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Abstract. It is becoming a standard technique to use lagrourves as part of
evaluation of intelligent tutoring systems [1,2,Blit such learning curves require
a method for attributing errors. That is, the noettimust determine for each error
a student makes what “knowledge component” in tbdent model is to blame.
To this point, alternative methods for error atitibn have not been
systematically investigated. We implemented falternative methods for error
attribution — two temporal heuristics and two ldcattemporal heuristics. We
employed two evaluation standards — a statisttesidard for measuring model fit
and parsimony and the Kappa technique for measumieg-observer reliability.
We looked to see which method better met the “iegraurve standard” that is,
led to better prediction of students’ changes imrerate over time. Second, we
asked if the codes generated by the methods bete&trthe “human-match
standard”, that is, were they like error attribn8omade by human coders. Both
evaluation standards led to better results for ldmation-temporal heuristic
methods than the temporal heuristic methods. Istiagly, we found that two of
the methods proposed were better at error attdbuiccording to the learning-
curve standard, than the original cognitive modehe intelligent tutoring system.
Overall, these results suggest that the heuriptizsosed and implemented in this
paper can generally aid learning curve analysisthedperhaps, more generally,
the design of student models

Introduction

Increasingly, learning curves have become a stdndeol for measurement of
students’ learning in intelligent tutoring syster8tope and fit of learning curves show
the rate at which a student learns over time, andal how well the system model fits
what the student is learning. However, these legrmurves require a method for
attributing error to the “knowledge components”il{skor concepts) in the student
model that the student is missing.



In order to facilitate learning curve analysis whican also be referred to as
internal evaluation [11], we have proposed and amgnted four automated heuristics
for attributing error to the desired knowledge comgnts, that is, the skills which the
student is required to acquire, during the coufsproblem solving. These are two
temporal heuristic models and two temporal-locatimuristic hybrid models. We
specifically addressed the following research qaest

1. Which heuristic better predicts students’ charigeerror rate over time?
2. Which heuristic produces error attribution codest match those of human
coders, best?

To address question 1, we applied the statistioelppnent of learning factors
analysis [4], while in answering question 2, Kappalysis was used to compare codes
from each heuristic to those produced by humanrsode

Section 2 is a brief review of literature, sect®describes the data source used in
our analysis, while section 4 illustrates our mdthlogy. Results, discussions and
conclusions are presented in sections 5, 6 arekpectively.

1. Literature Review

The power relationship between the error rate ofopmance and the amount of
practice is shown in equation 1 [5]. The relatiopsthows that the error rate decreases
as the amount of practice increases. As previauglytioned, this function is known as
a “learning curve”.

Y=axX’ ... 1)

where

Y =the error rate

X = the number of opportunities to practice a kreige component (e.g., skill,
concept, rule, constraint)

a = the error rate on the first trial, reflectifgetintrinsic difficulty of a knowledge
component

b = the learning rate, reflecting how easy a kndg#ecomponent is to learn

A good cognitive model is expected to follow theveo law. A cognitive model is
a set of production rules or skills encoded inliigent tutors to model how students
solve problems. Productions embody the knowledgestudents are trying to acquire,
and enable the tutor estimate each student’s lequwii specific skills as the student
works through exercises [12].

Cen and colleagues proposed a semi-automated mfethmdproving a cognitive
model called Learning Factors Analysis (LFA) [4FA.is a three-component system,
implemented in Java, which combines statistics, drumxpertise and combinatorial
search to evaluate and improve a cognitive moda. Skatistical component quantifies
the skills and provides information on data fithistis the component we make use of
in this study.



While the power law model applies to individuallkskiit does not include student
effects. In order to accommodate student effecta fagnitive model that has multiple
rules, and that contains multiple students, Ceal ektended the power law model to a
logistic regression model (equation 2 below) basethe following assumptions:

1. Different students may initially know more or less intercept parameter for
each student reflects this.

2. Students learn at the same rate. Thgpe parameters do not depend on
student. This simplification is to reduce the numbifeparameters in equation
2 and also because the focus is on refining theitteg model rather than
evaluating student knowledge growth [6,7].

3. Some knowledge components are better known thaarsotiAn intercept
parameter for each knowledge component capturss thi

4. Some skills are easier to learn than others. Tthisjs reflected using a slope
parameter for each skill

IN[p/(1-p)]= By +Z o5 Xi+ ZHY; +ZyY[Tj ....... 2

where

p = the probability of success at a step perforbyedtudent i that requires knowledge
component j

X = the dummy variable vector for students; Y = themmy variable vector for
knowledge components; T = the number of practiqgeodpnities student i has had on
knowledge component ju = the coefficient for each student, that is, tihedent
intercept;p = the coefficient for each knowledge componendt ik, the knowledge
component intercept

y = the coefficient for the interaction between aowiedge component and its
opportunities, that is, the learning curve slope

In this paper, we use the statistical componeritF# to quantify the skills and
evaluate model fit and parsimony with respect toatign 2. Akaike Information
Criterion (AIC) and Bayesian Information criterigBIC) are two estimators for
prediction risk [10] used in LFA and their formulaee shown in equations 3 & 4.
Lower AIC & BIC scores, mean a better balance betweodel fit and complexity.
BIC however, imposes a more severe penalty for texiip than AIC.

AIC = -2*og-likelihood + 2*K.............. 3
BIC = -2*log-likelihood + K * In(n)........... 4)
where

log-likelihood measures model fit,
K = number of covariates in equation 2, and measomadel complexity,
n = number of observations



2. Data Source

To test the methods, we used data from the Andgsigshtutor [8] collected at the
US Naval Academy during its regular physics classe(figure 1). This data was
collected as part of the Pittsburgh Science of hiegr Center's LearnLab facility that
provides researchers, access to run experiments frerform secondary analyzes of
data collected from one of seven available techqyeEnhanced courses running at
multiple high school and college sites (see htgarhlab.org). The data spanned 4
multi-step physics problems solved by 104 studeamd involved about 18,000
observed “transactions”.

In Andes, the student is required to define allaldes before entering them in an
equation. One method for defining variables isrionda vector. In figure 1, the student
correctly defines the vector, yF using a drawing (trn 1). The student also susftity
defines the mass of the car and its travel distémoe 2 & 3). However, in trn 4, the
student writes a force equation, using the varigplehich the student is yet to define.
This transaction is incorrect. Usually, Andes woirldicate success at completing a
transaction by turning the entry green. Entriedrfoorrect transactions are turned red.

The general problem of error attribution is to deiee for each incorrect or hint
transaction (solicited or unsolicited help from 1fi&) what knowledge component in
the overlay student model, is to blame. One comswution is that the intelligent
tutoring system provides this information (as wamsetimes the case in our data set).
However, in some log data this information is natikable and, furthermore, the error
attribution method used by the ITS might not alwhgghe best choice. An alternative
strategy is to search in the log for a subsequemect student action and attribute the
error to the knowledge component coding of thatemtraction. If that subsequent
correct action is the next one in time, then onenploying the "temporal heuristic”
described below. However, sometimes students jaropnd in a tutor interface and
the next correct action may not be related to ther e- it might be better to search for
the next correct action that is in the same interfacation in which the error occurred.
This “location heuristic” has been employed in @ggproaches [1, 2, 3] and is further
described below.
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Figure 1. Example Screenshot of the Andes IntatliJeitor



3. Methodd ogy

The four heuristics proposed are the two tempoeakiktics — TH_1, and TH_2
and two location-temporal heuristics LH_1 and LH Rach of heuristics is
implemented in pure Java 1.5 and is described below

3.1. Temporal Heuristic (TH) Methods

In seeking a knowledge component (KC) code for mor éransaction for which
the KC code is missing, the two TH methods gengeabign blame to the first KC the
student successfully implements. While the TH_2 hoétis implemented on all
“incorrect” and “hint” transactions, that is, atirer transactions, TH_1 is implemented
on only error transactions for which the Andesitdailed to ascribe blame to at least
one or more KCs. When Andes performs blame attdbuor an error transaction, it
usually ascribes blame to the KC or set of KCghmproblem’s solution set, which it
believes is responsible for the student’s error.

To illustrate how TH_1 is implemented, the java goean reads the first
student/tutor transaction in an XML log file. Ifig an error transaction which has a
missing KC code, the program searches down thetillog finds the first correct
transaction for the same problem. The KC code lids tater transaction is then
assigned as KC code to the afore-mentioned eramsaction for which a code is
sought. If no correct transaction is found, theiethod ends for that error transaction
without returning a code. The TH sequence is impleied on all error transactions till
the end of the log file is reached. Error transmifor which no KC code is found are
excluded from the analysis.

3.2. The Location Heuristic (LH) Method

Let us assume a student makes an error at a certaiface location and a KC
code to blame, is sought. When it can, the LH nubthses the error location as a
heuristic for deciding how to assign blame to tlestfKC, which the student
successfully implements at that same location. 8bi_2 implements this method on
all error transactions, LH_1 implements the metloodonly error transactions for
which Andes failed to ascribe blame to a KC. Thepdbr the LH method is given in
section 3.2.1. With respect to LH_1, the java paagrreads the first student/tutor
transaction in an XML log file. If it is an erroransaction which has a missing KC
code, the program searches down the log till itdirthe first correct transaction,
implemented at the same location as the errordctiom and for the same problem.
The KC code for the correct transaction become&@eode for the error transaction
for which a code is sought. If no correct transaciis found for the same location as
the error transaction, the LH method ends for #rabr transaction and repeats its
sequence again on the next error transactior tébiches the end of the log file. Again,
error transactions for which no KC code is founel excluded from the analysis.

3.2.1. Algorithmfor the Location-Temporal Heuristic

1. Read student/tutor transaction. If error transactim to 2. Else, go to 3.
2. Does KC code exist? If yes, goto 3. Ifno, go to 4



Last transaction? If yes, STOP. Ifno, goto 1

Does record of actual interface location existy&#, go to 5. if no, go to 6

Find P correctly implemented KC at same location as etransaction.

Acquire KC code. If successful, go to 3. If unses=ful, goto 7

6. Find T* correctly implemented KC. Acquire KC code. If sassful, go to 3. If
unsuccessful, goto 7

7. Return ‘no code found'. Go to 3.

akrw

3.3. Matching Human Coders

Two University of Pittsburgh physics domain knowdedexperts each coded the
same sample of error transactions, which were ngskiC codes, and spanning four
problems. Of these, only those transactions forcklitihe experts had matching codes
were used to evaluate the human-match standardoipare how well codes from
each heuristic matched those of the human codeggpdanalysis was used.

Kappa provides a measure of the degree to whichjudges, A and B, concur in
their respective sorting of N items into k mutuadlyclusive categories. A ‘judge’ in
this context can be an individual, a set of indidls who sort the N items collectively,
or some non-human agency, such as a computer pnogradiagnostic test, that
performs a sorting on the basis of specified datehe level of agreement is
determined by the Kappa score. The closer the dsde1, the better the agreement
between pairs of codes [9].

Table 1: Results of the learning-curve standard Table 2: Results of the human-match standard

Crite | LH_1 LH_2 TH 1 TH 2 LH | LH_ | TH_ | TH_
rion 1 2 1 2
AlIC | 6,444 6,285 6,759 6,653 Kappa 0.78 0.71 0.76 0.68
Score
Std. 2
Error(a)
Logl | -3,051 | -2,972 | -3,209 | - Approx. 667 | 617 | 635| 582
ikeli 3,155 T(b)
hood
Approx. 0.0 0.0 0.0 0.0
Sig.
N of Valid 527 527 520 521
Cases
a. Not assuming the null hypothesis
b. Using the asymptotic standard error assuming
the null hypothesis.
4. Results

Table 1 shows the results obtained in fitting treadfrom each heuristic to
equation (2). As can be seen, LH_2 was the legaenfprmer in terms of data fit, with



AIC score of 6,285, BIC score of 7,414 and logiittebd value of -2,972, where lower
scores mean a better fit and correspondingly, #ibebgnitive model. Scores with a
difference of greater than 6 are considered t@labty different.

The better fit of LH_2 over LH_1 suggests that dymysing the location-temporal
method for error attribution may better characterstudent learning patterns than
using the intelligent tutor's attributions when geat. For the temporal heuristic
methods, we also see the simpler approach (THeRigg a better fit than the tutor-
informed approach (TH_1).

Table 2 shows the results of the human-match stendéo calculate Kappa
scores, first, only observations where the two hunaters agreed were selected. Then,
the selected observations were matched againstvaelisas for each heuristic to
compute Kappa scores.

As can be seen, the results are quite similar ¢oréisults of the learning-curve
standard. In this case however, LH_1 and TH_1 pew better fit than LH_2 and
TH_2 respectively.

5. Discussion

Generally, the location heuristics has been shangraduce data with better fit to
the learning curve standard and to human codes.

An interesting observation we made though, is tthatheuristic models that coded
all error transactions, that is, LH_2 and TH_2,duced better fitting data than LH_1
and TH_1 respectively, according to the learningveustandard. These results are
shown in table 1.

Given that the human coders only provided a seK@fcodes for each error
transaction for which the Andes tutor failed topde one, the results in table 2 are
expected. While LH_1 and TH_1 coded the same tcliosa as the human coders,
LH_2 and TH_2 coded more transactions since thesthads coded all error
transactions whether missing or not. As such, atgremismatch was expected
between the later heuristics and the human codes.

6. Conclusions

In this paper, we present and implement four autechéeuristics for error
attribution in order to facilitate learning curvasalysis. We found that the location-
temporal heuristics were better at predicting sttalechanges in error rate over time.
The location-temporal heuristics also fit human esodbetter than the temporal
heuristics. We intend to implement these heuristios other datasets to test the
generality of these results. The availability afasets from the Pittsburgh Science of
Learning Center's ‘DataShop’ (see http://learnlat).owill facilitate the process of
getting appropriate data.

Interestingly, we found in 2 of 4 comparisons (LH>2H_1 and TH_2 >TH_1
for learning-curve standard) that two of the hdigimodels proposed were better at
error attribution than the original cognitive modékhe intelligent tutoring system.



Overall, these results suggest that the heuriptiggosed and implemented in this

paper can generally aid learning curve analysisthadperhaps, more generally, the
design of student models.
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