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We explored the consequences for learning through interaction with an
educational microworld called Electric Field Hockey (EFH). Like many mi-
croworlds, EFH is intended to help students develop a qualitative under-
standing of the target domain, in this case, the physics of electrical interac-
tions. Through the development and use of a computer model that learns to
play EFH, we analyzed the knowledge the model acquired as it applied the
game-oriented strategies we observed physics students using. Through
learning-by-doing on the standard sequence of tasks, the model substantially
improved its EFH playing ability; however, it did so without acquiring any
new qualitative physics knowledge. This surprising result led to an experi-
ment that compared students’ use of EFH with standard-goal tasks against
two alternative instructional conditions, specific-path and no-goal, each
justified from a different learning theory. Students in the standard-goal
condition learned less qualitative physics than did those in the two alterna-
tive conditions, which was consistent with the model. The implication for
instructional practice is that careful selection and analysis of the tasks that
frame microworld use is essential if these programs are to lead to the
learning outcomes imagined for them. Theoretically, these results suggest a
new interpretation for numerous empirical findings on the effectiveness of
no-goal instructional tasks. The standing ‘‘reduced cognitive load’’ interpre-
tation is contradicted by the success of the specific-path condition, and we
offer an alternative knowledge-dependent interpretation.

I. INTRODUCTION

In the field of computer-aided instruction, highly interactive microworlds have gained
importance as educational tools aimed at supporting learning through experience (Lawler,
1987; Schank & Farrel, 1988; Schauble, Glaser, Raghavan, Reiner, 1991b). In contrast to
more traditional educational strategies that try to teach the target knowledge to the student
directly, learning by exploration focuses on stimulating the student’s initiative in gaining
knowledge about the domain. Because microworlds both support exploration and behave
according to the laws and constraints of the subject-matter domain, educators believe that
student’s activities in the microworld produce or foster education about the domain.
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Although such beliefs may be true in many cases, the learning outcomes achieved
through microworld interaction depend largely on the surrounding instructional activities
that structure the way students use and interact with microworlds. It should be no surprise
that the activities students are prompted to perform in a microworld, and the goals they
choose to pursue in light of these prompts, have a large impact on what is learned.
However, all too often microworlds are promoted as being educational solutions in their
own right, without qualification about the kinds of activities that should structure their use
or direction about what activities will lead to which learning outcomes. Papert (1980) said
that by using Logo children will have ‘‘mindstorms’’ and acquire ‘‘powerful ideas’’. That
was the dream, but not the reality. Students do not learn powerful ideas from Logo (Pea
& Kurland, 1984), unless the activity context is well engineered and targeted at well-
defined learning objectives (Clements, 1986 and 1990; Klahr & Carver, 1988; Lehrer,
Littlefield, Wottreng, 1991; Lehrer, Randle, Sancilio, 1989). The issue of activity context
and the relation to educational objectives is even greater in educational games where there
is the potential for students to be distracted by the game goals and, thus, not achieve the
learning goals. On the other hand, it may be that the game motivates the student to do
more or do better, and thus he or she learns more. This level of vague argumentation is
common in the evaluation of educational software. What we proposed and demonstrated
in this paper is the possibility of using a cognitive theory and computational learning
model to derive, rather than vaguely argue, the probable learning outcomes of a complex
interactive experience.

It is important to emphasize that this interactive experience is fundamentally a com-
bination of the microworld interaction itself and the goals students choose to pursue as a
result of the activities they are prompted to perform. The kinds of activities that can
surround microworld use vary. Indeed, suggested activities can range from free explora-
tion, where the only tasks required of the student are self-defined, to goal-driven explo-
ration in which a set of tasks defined by the instructor (and often directly relevant to the
test) delimits the students’ interactions. Several empirical studies suggest that training, in
connection with a microworld-specific goal, can detract from the microworld’s pedagog-
ically targeted objective. For example, Vollmeyer Burns, and Holyoak (1994) report that
students who freely explored the effects of environmental parameters in an aquarium
simulation acquired a better understanding of the simulation’s underlying properties than
subjects who were given specific objectives. More generally, Sweller et al. reported
empirical results indicating superior transfer from free exploration when compared to
goal-specific problem solving across diverse tasks, including maze-tracing and number
problems (Sweller & Levine, 1982), geometry problems (Sweller et al., 1983; Sweller,
1988) and kinematic problems (Sweller et al., 1983). It has been hypothesized that,
theoretically, goal-driven problem solving has an inherent quality of impeding progress
towards expert understanding (Sweller, 1988). This hypothesis thus stands in opposition
to previous work that advocated the use of task-oriented interaction, touted for its apparent
ability to keep the student focussed on the relevant aspects of the microworld (White,
1984).
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Although the opposing viewpoints offer profoundly different prescriptions for mi-
croworld interaction, empirically they do not easily offer opposing predictions on which
they can be evaluated. Indeed, just as an appropriately defined goal could require the
student to focus on pedagogically relevant aspects, an inappropriate goal may require the
student to focus on anything but what is relevant. Furthermore, such distraction may be
particularly likely with a highly specialized goal, which allows for less overlap between
the knowledge useful for the specialized goal and the pedagogically targeted knowledge.

It thus appears that progress towards reconciling these opposing viewpoints can come
only by a detailed understanding of the microworld’s goals and the knowledge necessary
for achieving them. Although protocol analysis of students successfully completing a
microworld goal can shed some light on the required knowledge, it does not ensure a
complete, operational theory. For this reason, our methodology relies on the construction
and analysis of a computer model of student learning and performance. We believe that
the use of a computational model to explore the question of pedagogical efficacy has a
number of important methodological strengths. First, it demands the clear specification of
assumptions about what knowledge students have before the interaction and what strat-
egies they use in their performance. Second, it makes explicit the assumed mechanisms of
learning and permits observation of the process itself, making clear how and which prior
knowledge contributes to the newly acquired knowledge. Finally, it can allow us to
explore in a principled manner how changes to initial knowledge, strategy knowledge, or
microworld features will effect what is learned.

The focus of our effort is Electric Field Hockey (EFH), an interactive microworld of
electrical interaction. In particular, the underlying laws and constraints in the EFH
environment simulate the motion of a free-floating, electrically charged particle under the
influence of additional charged particles in fixed locations. The microworld is presented
as a game in which students are given the goal of propelling the free-floating particle (the
‘‘puck’’) around obstacles and into a hockey net by fixing the position of additional
charged particles on the playing field (see Figure 1). Thus, EFH falls somewhere in the
middle of the continuum from free-exploration to test-driven interaction; the game does,
by its very nature, define a specific goal for the student to achieve, but that goal is not,
itself, the subject matter to be tested. Through the aid of a process model of student
interaction and further empirical inquiry, our aim was to understand why the pursuit of a
game-specific goal may impede learning; to ascertain whether learning is necessarily
impeded with a specific goal; and if not, to qualify better the consequence of specific goals
for microworld education.

Our presentation begins by describing Electric Field Hockey (EFH) and its pedagogical
objective. Then, with the presentation of a model that interacts with EFH, we examine the
knowledge needed for successfully pursuing EFH’s game-like goals and, in particular,
which microworld relationships need to be focussed on. Our analysis of the goal-specific
knowledge in light of the pedagogical objective suggests that goal-oriented interaction
will miss pedagogically targeted relationships. From this observation, we then formed
hypotheses of how to change the interaction so that the student is more likely to focus on
and acquire pedagogically relevant concepts. Finally, we present experimental results that
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both support our hypotheses and qualify the generality of reducing goal specificity to
improve learning.

II. THE INTERACTIVE MICROWORLD: ELECTRIC FIELD HOCKEY

Electric Field Hockey is an interactive, computer microworld whose pedagogical aim is
to give physics students an intuitive feel for the qualitative interactions of electrically
charged particles (Chabay & Sherwood, 1989, Sherwood & Chabay, 1991). The EFH
microworld is capable of revealing the following pedagogically significant relationships:
1) the relationship between force and acceleration, 2) the relationship between an elec-
trical charge’s distance and its effective force (inverse square relationship), and 3) the
relationship between the locations of multiple charges and their net effect (superposition).

As shown in Figure 1a, the student is presented a scenario with one charged particle,
the puck, that becomes free floating as soon as the GO button is pushed. His or her goal
is to propel and deflect the puck around obstacles and into the net located at the far right
side of the screen. Before pushing the GO button, the student fixes additional charges,
either positive or negative, to propel and deflect the free-floating charge along the desired
trajectory (Figure 1b). Upon clicking the GO button, the original charge becomes free-

Figure 1. An example of simple interactions with Electric Field Hockey.
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floating and follows a path in accordance with the forces exerted by the fixed charges. The
microworld further illustrates the resulting path by placing a series of dots where the
charge has traveled. Because each dot represents one unit of time, it is possible to infer
relative velocities at various segments in the path; that is, a segment with dots spread apart
indicates a faster velocity than a segment with dots closer together.

The student is free to add, remove, or adjust charges until the game’s objective is
achieved (Figure 1c). By staging more complex obstacles and sometimes an additional,
unmovable charge, EFH offers six levels of increasingly difficult play. Figure 2 provides
an example of a game situation at Level 5, whose solution requires the use of at least three
charges.1

III. ASSUMPTIONS ABOUT KNOWLEDGE AND LEARNING
IN THE MODEL

Our model, called EFH-Soar, is based on the observation of eight physics students playing
EFH as part of the undergraduate electricity and magnetism course at Carnegie Mellon
University. (All figures in this paper are snapshots automatically recorded during student
interactions.) In constructing the model, we focussed on implementing playing strategies
that are frequent, effective, and common to all the students. Note that our goal is not a
comprehensive model of any particular student playing EFH. Instead, we seek an under-
standing of the playing strategies needed to meet the game’s objective and the extent to
which these strategies depend on pedagogically relevant relationships. Toward this end,
we make a number of minimalist assumptions about the students’ initial knowledge and
the general learning process.

In delineating the knowledge required for the model, we assumed that the student sets
him or herself the task of fulfilling the objective immediate to the game, namely, placing
and adjusting charges so that the puck is propelled into the net. This is the minimal level
of engagement required for working through the microworld, and the game-like environ-
ment encourages this goal-specific interaction (indeed, it may be why students find the

Figure 2. Example game situation at Level 5.
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microworld engaging and enjoyable to play). Clearly, it is possible for students to use
strategies, such as self-explanation (Chi, Bassock, Lewis, Reimann, & Glaser, 1989) and
deliberate hypothesis testing (Klahr & Dunbar, 1988; Lewis & Anderson, 1985; Simon &
Lea, 1974), to engage in deliberate learning above and beyond the game’s objective
(although we see relatively little evidence for it in our protocols). However, such strategies
would occur independent of the game’s goal. Because our desire was to isolate the impact
on learning of the microworld’s goal per se, our modeling effort does not assume such
strategies, but instead focuses on our notion of passive learning (described further below),
which we believe is intrinsic to the problem-solving process.

Our model is implemented in Soar (Newell, 1990; Lehman, Laird, & Rosenbloom,
1996), and thus our theory rests on the learning assumptions of the Soar architecture,
which sets the context for when learning occurs passively. In particular, our theory rests
on the architectural assumptions that learning routinely occurs as a result of resolving
subgoals during problem solving and that the acquired knowledge structure is indexed by
the contextual cues used for that problem solving (Laird, Newell, & Rosenbloom, 1986).
By assuming a non-deliberate learning approach, any episodic learning occurs only as a
side-effect of achieving the immediate goal, which is placing and adjusting charges so that
the puck is propelled into the net. From this assumption, we advance a theory for how and
when successful and unsuccessful outcome episodes are stored.

The approach we have taken here is a revision of previous research and modeling work
within the EFH domain (Conati & Lehman, 1993a and 1993b), which described a
deliberate learning mechanism for explaining changes in student performance. Our current
modeling effort departs from this previous work in two respects that are relevant to the
conclusions we draw. First, our approach isolates the qualitative heuristics pertaining to
the naive knowledge students typically have when they encounter the EFH microworld.
This level of analysis enables us to specify the qualitative relationships that students use
in pursuing the microworld goals. Second, our model limits learning to that derived from
stated information needed in pursuing the microworld goal. Although our approach does
not account for learning as a result of any deliberate hypothesis testing, it provides a
principled understanding of what relationships are most likely to be acquired.

Because it is embedded in the Soar theory of cognition, EFH-Soar’s passive learning
assumptions contrast with Sweller’s assertion (Sweller, 1988) that learning must generally
compete for cognitive resources. Learning in Soar is a process that automatically occurs
in the context of goal-oriented problem solving. In contrast, Sweller asserts that goal-
oriented problem solving detracts from learning. Note, however, that the knowledge that
Soar passively acquires as a consequence of problem solving is not guaranteed to be
comprised of pedagogically relevant concepts, and, in fact, will not be if the goal
knowledge does not depend upon such concepts.

IV. DESCRIPTION OF KNOWLEDGE, PROBLEM SOLVING,
AND LEARNING IN THE MODEL

We now motivate the model’s initial knowledge, show how it applies that knowledge to
EFH’s goal, and describe what new knowledge the model acquires in the process. By way
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of example, we focus on a critical subtask that is needed throughout all levels of play,
namely, the task of maneuvering the puck around an obstacle.

Our implementation initially has the following knowledge, which consists of a com-
bination of some simple physics concepts of polarity and some commonplace, naive
assumptions:

● A fixed particle with the same charge as the puck gives an initial push along the line
that connects the charges, but in the opposite direction.

● The path of the free-floating charge will be deflected by like charges.
● Closer charges have more effect.

diSessa (1993) suggests that students often bring in a naive set of knowledge pieces,
which he calls phenomenological primitives (p-prim). We believe that EFH-Soar’s initial
set of knowledge corresponds to a concrete set of p-prims for this domain. Our emphasis
was to understand what the learning consequences are of applying these pieces of
knowledge in the service of problem solving.

The goal of maneuvering around an obstacle can be broken down into two subgoals:
achieving initial motion of the puck and bending the trajectory. Even upon first encoun-
tering EFH, our students seem to possess some basic knowledge about the qualitative
properties of charges, for example, that like charges repel and opposite charges attract.
Typically this knowledge is sufficient for achieving a straight puck trajectory by simply
placing a like charge behind the non-moving puck (Figure 3a). All the observed students
applied this strategy starting at the lowest level, as does our model.

EFH-Soar achieves a bending trajectory by placing a second like charge opposite of the
intended bend’s bisector (Figure 3b). Among the observed students, this was the most
common strategy for effecting a bend in the trajectory, and every student used it at least
once. A possible rationale, albeit naive, behind this relational charge placement could
emanate from everyday experiences, such as observing a bouncing billiard ball or the

Figure 3. Typical placement strategies.
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angle of objects reflected in a mirror. An alternate strategy, in which the student simply
places the second charge opposite of the intended direction can be seen in Figure 4a. Once
the free-moving particle is above the obstacle, the student anticipates that the propelling
charge will suddenly ‘‘push’’ the particle towards the net. This strategy’s underlying
knowledge seems consonant with what diSessa (1993) calls the force-as-mover p-prim.
Although it does not precisely deliver the intended effect (as shown in Figure 4a),
appropriate follow-up adjustments can still lead to the goal, as demonstrated by both our
student protocols and a variant of the model that used this placement strategy.

Although everyday schemas may provide a bias for placing the second charge rela-
tionally, they cannot provide the appropriate scaled distance. In terms of the example in
Figure 3a, a student cannot know how far away to place the second charge from the
envisioned trajectory, so, initially he or she must guess. It is only from interacting with
EFH that he or she can induce the quantitative scaling knowledge required to play EFH
efficiently because this scaling knowledge is a function of the game’s parameters.

How does the student come to know just how far away to place the second charge?
Presumably, he or she must internalize how placement differences correspond to outcomes

Figure 4. Game success through charge adjustment.
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that end in success or failure, and then access this knowledge, in one form or another,
when placing charges in a new scenario. Under what conditions are these outcomes
internalized? How general are they? What are the necessary cues for their future retrieval?
And, most important, do they retain those features of the situation that will enable the
student to induce pedagogically targeted concepts?

Before we address these questions, let us consider what the student could potentially
learn from a placement and adjustment situation. First the student could learn some
approximate distance knowledge; that is, how far away to place the second charge from
the intended trajectory. The distance could even be an absolute figure, assuming that the
incoming velocity and the desired angle of deflection do not significantly vary from trial
to trial. In terms of pedagogically relevant knowledge, the student could notice that the
greatest change in direction (acceleration) occurs at the point closest to the charge where
the force is greatest. Even if the student does not encode this phenomenon in terms of the
abstract concepts of force and acceleration, having noticed the event may serve in future
understanding. With subsequent adjustments or by comparing the effect of adjustments
over several trials, the student, by noticing that adjustments at great distances from the
trajectory have less impact than equal adjustments at close distances to the trajectory, may
also learn that the force of a charge rapidly decreases with distance.

By describing how EFH-Soar processes the microworld’s feedback and performs the
appropriate adjustments, we hypothesized what a student actually notices and learns. We
assumed that EFH-Soar has already placed two charges with the goal of propelling the
puck over the obstacle and then back down into the net. The microworld produces the
resulting trajectory (Figure 4a). How a student would perceive and process the mi-
croworld’s feedback is our immediate concern. With the feedback, the objective is now to
adjust the current charges to reduce the difference between the current situation and the
goal. Thus, EFH-Soar perceives the microworld’s feedback in terms of reducing this
difference. In this case, by noting the direction of the angle formed by the intended
trajectory and the actual trajectory (Angle g in Figure 4b), the model detects that the
trajectory did not bend enough.

With a new situation, the model must engage in additional problem solving, which can
encompass many strategies. The student is likely to draw upon his or her physics
knowledge as well as knowledge of everyday phenomena. The model, by recasting the
current goal in terms of achieving a greater bend in the trajectory, looks to see what will
achieve a greater effect. Within this representation, the model possesses the knowledge
that moving the charge closer to the trajectory will achieve this effect, a belief that is not
only consistent with physics knowledge but also with a student’s everyday experience;
that is, objects with a close proximity have more impact than objects farther away.
Applying this knowledge achieves the result proposed by the action, moving the charge
closer to the trajectory, as indicated by the arrow in Figure 4c.

For EFH-Soar, the proposal to move the charge closer completes a subgoal during
problem solving. With the completion of the subgoal, the Soar architecture automatically
creates a new knowledge structure in the form of a rule, called a chunk. As this new
knowledge is a direct consequence of goal-oriented problem solving, the acquisition of the
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chunk is a passive process—no additional processing is required other than what is
routinely supported by the architecture. Figure 5 presents the resulting chunk, simplified
for explanatory purposes.2

The chunk’s conditions contain two essential elements, namely, the distance of the
charge from the planned path and the goal-oriented characterization of the resulting
trajectory (i.e., the direction of the angle formed by the intended trajectory and the actual
trajectory). These are elements that the model’s subgoal knowledge depends on to infer
the appropriate action. The Soar architecture automatically determines these conditions
through a dependency analysis of the knowledge applied during problem solving in the
subgoal (Laird et al., 1986). The chunk’s action is the proposal to move the charge closer.

Acquiring the chunk facilitates future performance in two ways. First, should the
situation described by the conditions arise again, the chunk immediately fires, thereby
avoiding the time required for additional problem solving in one or more subgoals. In
other words, performance of the task will show straightforward speedup from practice.
Second, the chunk is a memory structure whose conditions encode an episodic result.
EFH-Soar exploits this episodic knowledge by retrieving it when placing charges in future
situations. The retrieval takes place by simulating, during problem solving, possible
outcomes that may have occurred before. In this case, upon recreating the situation where
a charge is placed 5 units away with a result of an overly shallow bend, EFH-Soar can
detect that this event has occurred before through the successful match of the previously
learned chunk. With this knowledge, the model can compensate by placing the charge
closer in its initial placement, potentially eliminating the need for later adjustments
altogether.

Thus, through simple problem solving, EFH-Soar acquires some distance knowledge
that is useful for future goal-oriented performance. This improvement in performance
corresponds to students’ increasing ability to approximate a reasonable distance at which
to place a charge with respect to the intended trajectory. In the next section, we discuss
the knowledge structure’s content in terms of pedagogically important relationships.

V. CLAIMS OF THE MODEL

To the extent that student learning is limited to the episodic knowledge acquired during
problem solving, our model makes useful claims for the frequency and content of this
knowledge. EFH-Soar acquires new episodic knowledge when adjusting charges. Adjust-

Figure 5. A chunk created from charge adjustment.
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ing charges forces the model to attend to the microworld’s feedback as well as the position
of at least some of the charges and, as a product of Soar’s learning mechanism, creates a
new knowledge structure that encodes this episodic information. In its extreme form, the
non-deliberate model suggests that no learning occurs when no adjustment is required, that
is, when the goal is achieved on the first try.

By positing charge adjustment strategies, the model makes additional claims for the
content of the episodic knowledge. The model’s most useful strategy of moving the charge
closer to achieve more bend requires the perception of the trajectory and the original
position of the charge. These elements are included in the episodic memory structure
shown in Figure 5. In particular, the trajectory is perceived in terms of Angle g, the
difference between the intended trajectory and the resulting trajectory, as shown in Figure
6.

By comparing Angle g to the angle indicating the change of direction (Angle a), we see
a discrepancy between the game-oriented and pedagogically relevant perspectives. The
game-oriented perspective is embodied in the chunk shown in Figure 5, whereas the
pedagogically relevant perspective considers the information present in Angle a indepen-
dent of the goal of the game. From the latter perspective a student could potentially draw
inferences between the position of the charge and the change in direction, encoding both
1) the extent of the change of direction in relation to the distance of the fixed charge from
the trajectory, and 2) that the trajectory changes direction the greatest at the point closest
to the fixed charge. Encoding these changes across similar contexts may ultimately reveal
to the student that the force of the charge rapidly decreases with distance.

However, even with the pedagogical perspective, a comparison among similar contexts
is not assured because the learned structure lacks additional relevant contextual informa-

Figure 6. The goal-oriented angle (g) and the angle showing acceleration (a).

315GOALS AND LEARNING



tion (e.g., velocity), and if attempted without this information may lead to erroneous
conclusions. Moreover, the absence of velocity from the memory structure precludes the
possibility of inducing any relationships between force and velocity.

Another adjustment strategy frequently practiced by students when the puck misses the
net involves the placement of a new repelling charge near the end of the trajectory, as
shown in Figure 7. Placing this charge requires only the perception of the small distance
between the goal and the end of the trajectory. Because this strategy does not require any
perception of previously placed charges, the model suggests that the microworld’s
feedback is not remembered within any useful context, in turn suggesting that the student
learns no useful episodic knowledge when applying this strategy.

Note, also, that placing an additional repelling charge, even near the end of the
trajectory, slightly alters the entire trajectory. Here the microworld potentially reveals the
net effect of multiple charges (superposition). Yet, because the earlier portions of the
trajectory are not involved in choosing this strategy, our model suggests that this
difference will go unnoticed and unrecorded in episodic memory. A goal may still result,
thus requiring no adjustment and no further opportunity for noticing the effect. Or, even
if a goal does not result, adjusting the last charge according to the difference between the

Figure 7. Game success by placing a charge near the end of the trajectory.
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goal and the end of the trajectory does not require noticing changes that occurred earlier
in the trajectory. Finally, a subtle change in the early stage of the trajectory, caused by a
distantly placed charge, can cause a radical effect at a later stage. If the student fails to
notice the early subtle change, he or she may mistakenly view the distant charge as the
immediate cause of the radical change and, thus, perceive the change as a contradiction to
the inverse square relation between distance and force.

Selecting adjustment strategies that reduce the difference between the resulting trajec-
tory and the planned trajectory is, in effect, the application of means-ends analysis (MEA).
Sweller (1988) has proposed a process account of how the application of MEA in pursuit
of a specific goal detracts from learning the subject matter. In his problem-solving model
MEA requires a greater cognitive load than simple exploration because it must maintain
a stack of subgoals and their statuses. By assuming that both learning and subgoal
management consume cognitive resources from a limited pool, he claims that MEA, in
effect, inhibits learning.

EFH-Soar offers a contrasting theory. For Soar, learning occurs routinely and auto-
matically during problem solving, during MEA, and otherwise. However, our analysis of
the knowledge underlying the application of specific MEA operators (i.e., charge adjust-
ment strategies) reveals that the state information necessary for understanding the domain
can be ignored without jeopardizing game-level success. As a consequence, the knowl-
edge structures that EFH-Soar acquires lack the episodic information for inducing peda-
gogically targeted relationships.

VI. PREDICTIONS OF THE MODEL

Based on our analysis in the previous section, we suggest that pursuing EFH’s goal does
not require it to notice or to use a number of pedagogically relevant relationships. If this
claim is correct, then our model should suggest ways to modify interaction with EFH such
that a student must re-attend the relationship between charge and trajectory and thus
increase the likelihood of acquiring pedagogically relevant concepts. On the other hand,
if our model has not adequately approximated student behavior and if EFH problem
solving strongly supports relevant pedagogical learning, then we would fail to see
significant improvements in learning with the prescribed alternatives. We now propose
two alternative ways of interacting with EFH for which our analysis indicates increased
likelihood of learning.

One alternate possibility for interaction is ano-goalsituation; that is, a version of EFH
without obstacles, net, and any specific task. Our model suggests that if students notice
and acquire the charge and trajectory relationships that we have described, it comes from
activity extrinsic to the achievement of the EFH goal. After successfully adjusting a
charge, for example, a student could look back and see how the trajectory was affected,
but the act is not required for achieving the game’s goal. Further, the student could engage
in additional placements and adjustments to directly test the microworld’s properties.
Time spent on achieving EFH’s game-like goal could be better spent engaging in these
activities; that is, EFH’s goal may well distract students from pursuing useful interaction.
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Consequently, we hypothesized that microworld interaction without any specified goal
could provide more support for learning than interaction with the standard EFH goal. Our
prediction is consistent with Sweller’s cognitive load theory (Sweller, 1988), although
ours is predicated on differences in knowledge acquired rather than cognitive processing
load.

We will refer to interaction without any specified task as theno-goalcondition. Here
the term, ‘‘no goal,’’ is meant in the narrow, task-specific sense. By using this term, we
are not suggesting that a student would not develop any self-imposed, internal goals. We
use the termstandard-goalfor referring to the standard game interaction, where the
student tries to position charges so that the ‘‘puck’’ avoids obstacles and goes into the
hockey net.

Alternatively, our analysis allows for the possibility of changing the goal to require
focussing on relevant relationships. In particular, we propose to specialize the goal further
by illustrating a particular path (around EFH obstacles) and asking the student to arrange
charged particles so that the moving charge will follow the illustrated path as closely as
possible. This prediction is in direct contrast to Sweller’s model, which argues that such
specificity will detract from performance. We suggest, instead, that specialization of the
goal will have two useful consequences:

1. Require the student to re-attend to the relationship between the charged particle and
the trajectory.

2. Provide an additional reference point to which distance comparisons can be made.

Figure 8 illustrates thespecific-pathcondition. Figure 8a shows the trajectory the
student should try to achieve. Figure 8b shows a student’s possible placement of charges
and the trajectory that the student anticipates. Figure 8c includes the trajectory that
resulted from the charge placement and the implemented modification to EFH that
highlights the difference between the specified path and the actual path with connecting
lines between alternating points.

The trajectory comparison highlights not only the post-bend difference, which students
must notice to achieve the standard goal, but also the subtle difference in the trajectory
before the bend. Without a trajectory-matching goal, students have little incentive to
notice what happens to the trajectory before the bend. With the trajectory comparison, we
suggest that students will attend to the entire change in direction, especially if they have
the goal of matching the specified trajectory. This provides a necessary step to encoding
the actual change in direction, a prerequisite for inducing both the distance and force
relationship and the force and acceleration relationship.

The specified trajectory may also provide an additional reference point for noticing
subtle changes early in the trajectory that are caused by a distantly placed charge. As
subtle changes occurring early in the trajectory often produce radical differences in later
stages, a student who notices the early, subtle difference should be less likely to be
confused by how a distant charge can cause such a large effect. With this understanding,
a student should be less likely to view the radical difference as a contradiction to the
inverse square relationship between distance and force.
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Figure 9 summarizes how the two contrasting theories would predict performance
in the two modified conditions relative to the standard EFH environment. The first
theory relies on our goal-dependent analysis, which indicates the extent to which the
goal-based knowledge coincides with the pedagogical objective. We expected both of
the proposed conditions to produce superior learning results—in terms of the targeted
pedagogical objectives— compared to the standard EFH mode of interaction. This
prediction contrasts with the hypothesis derived from Sweller’s theory of goal-
directed cognitive load (Sweller, 1988), which predicts that only theno goalsituation
will produce superior learning results. Under this view, thespecific-pathcondition
should produce inferior results. Thespecific-pathsituation requires a more complex
set of constraints with both temporal and spatial interactions, which increase the use
of MEA subgoals and, accordingly, add to the task’s cognitive load. In the next
section, we describe a study designed to test these predictions.

Figure 8. Specific-path condition: Specifying the intended path.
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VII. TESTING THE PREDICTIONS:
EXPERIMENTAL DESIGN AND RESULTS

Subjects

Subjects were 24 male and female undergraduate students, with diverse majors, from
Carnegie Mellon University. They responded to an announcement posted on an electronic
bulletin board. None had taken the electricity & magnetism (E&M) class in which EFH
is used, nor had they previously interacted with EFH. They were paid $10 for their
participation. Eight subjects were randomly assigned to each condition.

Materials

After a brief introduction, subjects interacted with one variant (described in more detail
below) of the EFH program operating on a Unix workstation. For all students, the EFH
program provided an introduction to the game, interactive instructions, and some simple
example solutions. The program was instrumented to automatically record the subjects’
moves.

A post-test, consisting of 17 problems and questions, was created to assess the students’
acquisition of the microworld’s pedagogically relevant properties. Most questions were
taken from quizzes used in the E&M course; all were framed in terms of the EFH
microworld. Questions were selected predominantly to test the subjects’ understanding of
the effect of distance, the effect of multiple charges (superposition), or the relationship
between force and acceleration. Many questions presented an EFH scenario with a
diagnostic arrangement of charges and asked the subject to indicate in which direction the

Figure 9. Predicted performance under two theories relative to standard EFH.
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free-floating charge would start to move. Other questions required the subject to supply a
missing charge for a given trajectory. The post-test also included four true or false
questions explicitly asking about the microworld’s properties. The entire post-test is
provided in the appendix.

Procedure

All Subjects.The computer program controlled the procedure and timing of the
subjects’ interaction. All subjects received the same introductory material, followed by
additional instructions specific to their condition. For 30 min, subjects interacted with the
version of EFH specific to their condition. After 30 min, subjects were required to stop and
take the post-test. After completing the post-test, all subjects were given a final problem
with obstacles and a net, for which they were given at most 15 min to find a solution.

No-goal Condition.For the 30-min time period, subjects in this condition interacted
with an EFH microworld without obstacles or a net. After receiving the introductory
instructions common to all conditions (which included some examples with an obstacle
and goal), they were given the following instruction:

Later, you will be given a situation with obstacles and a net.

For the next 30 min, however, you are asked to ‘‘experiment’’ in a situation without
any obstacles or a net. Your objective is to learn to understand the game’s properties
in any way you see fit.

30 min may seem like a long time, but you should try to continue experimenting as
much as possible during this time.

Standard-goal Condition.For the 30-min time period, subjects in this condition played
the standard version of EFH, which starts at Level 1—a situation with one small obstacle
between the starting position and the goal—and becomes progressively more difficult with
the use of more complicated obstacles and an occasional immovable charge. The inter-
action could proceed to Level 6. If a subject completed Level 6 before 30 min had elapsed,
he or she was asked to continue playing new games at this level.

Specific-pathCondition.For the 30-min time period, subjects in this condition had the
same task as thestandard-goalgroup, except that they were also given the desired solution
trajectory, as shown and described in the previous section. They were given the following
additional instructions accompanied by a working example:

You will also be shown the trajectory path of a possible solution.

You should try to arrange your charges so that the dots of the path you create match
up with the dots of the shown solution.

You will see lines connecting dots from the solution trajectory to your trajectory. This
will give an idea of how well you have matched the solution trajectory.

Results

We found that students’ performance on scientific tasks such as this one are often well
predicted by their math SAT (mSAT) scores. Thus, we performed an analysis of covari-
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ance with condition as a between-subjects factor and math SAT as the covariate. (One of
the subjects had not taken the SAT and so was dropped from the analysis.) We found a
significant effect of mSAT on student performance [F(1, 17)5 22.39; p 5 .0002],
justifying its use as a covariate. Furthermore, there was a significant effect of condition
[F(2, 17)5 12.90;p 5 .0004] and an aptitude-treatment interaction between the treatment
conditions and mSAT [F(2, 17)5 8.58;p 5 .0026].

To better illustrate the aptitude-treatment interaction, Figure 10 shows a scatter plot of
the post-test score versus the mSAT scores, broken down by the three goal conditions.
Also depicted are the regression lines used in the full interaction model. The regression
line for thestandard-goalcondition was particularly short because low mSAT scores were
absent from this group. As shown, the aptitude-treatment interaction was largely a
consequence of subjects in theno-goal condition doing uniformly well no matter what
their mSAT, whereas in the other conditions higher mSAT subjects were more successful
than lower mSAT subjects. In other words, the subgroup of students with the highest
mSAT scores performed well independent of treatment, whereas those with lower mSAT
scores showed significant differences as a result of experimental condition.

Using the full interaction model, we obtained estimated mean post-test scores at the
average mSAT score (mSAT5 673). Theno-goalcondition produced the best (77%), the
specific-pathgoal condition was next best (70%), and thestandard-goalcondition was
considerably worse (52%).

For pair-wise comparisons at the average mSAT score, the Scheffe multiple compar-
ison procedure indicated that both theno-goaland thespecific-pathconditions produced
significantly higher scores than did thestandard-goalcondition. The difference between
theno-goaland thestandard-goalscores was 24.3%, with a 95% confidence interval for
this difference ranging from 14.5% to 34.1%. The difference between thespecific-path
and thestandard-goalscores was 17.495%, with a confidence interval ranging from 0.5%

Figure 10. Score versus mSAT by goal condition.
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to 34.3%. The Scheffe procedure indicates no significant difference between theno-goal
and thespecific-pathconditions (the 95% confidence interval was from27.2% to 21.0%).
Table 1 summarizes these comparisons.

DISCUSSION

EFH is intended to help students develop a qualitative understanding of the physics of
electrical interactions. Earlier in the paper we described a computer model that learns to
play EFH and presented an analysis of the knowledge the model acquired as it applied the
game-oriented strategies we observed physics students using. The model assumes a
non-deliberate learning approach based on the Soar unified theory of cognition, where
episodic learning occurs only as a side effect of achieving the immediate goal. When given
a sequence of standard tasks like those typically given to students, the model acquired new
game-oriented skills and substantially improved its EFH playing ability. However, it did
so without acquiring any new knowledge structures relevant to the targeted domain.

Using the model as a guide, we re-designed the standard tasks with a more specific goal
that was hypothesized to lead to greater physics learning. In an experimental study we
compared thestandard-goalandspecific-pathapproaches with a thirdno-goalcondition.
Students in thestandard-goalcondition generally learned less qualitative physics than
those in the two alternative conditions, which was consistent with the model. The
difference was particularly striking for students with moderate and lower aptitude as
measured by their mSAT scores. Ostensibly, our assumptions of non-deliberate learning
best apply to these cases. Important theoretical and instructional implications of our focus
on task goals are discussed below.

Implications for Learning Theory: Knowledge Dependencies

Our model, embedded in the context of Soar’s problem solving and learning mechanisms,
argues for a knowledge-dependent analysis of microworld interaction. The knowledge-
dependent interpretation suggests that what is important is not the presence or absence of
externally defined goals, per se, but the relationship between the pedagogically targeted
concepts and the knowledge required to interact successfully with the microworld, in
whatever way that success is defined. Thus, goal-based problem solving will transfer to
pedagogically relevant material exactly when the goal-dependent relationships coincide
with pedagogically relevant relationships. This conclusion is supported by thespecific-

TABLE 1
Pairwise Comparisons at the Average mSAT Score

Comparison Difference (%) Confidence interval (%)

No-goal . Standard-goal 24.3 14.5 , d , 34.1
Specific-path . Standard-goal 17.4 0.5 , d , 34.3
No-goal . Specific-path 6.9 27.2 , d , 21.0
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pathcondition’s predicted superior transfer to overall post-test performance relative to the
standard-goalcondition, and is consistent with a previous finding that reported the
successful transfer of problem-dependent knowledge to related tasks (Morris, Bransford,
& Franks 1977). The knowledge-dependent interpretation is also consistent with both the
Soar and ACT (Anderson, 1993) unified theories of cognition, which have accumulated
much other empirical support, as well as some other learning theories with pedagogical
applications (VanLehn, Ohlsson, S., & Nason, 1994; Mertz, 1993).

The success of thespecific-pathcondition relative to the standard condition stands in
clear contradiction to Sweller’s ‘‘goals-hurt-learning’’ interpretation (Sweller, 1988). On
the other hand, the success of theno-goalcondition is consistent with previous empirical
findings by Sweller that have been interpreted as evidence against non-deliberate learning
theories such as Soar. It is important, then, to understand how the knowledge-dependent
view explains the success of theno-goal group, especially in light of the significant
difference betweenno-goal and specific-pathperformance. Our original prediction that
no-goalinteraction would be superior tostandard-goalinteraction was based on the idea
that students in the former condition would not be distracted by having to focus on
irrelevant, goal-specific relationships inherent in standard EFH play; the group was more
likely to spend its time on task focussing than on relevant relationships. Thus, although the
prediction of the knowledge-dependent hypothesis does not differ from the prediction of
a theory based on reduced cognitive load, the knowledge-dependent interpretation entails
an additional test for confirmation: if the knowledge-dependent interpretation is war-
ranted, then superior performance of theno-goalgroup should be differentially evident on
those items of the assessment that share appropriate characteristics with the tasks students
set for themselves.

Nine of the problems on the post-test asked students to make predictions about the
interactions of a small number of charges, four were declarative true or false questions,
and four were similar to EFH tasks (though designed particularly to assess qualitative
physics principles). The charge interaction problems (questions 1 through 9) were similar
to the kinds of tasks students in theno-goal condition were most likely to pose for
themselves. It follows, then, from the knowledge-dependent hypothesis, that these ques-
tions should show the largest effect of theno-goalinstruction. To test this hypothesis, we
divided the post-test into two subscores, charge-interaction questions versus
declarative1EFH questions, and performed another analysis of covariance, again with
condition as a between-subjects factor and mSAT as a covariate, but this time adding
question type as a within-subjects factor. As predicted, we found a significant interaction
between condition and question type [F(2, 22)5 3.76;p , .05], whereby the difference
between theno-goalcondition and the other conditions was large for the charge interac-
tion questions and small for the declarative1EFH questions. Table 2 shows the estimated
means for the average mSAT score for the three conditions on the two subscores.No-goal
students did 73% better thanstandard-goalstudents on the charge interaction questions,
but only 22% better on the declarative1EFH questions.

We find further evidence of goal-specific transfer by examining more closely how
subjects from thestandard-goaland specific-pathconditions did on particular post-test
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questions. We have suggested that thespecific-pathcondition better supports the acqui-
sition of the inverse square relation of force and distance. We also thought that the subjects
in this condition were more likely to notice that the greatest change in direction (accel-
eration) occurs at the point nearest to the trajectory (acceleration-force relation). How well
did subjects from thestandard-goaland specific-pathconditions do on test questions
pertaining to these concepts? And how does this compare to other types of questions?

We targeted post-test questions for testing three previously discussed concepts. In
particular, seven questions (numbers 3, 4, 6, 7, 8, 10a, and 10d) tested distance effects, two
questions (numbers 11 and 13) tested the acceleration and force relation, and four
questions (numbers 5, 9, 12, and 14) tested the net effect of charges (superposition). Table
3 presents the mean post-test score, broken down by condition and conceptual category.
The table’s results are estimated means at the average mSAT score. They suggest for
which concepts thespecific-pathsituation provided the best relative support. In particular,
the results show that students in thespecific-pathcondition fared, on average, approxi-
mately 18% better on the distance-related questions than did those in the standard
condition. This is consistent with our prediction that thespecific-pathcondition requires
students to notice small, subtle changes when repositioning charges from afar. With fewer
questions and higher variances, scores for the two remaining concepts were inconclusive.
We did not anticipate seeing a difference in scores relating to superposition; yet a
difference was revealed here. When we consider that thespecific-pathcondition increases
the likelihood that students notice subtle changes when repositioning the charges, they
may notice equally well subtle changes caused by the additive effect of a new, distantly
placed charge. If true, this would account for the higher superposition scores in the
specific-pathcondition. We had anticipated a difference in the force and acceleration
questions that favored thespecific-pathcondition, which was marginally revealed here.

In contrast to the standard EFH model’s lack of acquisition of pedagogically relevant
concepts, our model does predict the acquisition of some game-relevant knowledge,

TABLE 2
Post-Test Subscores Estimated at Average mSAT

Charge interaction questions (n 5 9) Declarative 1 EFH questions (n 5 8)

No-goal .839 .685
Standard-goal .484 .560
Specific-path .721 .671

TABLE 3
Estimated Post-Test Means by Concept

Condition Count
Distance
(mean)

Acc*/Force
(mean)

Superposition
(mean)

Standard-goal 7 .439 .579 .515
Specific-path 8 .614 .593 .719

Note: Acc 5 Accelleration.
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namely, some absolute distance knowledge for roughly determining how far to place
charges from an intended bend in the trajectory. Simulations in which the model played
EFH demonstrate that, with some practice, it performs better at Level 5, in terms of
requiring fewer adjustments to achieve the goal. Turning to the student data, both the
standard-goalandspecific-pathconditions produced faster mean solution times (212 s and
290 s, respectively) than did theno-goalcondition (326 s) for the Level 5 transfer task that
followed the post-test. Although the differences were not significant, because of a large
variance in the data, the differences are consistent with the claim that thestandard-goal
condition supports some game-relevant learning.

Unlike our goal-directed analysis, which predicts content-specific transfer, goal spec-
ificity makes broad learning claims. Indeed, the theory claims that goal-specific problem
solving competes for cognitive resources to the detriment of learning, independent of the
learning content. Our results suggest a limitation to using goal specificity to predict the
extent of learning because the goal-specific condition produced post-test results superior
to thestandard-goalcondition, and thestandard-goalcondition produced game-specific
transfer superior to theno-goalcondition.

Because ourspecific-pathcondition is ostensibly a specialization of thestandard-goal
condition, we have assumed that thespecific-pathtask does, in fact, consume more
cognitive resources than thestandard-goaltask. In providing additional support for this
position, we took a further look at student performance in thestandard-goalandspecific-
path conditions. The subjects in thespecific-pathgroup progressed through the mi-
croworld levels more slowly, on average, than the subjects in thestandard-goalgroup
(Table 4 indicates how many subjects of both conditions successfully completed each
level). Thespecific-pathgoal, thus, seemed to be a more difficult goal, which we interpret
as taking a larger cognitive load. Anecdotally, one subject noted after having played under
thespecific-pathcondition and then astandard-goalsituation, ‘‘I didn’t really need dotted
path lines. They were hard to follow anyway.’’

We were curious as to what extent thespecific-pathsubjects followed the specified
path, and whether their effort correlates to their post-test score. We predicted that subjects
who followed the specified-path the most closely would do the best on the post-test.
Because all results were automatically recorded by the computer, we were able to compare
their actual goal-scoring trajectory with the specified trajectory. We used a comparison

TABLE 4
Number Completing Each Level and Average Fit to Prototype Solution

Level

Standard-goal Specific-path

n Fit SD n Fit SD

1 8 13.7 4.8 8 15.2 5.5
2 8 18.1 5.8 7 15.6 9.0
3 7 27.1 12.4 7 18.7 11.1
4 7 20.0 13.3 6 13.5 5.1
5 6 52.9 17.1 4 28.6 19.1
6 4 50.1 4.7 2 33.4 24.7
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algorithm, which greedily searched for a minimal point-to-point mapping of the compared
trajectories, and then averaged the distances between the paired points. This rendered a
quantitative measure of how much the subject’s worked-out solution fit the pre-specified
prototype solution.

Table 4 lists the averaged measured fits for both conditions for each level. A smaller
number represents a better fit. The table reveals that, for all levels except Level 1, the
specific-pathgroup produced better fits to the prototype solution than thestandard-goal
group, confirming that thespecific-pathgroup followed, to some extent, the instructions
they were given. Both groups followed similar patterns by level. To some degree, the
standard-goalgroup was also likely to follow the prototype path, as it is a minimal path
that roundly clears the obstacles. For Levels 1–4, the fits were relatively good for both
conditions. These levels are either easy to control with few charges (Levels 1 and 2) or the
obstacles tightly constrain the path (Level 3 and 4). In contrast, Levels 5 and 6, which
allow for more path freedom and require more charges, had more variance and worse fits
on average for both conditions. In checking whether the variance could account for
post-test performance, we found the Level 5 correlations between fit distance and post-test
performance to be20.83 and20.85 for thestandard-goalandspecific-pathconditions,
respectively. Although the causality is speculative, these correlations are consistent with
the position that subjects who try to follow a specific, minimal path are more likely to
observe the pedagogically targeted relationships.

What seems unequivocal, at least, is that different goals lead to different learning
outcomes. In the knowledge-dependent account of why this should be so we have focused
on the detailed features of the microworld implicated in performance. To take a broader
view of the issue, we note that Schauble, Klopfer, and Raghavan (1991) distinguish
between students who used an engineering model of experimentation and those who used
a science model. The behavior of the engineering group was characterized by manipula-
tion of variables to produce a desired outcome, whereas the science group was charac-
terized by broader exploration and more selectiveness in interpreting evidence, especially
disconfirming evidence. In other words, theno-goal condition predisposed students to
scientific modeling, whereas thestandard-goalcondition predisposed students to an
engineering approach. We saw superior performance by theno-goal group on the
scientifically-oriented post-test, which was consistent with Schauble et al.’s (1991b)
findings. However, when it came to playing the game, the engineering group had the
advantage.

Implications for Instruction: Appropriate Framing of Microworld Use

Perhaps the most practical result of this work is that careful selection and analysis of the
tasks that frame microworld use is essential if such environments are to lead to the
learning outcomes imagined for them. A simple self directed versus goal directed rule of
thumb is not a panacea. In planning microworld use for the classroom, teachers need to
ask how the strategies students employ in the learning activity are like or unlike those that
fulfill the intended instructional objectives. If microworlds are to be effectively used, it is
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incumbent on microworld developers to make clear 1) what learning outcomes are to be
expected from microworld use, ideally in the form of sample assessment items; and 2)
what is the context for microworld use that will lead to such outcomes, ideally in the form
of sample tasks or learning activities.

One common and faulty reasoning pattern in microworld use and, more generally in
educational reform, is to reject careful consideration of learning outcomes and assessment
tasks because ‘‘the traditional tests just don’t measure what we’re after.’’ One can easily
see that, in the EFH domain, traditional tests of quantitative electrical relationships (e.g.,
find acceleration of the particle given it is . . . ) are not appropriate. However, to go further
and assume that because a microworld does not address quantitative objectives it must
lead to qualitative ones, is unwarranted. As we have shown, it is quite possible, even for
college students, to get caught up in the gaming aspects of a microworld and acquire
strategies that are peculiar to the game, but do not result in qualitative knowledge
applicable outside the microworld. Certainly the entertainment aspects of microworlds can
play an important motivational role in their educational impact, but this must be supported
with careful selection of tasks for microworld use; teacher awareness of the potential for
non-productive, game-oriented strategies; and careful monitoring and assessment of
student strategies and learning outcomes. The justification for the prediction that task A
leads to learning outcome B can be found in a process model that establishes how the
knowledge required to do A is reorganized by the actual experience of doing A to produce
B. In other words, the point is not to ‘‘teach to the test’’ but, rather to teach to the process.

Although theno-goalcondition fared the best among our three conditions, this does not
imply that this condition provides the best learning support among all possible conditions.
Our choice of conditions was partly motivated by the desire to test the effect of
goal-directed cognitive load and we thus forewent testing alternate conditions whose goal
specificity was ambiguous relative to the other conditions. We suspect a more structured
interaction would provide a more efficient vehicle for supporting learning. We reach this
conclusion by noting that a large percentage of theno-goal interaction was ostensibly
wasted through the construction of complex charge configurations, too complex to discern
the abstract properties of the microworld. By encouraging simpler configurations and
explicitly emphasizing relevant microworld relationships, a more productive use of time
would likely result.

Finally, we would like to emphasize that our results qualify rather than deny the
usefulness of goal specificity. Using goal specificity has its merits in that it is generally
simple to apply. An extensive analysis of the domain is not required. It has correctly
predicted the learning merits of certain goal conditions in previous work, and for two pairs
of conditions here (no-goalversusstandard-goalandno-goalversusspecific-path), has
correctly predicted which condition better supports learning. However, our conclusion
suggests that goal specificity is limited in that it does not consider the relationship between
knowledge used in service of the goal and the pedagogical objective, and thus does not
account for learning that occurs non-deliberately during problem solving. Because an
analysis of the goal-directed knowledge does account for this learning, we can use it to
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determine a specific goal for microworld activity that will support the learning of its
pedagogically targeted concepts.

Although goal specificity may serve as a useful heuristic for estimating learning
potential within a given microworld, its theoretical underpinning as determined by
cognitive load could be called into question. Its theory is not only inconsistent with the
results presented here, but also with previous results reporting the successful transfer of
problem-dependent knowledge to related tasks. Furthermore, it lies in direct opposition
with leading unified theories of cognition, where learning and problem solving are tightly
integrated. Despite the inconsistencies, the phenomena supporting cognitive load theory
cannot be ignored and thus require an account of how problem solving may impede
learning in the context of these integrated learning theories. The theoretical work provided
in this paper takes a step in this direction by describing how learning can be ubiquitously
present during problem solving, yet fail to have the appropriate form and content for
pedagogically relevant transfer.
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NOTES

1. For this and subsequent game figures, we will omit some of the game’s details, such as the GO button and
the charge boxes.

2. The unit for the distance measure is arbitrary. Actual numbers were kept to illustrate that the distances in
the representation are constants.

3. Level 6 has the same obstacle configuration as Level 5 but demands the use of fewer charges.

REFERENCES

Anderson, J. R. (1993).Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.
Chabay, R., & Sherwood, B. (1989).The electricity project and the cT programming language. (Technical

Report 89–10). Pittsburgh, PA: Carnegie Mellon University, Center for Design of Educational Comput-
ing.

Chi, M. T. H., Bassock, M., Lewis, M., Reimann, P., & Glaser, R. (1989). Self-explanation: How students study
and use examples in learning to solve problems.Cognitive Science, 13,145–182.

Clements, D. H. (1986). Effects of Logo and CAI environments on cognition and creativity.Journal of
Educational Psychology, 78,309–318.

Clements, D. H. (1990). Metacomponential development in a Logo programming environment.Journal of
Educational Psychology, 82,141–149.

Conati, C., & Lehman, J. F. (1993a). EFH-Soar: Modeling education in highly interactive environments. In P.
Torasso (Ed.),Advances in artificial intelligence, lecture notes in artificial intelligence, LNCS 728(pp.
47–58). Berlin: Springer-Verlag.

329GOALS AND LEARNING



Conati, C., & Lehman, J. F. (1993b). Toward a model of student education in microworlds. InProceedings of
the Fifteenth Annual Conference of the Cognitive Science Society(pp. 353–358). Hillsdale, NJ: Lawrence
Erlbaum Associates.

diSessa, A. A. (1993). Toward an epistemology of physics.Cognition and Instruction, 10,105–225.
Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning.Cognitive Science, 12,1–55.
Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a Logo debugging curriculum: Instruction, learning,

and transfer.Cognitive Psychology, 20,362–404.
Laird, J. E., Newell, A., & Rosenbloom, P. S. (1986). Chunking in soar: The anatomy of a general learning

mechanism.Machine Learning, 1,11–46.
Lawler, R. (1982). Designing computer based microworlds.Byte, 7,138–146.
Lehman, J. F., Laird, J. E., & Rosenbloom, P. S. (1996). A gentle introduction to soar, an architecture for human

cognition. In D. Scarborough & S. Sternberg (Eds.),Invitation to cognitive science(Vol. 4., pp.
211–253). Cambridge, MA: MIT Press.

Lehrer, R., Littlefield, J., & Wottreng, B. (1991).Seeding Mindstorms with LogoWriter: Using LOGO in the
elementary classroom.Fontana, WI: Interactive Education Technologies.

Lehrer, R., Randle, L., & Sancilio, L. (1989). Learning preproof geometry with LOGO.Cognition and
Instruction, 6,159–184.

Lewis, M., & Anderson, J. (1985). Discrimination of operator schemata in problem solving: Learning from
examples.Cognitive Psychology, 17,26–65.

Mertz, J. S. (1993). Using a simulated student for instructional design. In J. Greer (Ed.),Proceedings of the 7th
World Conference on Artificial Intelligence in Education(pp. 453–460). Charlottesville, VA: Associa-
tion for the Advancement of Computing in Education.

Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate
processing.Journal of Verbal Learning and Verbal Behavior, 16,519–533.

Newell, A. (1990).Unified theories of cognition.Cambridge, MA: Harvard University Press.
Papert, S. (1980).Mindstorms: Children, computers, and powerful ideas.New York: Basic Books.
Pea, R. R., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming.New Ideas

in Psychology, 2(2), 137–168.
Schank, R. C., & Farrel, R. (1988). Creativity in education: A standard for computer-based teaching.Machine-

Mediated Learning, 2,175–194.
Schauble, L., Glaser, R., Raghavan, K., & Reiner, M. (1991a). Causal models and experimentation strategies in

scientific reasoning.The Journal of the Learning Sciences, 2,201–238.
Schauble, L., Klopfer, L. E., & Raghavan, K. (1991b). Students’ transition from an engineering model to a

science model of experimentation.Journal of Research in Science Teaching, 28(9), 859–882.
Sherwood, B., & Chabay, R. (1991). Electrical interactions and the atomic structure of matter: Adding qualitative

reasoning to a calculus-based electricity and magnetism course. In M. Caillot (Ed.),Proceedings of the
NATO Advanced Research Workshop on Learning Electricity or Electronics with Advanced Educational
Technology(pp. 23–35). Berlin: Springer-Verlag.

Simon, H. A., & Lea, G. (1974). Problem solving and rule induction: A unified view. In L. W. Gregg (Ed.),
Knowledge and cognition(pp. ). Hillsdale, NJ: Lawrence Erlbaum Associates.

Simon, T. (1987). Claims for Logo—What should we believe and why? In J. C. Rutkowska & C. Crook (Eds.),
Computers, cognition, and development(pp. 115–133). New York: John Wiley and Sons.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.Cognitive Science, 12,257–285.
Sweller, J., & Levine, M. (1982). Effects of goal specificity on means-ends analysis and learning.Journal of

Experimental Psychology: Learning, Memory, and Cognition, 8,463–474.
Sweller, J., Mawer, R., & Ward, M. (1983). Development of expertise in mathematical problem solving.Journal

of Experimental Psychology: General, 112,639–661.
VanLehn, K., Ohlsson, S., & Nason, R. (1994). Applications of simulated students: An exploration.Journal of

Artificial Intelligence in Education, 5,135–175.
Vollmeyer, R., Burns, B. D., & Holyoak, K. J. (1994). The impact of goal specificity and systematicity of

strategies on the acquisition of problem structure. In A. Ram & K. Eiselt (Eds.),Proceedings of the 16th
Annual Meeting of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates.

White, B. Y. (1984). Designing computer games to help physics students understand Newton’s laws of motion.
Cognition and Instruction, 1,69–108.

330 MILLER, LEHMAN, AND KOEDINGER



APPENDIX

The following figures are the pages of the post-test that were administered to students
upon their completion of one of the three goal conditions.
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