
To appear in proceedings of Aero-HCI 2000, September 27th to 29th, Toulouse, France

Effective Strategies for Bridging Gulfs Between Users and
Computer Systems

Santosh Mathan, Kenneth Koedinger, Albert Corbett, Arn Hyndman

Center for Innovation in Learning / HCI Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213-3891

mathan@cmu.edu

ABSTRACT
This paper describes design strategies that led to significant
improvements in the usability and learnability of an end-
user programming environment called RIDES. These
strategies may be viewed as concrete procedures for
building easily learned interfaces and were derived from
Polson and Lewis' CE+ theory.

RIDES was designed to make it possible for US Air Force
training experts, with minimal programming experience, to
author simulation-based Intelligent Tutoring Systems.
Tutors created using RIDES facilitate guided learning-by-
doing. Such an instructional approach has been validated as
an effective way of acquiring complex procedural skills in
various contexts. Instruction created using RIDES has the
potential for addressing training problems associated with
the operation of highly automated aviation systems.

Keywords
training, cognitive walkthrough, CE+, interface design

INTRODUCTION
Deficiencies in the knowledge and skill required to operate
flight deck avionics have been highlighted as factors that
compromise operational efficiency and safety [3]. Research
indicates that these deficiencies, in part, stem from
inadequate training. Training departments often expect a
substantial amount of avionics specific skills to be acquired
on the job [3]. While many skills may in fact be built and
maintained in such a manner, many others may fail to be
acquired. Resulting deficiencies may contribute to increased
workload and impact efficiency and safety in certain
operational situations.

The training concerns noted above are not unique to flight
training, similar observations been made in ground-based
aviation tasks that are supported by high levels of
automation (e.g. Lesgold [5] et al., who describe issues
associated with the training of F-15 avionics technicians).

Intelligent Tutoring Systems (ITS) represent an area of
research aimed at addressing training problems. A web
based autopilot tutor developed by Sherry et al is a recent
example of such an effort. These systems allow learners to
acquire skills by actually performing complex tasks likely
to be encountered on the job. Context specific hints and
error feedback keep problem solving productive and
efficient by minimizing floundering and associated
frustration. Such an instructional approach has been shown
to be a very effective and efficient way of acquiring
complex procedural skills in various training contexts [1].

The tutoring systems just described support guided
learning-by-doing. At the heart of these systems is a

cognitive model that represents the skills required to
perform complex tasks. Cognitive models underlying these
tutors are typically based on a systematic analysis of the
skills required to perform complex tasks. These models
serve as the basis for developing curriculum. Furthermore,
they aid in the interpretation of student actions so as to
provide context-specific assistance.

Intelligent Tutoring Systems have been successfully applied
in the aviation domain. For example, an independent
evaluation of SHERLOCK, a trouble shooting tutor,
demonstrated that US Air Force F-15 avionics technicians,
with about 20 to 25 hours of training on the system, were
able to perform as well in trouble shooting avionics test
equipment failure situations as colleagues with 4 years of
on-the-job experience [5]. Despite such success, intelligent
tutoring systems have not been widely adopted in aviation
training contexts. One factor has been the expense involved
in creating such systems — SHERLOCK took several
programmer-years of development resources. Moreover,
training experts often lack the substantial programming
expertise required to develop such instruction.

RIDES [6], the system that forms the focus of the design
effort reported in this paper, was designed to simplify the
development of computer tutors. It was designed to allow
subject matter experts in the US Air Force, with little or no
programming experience, to develop interactive device
simulations and associated tutorials. It has been used to
create graphical simulations and tutorials associated with
complex devices such as air traffic control panels, aircraft
hydraulic circuits, and cockpit controls, to name a few.

Although the functionality offered by RIDES has the
potential for addressing vital instructional needs within the
military and industry, it has not been widely used. It has
been speculated that usability problems have been a limiting
factor in its adoption, particularly by subject matter experts
with little programming experience. Thus, we undertook a
design effort to improve the usability of the system.

In the following pages we describe concrete design
strategies derived from Lewis and Polson's CE+ theory. We
illustrate practical application of these strategies in the
design of RIDES. Furthermore, we demonstrate the efficacy
of our design by reporting on the results of two
experimental studies.

Identifying Design Strategies
Norman has characterized problems involved in human
interaction with computer systems as arising from two gulfs
[7]. These are: the "gulf of execution", which separates a
user's goals from the actions needed to accomplish them,
and the "gulf of evaluation" which impedes appropriate

To appear in proceedings of Aero-HCI 2000, September 27th to 29th, Toulouse, France

interpretation of system state. Bridging each of these gulfs
calls for distinct design strategies — strategies for bringing
the user closer to the system and those for bringing the
system closer to the user. These gulfs are particularly
pronounced in the case of end-user programming systems;
programming environments are intrinsically complex and
the entry characteristics of end-users often leave them
unprepared to deal with such complexity.

One way to bridge the gulfs separating users from computer
systems is to build systems that are amenable to learning by
exploration. Polson and Lewis laid a foundation for the
design of easily learned interfaces in their CE+ theory [8].
CE+ provides an account of exploratory learning of
computer systems. Such an approach to developing
proficiency exploits the fact that, in problem solving
contexts, people learn best by doing [1]. CE+ assumes the
following four premises about user interaction (which
correspond with the four questions in a Cognitive
Walkthrough [11]): 1) The user sets a goal to be
accomplished with the system, 2) the user searches the
interface for currently available actions, 3) the user selects
action that seems likely to progress towards goal, 4) the user
performs selected action and evaluates progress being made
towards current goal.

Our approach was to consider each of the 4 premises of user
interaction offered by CE+, and in association with design
principles specified by Polson and Lewis [8], attempt to
derive concrete interface design strategies.

User Sets Goals to Be Accomplished With the System
This premise of CE+ calls for a user interface that is
congruent with likely goal structures held by system users.
However, Polson and Lewis do not prescribe specific
techniques for ascertaining goal structures and determining
the extent to which user and system goal structures overlap.
We adopted elements of the design approach suggested by
Kieras & Polson [4]. Kieras & Polson illustrate formal
usability techniques of writing production rules and goal
trees to characterize user performance. In particular,
constructing and comparing goal trees that characterize
anticipated user expectations on one hand and the
procedures implicit in a candidate design on the other. Such
an approach provides the basis for structuring the system so
that the temporal sequence of steps required of a user
conform more closely to a user's goals and expectations.

User searches the interface for currently available actions
and selects actions likely to make progress towards goal.
CE+ suggests that in the course of learning to use a system
by exploration, interface elements such as prompts and
buttons serve to create sub goals that become components
of the overall task goal held by a user [9]. These goals
typically involve selection of actions that will enable the
user to make progress on the task. To facilitate the
formation of appropriate goals and enable selection of
appropriate actions, Polson and Lewis call for making
available actions salient, using identity cues between
actions and goals, making actions easy to discriminate,
offering few action alternatives in specific goal contexts,
and keeping sequences of action choices short [8]. The
space of interpretations for enabling these suggestions in an
interface is large. We made these principles concrete in our

design by:

§ Creating task oriented dialogs consolidate functionality
necessary for accomplishing specific tasks and situating
these to facilitate easy discovery.

§ Organizing the spatial layout in our dialogs to parallel
the temporal sequence of actions required to
accomplish a task.

§ Communicating the sequence of goals by redundantly
coding the interface with verbal prompts

§ Locating controls necessary for executing actions in
close proximity to these prompts

§ Explicitly stating the actions to be performed by users
in specific goal contexts.

User performs selected action and evaluates progress being
made towards current goal.
Feedback from the system following a user action serves to
initiate the selection of error correction goals or new goals
relevant to the completion of a task. Polson et. al
recommend using identity cues that link responses and user
goals and providing an obvious ways to undo actions [9]. In
our implementation we provided feedback following actions
by:

§ Displaying the result of actions in close physical
proximity to the goal prompt

§ Making the area of the interface associated with the
next goal in the sequence visually salient through
means such as highlighting and change of focus

§ Alerting users through descriptive error messages.

Later in this paper we illustrate the application of these
strategies in the context of the design of two interfaces and
compare these with the original system in two experimental
user studies.

The Design Context
RIDES is an environment for authoring and delivering
interactive computer-based instruction associated with
complex devices [6]. Based on a few user-specified
parameters, the system can automatically generate training
lessons that are appropriate for device simulations. These
exercises, known as "patterned exercises", teach students
how to find device components, identify components, check
for malfunctions, diagnose malfunctions, and manipulate
controls to execute device procedures or place the device in
particular states. These exercises can be played back to
students in three modes. In demo mode, the system
demonstrates a particular skill to students; practice mode
allows students to practice skills with some guidance from
the system. In test mode students are tested on skills
embodied in the exercise. In addition to automatically
generated patterned exercises, RIDES provides enhanced
lesson authoring facilities for users to customize patterned
exercises they have generated, or to craft novel exercises
from scratch.

REDESIGN EXPERIMENT 1
Interface Description
Our design efforts were first directed at patterned exercise
authoring in RIDES. Patterned exercise functionality allows
authors to generate a variety of predefined exercise types.

To appear in proceedings of Aero-HCI 2000, September 27th to 29th, Toulouse, France

These include exercises for finding or naming components
in a simulated device, performing device operation
procedures, achieving device state goals (e.g., turning a CD
player on) or finding the possible causes for a device fault.
The steps for creating an exercise vary somewhat depending
on the type of exercise. However, as one of the more
complicated patterned exercises, the Possible Causes
Exercise is representative of most of the steps involved in
authoring any type of patterned exercise. A Possible Causes
Exercise teaches students to check for, and diagnose
problems with a device.

Figure 2a shows the key steps in Possible Causes Exercise
authoring, organized in terms of the major goals that must
be fulfilled. First, the author must create a "knowledge
unit" that specifies causal relationships between objects that
will be used in instruction about finding potential system
faults. For instance, in the CD Player simulation an author
could indicate that the SpeakerWire object affects the
Speaker (this information is used in generating instruction
about diagnosing why the Speaker isn't functioning). The
second major goal is to create any "configurations" needed
in instruction. Configurations are fixed states of the

simulation (e.g., a CD Player with the power off and a bad
speaker wire) that will play role in the exercise. The third
major goal is to author the patterned exercise itself using the
patterned exercise dialog (see Figure 1, right). This process
involves a number of substeps -- as shown in the rightmost
branch of Figure 2a.

We performed a goal tree analysis of the patterned exercise
procedure, both as required in RIDES (Figure 2a), and as a
novice user might expect (Figure 2b). The goal tree
analysis revealed a fundamental problem with the RIDES
interface. The organization of the RIDES interface often
requires users to accomplish subtasks before creating a
patterned exercise using the patterned exercise editor. For
instance, in order to author a Possible Causes Exercise,
users must create a configuration and knowledge unit before
using the Possible Causes Exercise authoring interface.
Such subtasks do not correspond to a user's likely prior
conception of the steps needed to achieve their goal of
creating an exercise.

Figure 1 (left) depicts a redesigned patterned exercise
dialog. The following design revisions are evident:

Dialog consolidates all
functionality necessary for
task

Temporal sequence of
steps conforms more
closely to a users goals
and expectations

Spatial layout parallels
temporal sequence of
actions required to
complete the task

Goal sequence
redundantly coded with
verbal prompts [e.g.
Step1, Step 2]

Controls for executing
actions are situated in
close proximity to goal
prompts

Means for performing
actions are made explicit
[e.g. select objects by
pointing]

Results of actions are
displayed in close
proximity to goal prompt
[e.g. Speaker next to Indicator
to be checked]

Figure 1: Redesigned Patterned Exercise Dialog (left) Original Patterned Exercise Dialog (right)

Figure 2: Steps in authoring a Patterned Exercise Figure 3: Time on task comparisons -- RIDES vs. Redesign

To appear in proceedings of Aero-HCI 2000, September 27th to 29th, Toulouse, France

§ Successive steps are labeled in this dialog and widgets
associated with each step are clearly indicated within a
border drawn around each step.

§ Important system specific subtasks, such as creating a
new configuration or knowledge unit, can be
accomplished in the context of a task oriented interface
with prompts from the system

§ All actions required of the user is communicated using
descriptive labels. Multiple ways of specifying
information are presented to users.

§ Highlighting and application focus changes provide
feedback on the successful execution of actions. (e.g.
Step 4 become active after Step 3)

Experimental Validation
We conducted a usability study to evaluate the efficacy of
our solution. We implemented Visual Basic™ prototypes of
the original and redesigned Patterned Exercise authoring
interfaces. The original version of RIDES runs under the X
windows environment. Our decision to implement a high
fidelity mockup of the original system was an attempt to
control for the possible influence of the window manager on
user performance.

Subjects
Fourteen Carnegie Mellon University students participated
as paid volunteers. Each subject used one of the two
patterned exercise authoring designs (RIDES or Redesigned
Interface) to author exercises associated with a CD player
simulation. Like intended RIDES users, all subjects were
computer literate, and experts in the simulation domain. The
first four participants acted as pilot subjects. Pilot
evaluations allowed us to make iterative improvements to
the redesigned interface, training procedure and other test
materials. Of the remaining ten subjects, five worked with
RIDES and five with the Redesign prototype.

Procedure
After a reading a brief handout describing some basic
Microsoft Windows 95™ concepts, test participants walked
through a tutorial document designed to introduce users to
some fundamental concepts in RIDES. The document
facilitated guided exploration of the interface. Following the
tutorial, test participants performed three authoring tasks.
Users were asked to create a Goal Exercise (exercise
designed to teach students to accomplish the goal of playing
a CD on a CD player), Find Exercise (exercise designed to
show students how to find various CD player components),
and a Possible Causes Exercise (exercise designed to teach
students to identify possible causes for a speaker failure).
The first authoring task was a training task; subjects
followed step-by-step instructions in authoring the Goal
Exercise. The remaining two tasks tested user ability to
transfer skills acquired to authoring patterned exercises on
their own. A two-hour time limit was imposed for
completing the three exercises.

Results
The total time required for subjects to complete the training
task and two transfer tasks was 49.1 minutes on average for
the RIDES Original subjects and 18.7 minutes on average
for the redesign subjects. Thus, the redesign cut total
training and transfer time down to less than a half, nearly
one third (38%), the RIDES time. As Figure 3a (previous

page) depicts, there was no overlap in performance times
between subjects in the two groups. The slowest Redesign
subject (20.8 minutes) was still faster than the fastest
RIDES subject (31.8 minutes).

Although the formal comparison portion of the user study
involved only 10 subjects, the differences were large
enough and consistent enough to be statistically significant.
We performed two way ANOVA with Interface Condition
(RIDES Original vs. redesign) as a between subjects factor
and Authoring Task (Training vs. Near Transfer vs. Far
Transfer) as a within-subjects factor. Figure 3b (previous
page) illustrates the two Condition means across the three
tasks. The main effect of Condition was statistically
significant (F(1, 8) = 27.39, p < .001) confirming the large
observed difference described above in favor of the
redesign. The main effect of Task was also statistically
significant (F(2, 16) = 9.22, p < .01) with the Far Transfer
task requiring significantly longer than the other two.
Interestingly, the interaction of Condition and Task was also
significant (F(2, 16) = 6.94, p < .01). As can be seen in
Figure 3b, there was no difference in the Training task
where subjects in both conditions executed steps described
in walkthrough provided in the manual (F(1,8) = 3.00, p >
.10). However, already on the Near Transfer task, a
significant difference emerges (F(1,8) = 13.04, p < .01).
Subjects using the RIDES Original interface had trouble
both in remembering what they had learned and in
rediscovering new or forgotten action procedures. In
contrast, subjects using the redesign interface had little
trouble transferring what they had learned or rediscovering
action procedures as needed. The differences on the Far
Transfer task are even more dramatic (F(1,8) = 16.90, p <
.01). Subjects using the RIDES Original interface
floundered considerably. However, subjects using the
redesign progressed smoothly performing the greater
number of actions in the Far Transfer task at about the same
rate they had done so in the Near Transfer task.

When we look at the data on the number of experimenter
interventions we find a similar pattern of results. The
experimenter intervened when the subject asked for help or
when the subject made a critical error and was unable to
correct it within one minute. Across the three tasks, the
experimenter intervened an average of 2.4 times in the
Redesign condition and 8.2 times in the RIDES condition
(F(1, 7) = 5.3, p = .08).

REDESIGN EFFORT II
The success of our in the context of the Patterned Exercise
interface might be attributed to the relative simplicity of the
functional requirements for Patterned Exercise creation.
However, we believe the method is also applicable for more
open-ended tasks and systems with substantial functional
complexity. To demonstrate this claim, we applied our
design strategies to design a better interface for RIDES
Custom Lesson Authoring capabilities.

Interface Description
Execution of any RIDES lesson consists of a series of
display actions performed by RIDES (e.g. install
configuration, display text, highlight object) followed by a
student response (click anywhere, enter text, click done
button). Patterned Exercise functionality automatically
specifies details of the instructional interaction for certain

To appear in proceedings of Aero-HCI 2000, September 27th to 29th, Toulouse, France

types of lessons. RIDES provides the so-called Custom
Lesson Authoring interface for users to modify patterned
exercises they may have generated, or to craft novel
exercises from scratch (see Figure 5). Custom Lesson
Authoring functionality provides users with a powerful and
flexible way of creating interactive training simulations; the
functionality offered by the system is comparable to
multimedia authoring tools like Macromedia Director,
Hypercard etc.

In creating a Custom Lesson, the author's task is to specify
information that is to be displayed to students and to
indicate the appropriate student response. The author must
also express the conditional and sequential relationships
between interaction elements that make up the lesson.
RIDES Custom Authoring functionality requires users to
specify these details in the form of a hierarchical
representation by employing a variety of widely scattered
menu options (Figure 5). Specifying instructional intent in
this manner might not always be a straightforward task for
users.

Evaluation and Redesign
As in the earlier redesign study, our goal was to create an
easily learnable interface. We developed an alternate
representation that corresponds closely to the actual
execution of a lesson.

Each RIDES lesson is a sequence of one or more system
actions (such as displaying text, highlighting objects, setting
a configuration etc.) followed by a user response -- we
began referring to each system action and user response pair
as an "instructional unit". Specifying lessons as a series of
instructional units would be more natural for users as it
closely paralleled the actual execution of the lesson.

As the dialog on the left in Figure 4 indicates, a two
dimensional representation is employed to distinguish
between temporal and conditional relationships. Successive
"instructional units" are displayed from top-to-bottom in the
instructional unit window. Three columns of check boxes
represent exercise mode conditionality. Each instructional
unit is structured as a RIDES action and optional student

response. Furthermore, we employed the strategies
displayed in Figure 1 in the design of these dialogs.

Experimental Validation
We conducted an experiment to evaluate the effectiveness
of the new custom lesson authoring design.

Subjects and Procedure
Eight subjects completed three authoring tasks in this study.
Four subjects worked in the original RIDES custom
authoring interface and four worked with the redesigned
interface. As in the earlier study, the redesign specifications
were programmed in visual basic. The three authoring tasks
from the first empirical usability study of patterned exercise
authoring were again employed in this study. In the first
task, subjects worked from detailed step-by-step
instructions in authoring a Goal Drill. In the remaining two
tasks students were only presented overall exercise
objectives. The second task was a Find Drill and the third
task was a Possible Causes Exercise. A two-hour time limit
was imposed for completing the three exercises.

Results
Overall, students in the Redesign condition were able to
complete the three tasks more quickly, as in the previous
study. Three of the four subjects in the redesign condition
were able to complete the three authoring tasks in the two-
hour time period, while only one of the subjects in the
original RIDES condition was able to finish the three tasks
in two hours. Since all subjects completed the first two
tasks, completion times for these two tasks can be directly
compared. As we observed in the first experiment, there
was no reliable difference between the two groups on the
first task in which detailed instructions were provided.
However, subjects working with the original RIDES
interface required about 50% more time to complete the
second task. The redesign prototype group averaged 15.6
minutes to complete this task while the RIDES group
averaged 23.4 minutes. This difference is reliable at the .05
level. The custom authoring redesign was so successful that
students working in this condition completed this second
task almost as quickly as students using the far more
structured RIDES patterned exercise authoring interface in

Figure 4: Redesigned Custom Authoring Editor Figure 5: RIDES Custom Authoring

To appear in proceedings of Aero-HCI 2000, September 27th to 29th, Toulouse, France

the previous study (15.6 minutes for the Redesign condition
in this study vs. 12.9 minutes for the RIDES condition in
the previous study).

Students in the RIDES authoring condition not only
required more time to complete the tasks, but also appeared
to require more experimenter interventions. As in the first
study, the experimenter intervened only when the subject
asked for help or when the subject made a critical error and
was unable to correct it within one minute. In tasks 2 and 3,
the experimenter intervened an average of 4.75 times in the
redesign prototype condition and 8 times in the RIDES
condition. This difference is marginally significant, p = .08.

DISCUSSION
Research suggests that flight crews are often deficient in the
skills associated with the operation of flightdeck avionics
[3]. These deficiencies can contribute to increased workload
and may compromise operational efficiency and safety in
certain situations. Research points to training practices as a
source of these problems [3].

Efforts aimed at addressing training problems have included
the development of Intelligent Tutoring Systems [e.g. 10].
These systems facilitate guided learning-by-doing and have
been applied quite successfully in aviation training contexts
[5]. However the cost and technical difficulties of
developing these systems have contributed to limited
adoption of within the aviation community.

RIDES, the focus of the design effort reported in this paper,
was designed to enable training experts, with minimal
programming experience, to develop intelligent tutors.
However usability problems have come in the way of
achieving this goal. Our design effort sought to address
these problems by constructing an interface that was
amenable to learning by exploration

Polson and Lewis’ CE+ theory [8] offers a basis for the
design of systems that can be learned by exploration
However, the space of possible interpretations one could
draw from the theory and associated design principles can
be quite large. What we have done in this paper is to derive
a set of concrete design strategies from CE+ and applied
them in the design context of RIDES. The experiments
reported here demonstrate that these strategies enable

exploratory learning even in fairly complex applications and
not just in the simple walk up and use interfaces that CE+
theory and cognitive walkthrough have commonly been
identified with. The strategies applied to the redesigned
interfaces in this paper are listed in Figure 6.

Tradeoffs
While the application of the design strategies listed here
may lead to functionality that is sufficient to carry out
particular tasks, there is no guarantee that these will be the
most efficient way to carry out them out (in the context of
RIDES, however, a Keystroke Level Model [2] predicted
shorter expert execution times for the redesigned dialogs).
Moreover, the effectiveness of dialogs constructed using the
design strategies mentioned here is closely related to the
representation and decomposition of a user's goals. It may
not be a trivial matter to characterize many tasks in such a
way.

ACKNOWLEDGMENTS
This research was funded by the Office of Naval Research (grant
N000149510771). The authors acknowledge Doug Brams, Ning
Fan, and Angela Jury for their contributions to this redesign and
evaluation. Thanks to Peter Polson for comments on a draft of this
paper.

REFERENCES
1. Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: LEA.

2. Card, S.., Moran, T., & Newell, A. (1983). The Psychology of
Human-Computer Interaction. Hillsdale, N.J.: LEA

3. FAA (1996). The Interface Between Flightcrews and Modern
Flightdeck Systems. (http://www.faa.gov/avr/afs/interfac.pdf)

4. Kieras, D. & Polson, P. G. (1985). An approach to the formal
analysis of user complexity. In International Journal of Man
Machine Studies, 22, 365-394.

5. Lesgold, A. M., Lajoie, S. P., Bunzo, M., and Eggan, G.
(1993). SHERLOCK: A coached practice environment for an
electronics troubleshooting job. In J. Larkin, R. Chabay (Eds.),
Computer assisted instruction and intelligent tutoring systems.
Hillsdale, NJ: LEA

6. Munro, A. (1994). RIDES Authoring Reference. Behavioral
Technology Laboratories, USC (http://btl.usc.edu/rides/)

7. Norman,D.A. (1986). Cognitive engineering. In D.A. Norman
& S.W. Draper (Eds.), User centered systems design: (pp31 -
61). Hillsdale, NJ: LEA

8. Polson, P.G., Lewis,C, Theory-based design for easily learned
interfaces. HCI, 5, 191-220, 1990.

9. Polson, P., Lewis, C., Rieman, J., & Wharton, C. (1992).
Cognitive walkthroughs: A method for theory- based
evaluation of interfaces. International Journal for Man-
Machine Studies, 36, 733-741.

10. Sherry, L., Feary, M., Polson, P., Palmer, E., Autopilot Tutor:
Building and Maintaining Autopilot Skills. (In Press)

11. Wharton, C., Rieman, J., Lewis, C. and Polson, P. (1994). The
cognitive walkthrough method: A practitioner's guide. In J.
Nielsen & R.L. Mack (Eds.) Usability Inspection Methods.
pp. 105-140. New York: John Wiley & Sons.

Strategies for bringing the system closer to the user

• Construct goal trees to characterize user expectations And procedures
implicit in candidate design

• Organize system so that the system goal structures Conform to
anticipated user goal structures

Strategies for bringing the user closer to the system

• Create task oriented dialogs that consolidate controls for performing
specific tasks and situate these so as to facilitate easy discovery

• Organize spatial layout in dialogs to parallel the temporal sequence of
actions required to accomplish task

• Communicate appropriate sequence of steps by redundantly coding the
interface with verbal prompts (e.g. “Step 1”, “Step 2”)

• Explicitly communicate actions required to be performed by users in
specific goal contexts

• Provide controls for executing actions in close proximity to goal prompts

• Provide feedback on results of action in close proximity to goal prompt.

• Make area of interface associated with next goal in task sequence
visually salient through means such as highlighting, and change of focus.

• Allow users to recover from errors

Figure 6: Design Strategies

