so in the Near Transfer task. 

When we look at the data on the number of experimenter 
interventions we find a similar pattern of results. The 
experimenter intervened when the subject asked for help or 
when the subject made a critical error and was unable to 
correct it within one minute. Across the three tasks, the 
experimenter intervened an average of 2.4 times in the 
Redesign condition and 8.2 times in the RIDES condition 
(F(1, 7) = 5.3, p = .08). 

REDESIGN EFFORT II 
The success of our in the context of the Patterned Exercise 
interface might be attributed to the relative simplicity of the 
functional requirements for Patterned Exercise creation.  
However, we believe the method is also applicable for more 
open-ended tasks and systems with substantial functional 
complexity.  To demonstrate this claim, we applied our 
design strategies to design a better interface for RIDES 
Custom Lesson Authoring capabilities. 

Interface Description 
Execution of any RIDES lesson consists of a series of 
display actions performed by RIDES (e.g. install 
configuration, display text, highlight object) followed by a 
student response (click anywhere, enter text, click done 
button). Patterned Exercise functionality automatically 
specifies details of the instructional interaction for certain 
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types of lessons. RIDES provides the so-called Custom 
Lesson Authoring interface for users to modify patterned 
exercises they may have generated, or to craft novel 
exercises from scratch (see Figure 5). Custom Lesson 
Authoring functionality provides users with a powerful and 
flexible way of creating interactive training simulations; the 
functionality offered by the system is comparable to 
multimedia authoring tools like Macromedia Director, 
Hypercard etc.  

In creating a Custom Lesson, the author's task is to specify 
information that is to be displayed to students and to 
indicate the appropriate student response. The author must 
also express the conditional and sequential relationships 
between interaction elements that make up the lesson. 
RIDES Custom Authoring functionality requires users to 
specify these details in the form of a hierarchical 
representation by employing a variety of widely scattered 
menu options (Figure 5).  Specifying instructional intent in 
this manner might not always be a straightforward task for 
users. 

Evaluation and Redesign 
As in the earlier redesign study, our goal was to create an 
easily learnable interface. We developed an alternate 
representation that corresponds closely to the actual 
execution of a lesson.  

Each RIDES lesson is a sequence of one or more system 
actions (such as displaying text, highlighting objects, setting 
a configuration etc.) followed by a user response -- we 
began referring to each system action and user response pair 
as an "instructional unit".   Specifying lessons as a series of 
instructional units would be more natural for users as it 
closely paralleled the actual execution of the lesson.  

As the dialog on the left in Figure 4 indicates, a two 
dimensional representation is employed to distinguish 
between temporal and conditional relationships.  Successive 
"instructional units" are displayed from top-to-bottom in the 
instructional unit window.  Three columns of check boxes 
represent exercise mode conditionality.  Each instructional 
unit is structured as a RIDES action and optional student 

response. Furthermore, we employed the strategies 
displayed in Figure 1 in the design of these dialogs. 

Experimental Validation 
We conducted an experiment to evaluate the effectiveness 
of the new custom lesson authoring design. 

Subjects and Procedure 
Eight subjects completed three authoring tasks in this study.  
Four subjects worked in the original RIDES custom 
authoring interface and four worked with the redesigned 
interface.  As in the earlier study, the redesign specifications 
were programmed in visual basic.  The three authoring tasks 
from the first empirical usability study of patterned exercise 
authoring were again employed in this study.  In the first 
task, subjects worked from detailed step-by-step 
instructions in authoring a Goal Drill.  In the remaining two 
tasks students were only presented overall exercise 
objectives.  The second task was a Find Drill and the third 
task was a Possible Causes Exercise.  A two-hour time limit 
was imposed for completing the three exercises. 

Results 
Overall, students in the Redesign condition were able to 
complete the three tasks more quickly, as in the previous 
study.  Three of the four subjects in the redesign condition 
were able to complete the three authoring tasks in the two-
hour time period, while only one of the subjects in the 
original RIDES condition was able to finish the three tasks 
in two hours.  Since all subjects completed the first two 
tasks, completion times for these two tasks can be directly 
compared.  As we observed in the first experiment, there 
was no reliable difference between the two groups on the 
first task in which detailed instructions were provided.  
However, subjects working with the original RIDES 
interface required about 50% more time to complete the 
second task.  The redesign prototype group averaged 15.6 
minutes to complete this task while the RIDES group 
averaged 23.4 minutes.  This difference is reliable at the .05 
level.  The custom authoring redesign was so successful that 
students working in this condition completed this second 
task almost as quickly as students using the far more 
structured RIDES patterned exercise authoring interface in 

Figure 4: Redesigned Custom Authoring Editor    Figure 5: RIDES Custom Authoring 
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the previous study (15.6 minutes for the Redesign condition 
in this study vs. 12.9 minutes for the RIDES condition in 
the previous study). 

Students in the RIDES authoring condition not only 
required more time to complete the tasks, but also appeared 
to require more experimenter interventions.  As in the first 
study, the experimenter intervened only when the subject 
asked for help or when the subject made a critical error and 
was unable to correct it within one minute.  In tasks 2 and 3, 
the experimenter intervened an average of 4.75 times in the 
redesign prototype condition and 8 times in the RIDES 
condition.  This difference is marginally significant, p = .08. 

DISCUSSION 
Research suggests that flight crews are often deficient in the 
skills associated with the operation of flightdeck avionics 
[3]. These deficiencies can contribute to increased workload 
and may compromise operational efficiency and safety in 
certain situations. Research points to training practices as a 
source of these problems [3].  

Efforts aimed at addressing training problems have included 
the development of Intelligent Tutoring Systems [e.g. 10]. 
These systems facilitate guided learning-by-doing and have 
been applied quite successfully in aviation training contexts 
[5]. However the cost and technical difficulties of 
developing these systems have contributed to limited 
adoption of within the aviation community.  

RIDES, the focus of the design effort reported in this paper, 
was designed to enable training experts, with minimal 
programming experience, to develop intelligent tutors. 
However usability problems have come in the way of 
achieving this goal. Our design effort sought to address 
these problems by constructing an interface that was 
amenable to learning by exploration 

Polson and Lewis’ CE+ theory [8] offers a basis for the 
design of systems that can be learned by exploration 
However, the space of possible interpretations one could 
draw from the theory and associated design principles can 
be quite large. What we have done in this paper is to derive 
a set of concrete design strategies from CE+ and applied 
them in the design context of RIDES. The experiments 
reported here demonstrate that these strategies enable 

exploratory learning even in fairly complex applications and 
not just in the simple walk up and use interfaces that CE+ 
theory and cognitive walkthrough have commonly been 
identified with. The strategies applied to the redesigned 
interfaces in this paper are listed in Figure 6.  

Tradeoffs 
While the application of the design strategies listed here 
may lead to functionality that is sufficient to carry out 
particular tasks, there is no guarantee that these will be the 
most efficient way to carry out them out (in the context of 
RIDES, however, a Keystroke Level Model [2] predicted 
shorter expert execution times for the redesigned dialogs). 
Moreover, the effectiveness of dialogs constructed using the 
design strategies mentioned here is closely related to the 
representation and decomposition of a user's goals. It may 
not be a trivial matter to characterize many tasks in such a 
way.  
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Strategies for bringing the system closer to the user

• Construct goal trees to characterize user expectations And procedures 
implicit in candidate design

• Organize system so that the system goal structures Conform to 
anticipated user goal structures

Strategies for bringing the user closer to the system

• Create task oriented dialogs that consolidate controls for performing 
specific tasks and situate these so as to facilitate easy discovery

• Organize spatial layout in dialogs to parallel the temporal sequence of 
actions required to accomplish task

• Communicate appropriate sequence of steps by redundantly coding the 
interface with verbal prompts (e.g. “Step 1”, “Step 2”)

• Explicitly communicate actions required to be performed by users in 
specific goal contexts

• Provide controls for executing actions in close proximity to goal prompts

• Provide feedback on results of action in close proximity to goal prompt. 

• Make area of interface associated with next goal in task sequence 
visually salient through means such as highlighting, and change of focus.

• Allow users to recover from errors

Figure 6: Design Strategies 


