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Abstract. How to best sequence instruction in a collection of basic facts is a 
problem often faced by intelligent tutoring systems. To solve this problem, the 
following work details two tests of a system to provide drill practice (test trials 
with feedback) for foreign language vocabulary learning using a practice 
schedule determined to be optimal according to a cognitive model. In the first 
test, students chose between an optimized version and a version that merely cy-
cled the vocabulary items. Examination of the time on task data revealed a pref-
erence for practice based on the decisions of the cognitive model.  In the second 
test, the system was used to train the component parts of Chinese characters and 
measure the transfer of knowledge to subsequent learning of Chinese charac-
ters.  Chinese character learning was improved for students with the relevant 
optimized training.   
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1   Introduction 

Because many domains rely on basic facts, this paper addresses a general method for 
how deficits in basic facts can be addressed through efficient scheduling of practice. To 
illustrate, consider the case of vocabulary in foreign language learning. The importance 
of vocabulary knowledge to success in foreign language learning is emphasized by ex-
perts in foreign language instruction [1]. However, students are not always motivated to 
spend time in the repetitive exercises necessary to produce fast and accurate recall of 
vocabulary items in a language they are learning. Indeed, while taking advantage of the 
spacing effect (the advantage to long-term learning when practice is distributed in time) 
is recommended by many authorities [e.g. 2], the high numbers of errors produced during 
learning that uses spaced repetition might further reduce motivation for extended practice 
thus making spaced practice a difficult method to apply [3]. 

To address this dilemma, we have been developing a system that delivers practice 
of facts scheduled according to the predictions of a cognitive model. This optimal 
practice scheduling algorithm provides more efficient practice in the laboratory [4] 
and this paper reports two classroom experiments with the system in a college level 
Chinese I language class. 
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2   Practice Model and Optimization Algorithm 

We will begin by describing the ACT-R (Adaptive Control of Thought – Rational) 
model variant that we use to make scheduling decisions [5]. While ACT-R is best 
known for its production rule system that models the flow of procedural execution, 
the model in this paper uses the ACT-R memory equations to predict performance 
based on a history of learning events. 

2.1   ACT-R Variant Practice Model 

The model characterizes the strength of an item in memory (vocabulary pairs in the 
experiments in this paper) by a quantity referred to as “activation”. Activation is a 
continuous real valued quantity specified by Equation 1. 
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In equation 1, n is the number of prior practices for an item for which activation is 
being computed. The ti values are the ages (in seconds) for each prior practice of the 
item by a learner. The summation of these ti values captures the benefit of frequency 
of practice while the power function decay parameter (d) models how more recent 
practice contribute more to the summation. The b value multiplied by each ti captures 
the influence of the result of each practice in later predictions. In the case where the 
past practice was a successful recall, b is typically high, whereas in the case of a  
failure, b is typically low. The βs value is initially set at 0 for each student and is esti-
mated during learning to dynamically improve the overall fit of the model for individ-
ual differences. These incremental adjustments occur every 50 trials. The d values in 
the superscript are computed according to Equation 2.  
 

di = ce
m i 1 a +  

(2) 

In Equation 2 a and c are fitted parameters and mi-1 is equal to the activation at the 
time practice i originally occurred. For example, if we are computing d7 (decay value 
for the 7th practice drill), we need to know the activation at the time this drill occurred 
m6. Keep in mind that this is recursive since to compute m6 we need to know ds 1 thru 
6. (Since m0 = -infinity, d1 = a, according to Equation 2.)  Equation 2 captures the 
spacing effect.  It represents practice being forgotten more quickly when an item is 
easier due to narrow spacing of prior practices. 

For activation, it has also proven necessary to scale the times between sessions as 
if it passes more slowly than time within practice sessions [5]. So, if a practice oc-
curred during a previous session its ti is modified by subtracting a fraction of the 
intersession from the actual ti value. For example, if t6 occurred 100000s ago and 
99000s of this period was spent outside the practice sessions, the modifier (0.00046 
for the experiments here) is multiplied by the inter-session time and the result (45.5s) 
is added to the within session practice duration (1000s). For this example t6 is com-
puted to be 1045.5s according to this procedure. Theoretically this mechanism cap-
tures the idea that memory interference (from other items in the set of items being 
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learned) may be much less intense when practice is not occurring as compared to 
when it is. Further, at least in the case of classroom experiments where students can 
be expected to practice the items outside the tutor for classroom work, this parameter 
also captures some of this learning that occurs without the tutor between sessions. 
This picking up of classroom learning in this parameter is unintentional and a more 
principled solution to issue will be sought in future versions. 

Equations 3 and 4 are the functions that model recall probability and recall latency 
as a function of activation. In Equation 3, s captures the variance of the logistic trans-
formation of activation into probability while τ captures the threshold of recall. If s = 
0 it implies that activations above threshold result in perfect recall, while activation 
below threshold means recall always fails. As s increases the transition from 0% to 
100% recall becomes increasingly graded. In Equation 4, F scales the latency, which 
is an exponential function of activation. Equation 4 captures the variable time neces-
sary to perform a correct recall. Fixed costs of each practice are often summed to this 
variable cost function to capture perceptual motor costs of responding. Like the βs 
parameter, F is incrementally adjusted every 40 trials. 
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2.2   Optimized Practice Scheduling 

These ACT-R equations model the effect of practice history (including practice spac-
ing, frequency, recency, and success) on both success and latency of later perform-
ances. This model allows fine-grained trial by trial predictions of which item of a 
learning set is optimal to practice next. These predictions are made by computing the 
long-term efficiency of practice for each item in the set, and then selecting items for 
practice when they are at a time when their efficiency is maximal. Efficiency is a 
value computed directly from the model and is equivalent to the long term learning 
gain divided by the expected time cost of practice for a particular item. Long term 
learning gains are shown by increase in the “activation” value, which is the strength 
of an item in memory. Expected time cost depends on activation’s effect on latency of 
recall and on the probability of failure (which results in feedback time). Equation 5 
shows the efficiency score equation used for the experiments in this report. The vari-
able r is the retention interval desired for the optimization and is scaled like the t 
values for the reduced effect of between session forgetting. We set the raw r equal to 
30 days, which, scaled by the 0.00046 between session adjustment fixed r at 1191s. 
 

effm =
pmbsucr
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(5) 

Figure 1 graphs this function at the parameter values used and shows the inverted u-
shaped relationship between efficiency and activation (memory strength). The initial 
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increase in efficiency, as activation increases, is due to the reduction in failed drill oppor-
tunities with higher memory strength. Failed drills consume more time because they 
require the presentation of feedback for the item, and also because failure itself is typi-
cally slower than recall. 

 

Fig. 1. Graph of the efficiency function for optimized practice 

We can also see in Figure 1 that at some point increasing activation no longer pro-
vides benefits, but rather leads to less efficient learning. This effect is due to the 
model of spaced practice, which assumes that the learning from each drill would be 
more permanent if the drill occurs when activation is less. Each repetition in widely 
spaced practice reduces activation, as there is more time to forget between repetitions 
relative to more massed practice. Therefore, spaced practice causes more long-term 
gain for each trial despite resulting in lower correctness during learning.  

Figure 1 illustrates how the interaction of the speed advantage effect for narrow 
spacing and the long-term learning spacing advantage translate to predict an optimal 
activation point at which a drill is optimal. The optimal scheduling in the following 
experiments used an algorithm created using this model to schedule items for practice 
at this point of maximally efficient learning. To do this, before each trial, the change 
in the efficiency score as a function of time (the first derivative of efficiency) is com-
puted for every item. Items are selected for immediate practice when the change in the 
efficiency score approaches 0. If no items have approached 0 either because the de-
rivatives are all positive (in which case more will be learned by waiting for spacing of 
practice to increase) or because no items have been introduced, the algorithm intro-
duces a new item into the set. After all items have been introduced and the change in 
efficiency score for all items is positive the algorithm selects the item with the small-
est change in efficiency score.  

One interesting consequence of Equation 5 is that given a value for r it specifies a 
specific activation that corresponds to a specific percent correct performance level 
that should result in maximal efficiency. For Figure 1 this corresponds to -0.04 activa-
tion and a percent correct level of 92.6%. However, while the algorithm predicts this 
specific level at which practice should be optimal, the spacing of practice for each 
item increases as the learner accumulates practice. Spacing increases because of the 
increasing stability of the activation value as practice accumulates. This increasing 
stability is caused by the power function model of forgetting, which indicates that 
learning from older practices decays more slowly than recent learning. Figure 1 was 
computed for the following parameter values: s = .261, τ = -0.7, F = 2.322, bsuc = 
2.497, fixed success cost = 0.63s, fixed failure cost = 9s, a = .17, c = 0.21 and  
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r = 1191s. These parameters were estimated by fitting the model for past classroom 
experiments not reported here. bfail was estimated to be 1.526 for the first practice of 
any item with later practices b = 0. 

3   Experiment 1 

The first between-subjects experiment described here compares two computerized 
practice delivery systems in a Chinese I university level course. The control system 
drills the course vocabulary by cycling through each unit items in random order. The 
experimental system uses an identical drill procedure, but cycles through items ac-
cording to the predictions of the model based algorithm designed to maximize learn-
ing. In laboratory studies, this optimized model results in large gains in performance 
(effect size ≈ 1), but it has proven hard to show similar performance advantages in the 
classroom. This difficulty seems to be mainly due to the relatively small amount of 
time for which students are assigned to use the tutor. 

As a partial resolution to this problem, the following study compares two condi-
tions using time on task as the dependent variable rather than final performance. By 
doing this we can avoid the problem of having limited classroom time allocated to 
either condition by simply looking at the total time students spend in each condition. 
An advantage for time on task is then taken to be evidence for improved motivation 
and compliance in that condition.  

The two practice systems were made available to students by the professor, and 
students were asked to complete 15 minutes per unit for approximately 1-2% of their 
semester grade. The webpage that students used to access the two conditions gave 
simple instructions that were identical in each system. Further, the webpage random-
ized the order the two tutors appeared on the page so that one condition would not be 
selected more frequently because of its position on the page. However, students were 
not blind to condition since the optimized condition was described as, “Optimized 
Version -- In this version of the practice software, a model of learning is used to 
choose which flashcard to give for each trial. The model is set to provide approxi-
mately optimal spacing and repetition. You can choose to go through either the full 
set of flashcards for the class, or any particular unit. Your progress is saved, and you 
can return to where you left off at any time”, while the flashcard condition was de-
scribed as, “Flashcard Version -- In this version of the practice software, flashcards 
are delivered in random order, but drop out of the deck when you get them right. You 
can choose to go through either the full set of flashcards for the class, or any particu-
lar unit. Your progress is saved, and you can return to where you left off at any time”. 

Students were free to switch back and forth between systems by saving their data 
and returning to the webpage to continue with another version. This meant that stu-
dents were not locked into their choice, but rather could change their preference at 
any time. Other than the practice scheduling the only difference between the versions 
was that the optimized version listed immediate and one month recall predictions 
based on the model while the control version kept track of the remaining pairs to be 
answered correctly to finish one repetition of the selected learning set. 
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3.1   Participants, Stimuli and Procedures 

We only analyzed data from students that had produced complete data on the pre-quiz 
and post-quiz. According to this criterion there were 90 participants each of which 
distributed their practice between the two practice methods.  

The practice items in each condition were identical for each between subject condi-
tion, however the item set varied from 540 pairs in 8 of the 9 class sections (the sec-
tions that included regular classroom meetings) to 555 pairs in 1 section of the 9 (the 
online only section with limited face to face meetings). Since the online section had a 
correspondingly small sample size it was aggregated with the classroom sections. 
There were three vocabulary pairs of stimuli and responses for each semantic item: 
Chinese sound file  English response, Chinese sound file  pinyin response, Hanzi 
character  pinyin response. (Hanzi are the Chinese characters, while pinyin is the 
English character orthography for the Chinese pronunciation.) This indicates there 
were 180 (540 / 3 pairings) classroom semantic items and 185 online semantic items. 
Every pairing was modeled by an activation value in the optimized condition. 

There were 7 units of practice in the one online sections and 10 units of practice in 
the eight classroom sections. Order of introduction of items was randomized within 
unit for each version. Additionally, the optimized condition was set so that no related 
pairs (where the underlying semantic item was the same) were presented with a spac-
ing of less than 2 intervening items. Further, while the flashcard condition random-
ized all pairings independently to determine the introduction order, the optimized 
condition randomized units by the groupings of 3 related pairs for each item. Having 
items introduced in groups was not an explicit model-based decision, but respects the 
spirit of the model since the model implies that related items should be spaced nar-
rowly at introduction. In contrast, the standard spacing effect suggests practice should 
be maximally spaced as items were in the flashcard condition. 

Practice was distributed according the algorithm in each condition. In the flashcard 
control condition practice for a particular unit simply involved randomizing the order 
of the vocabulary items and presenting them one by one. If an item was responded to 
correctly it was “discarded” and if an item was responded to incorrectly it was put at 
the end of the order. This procedure continued for each unit until all items were an-
swered correctly for the unit (at which time the order was rerandomized and practice 
began again) or until the student quit using the tutor. 

The drill procedure used for each trial was identical in both conditions. Each drill 
presented a stimulus on the left side of the screen and allowed the student 20 seconds 
to respond. If the response was correct there was a 0.5s presentation of a “check 
mark” to indicate correctness. If the response was incorrect there was a 3s presenta-
tion of the correct stimuli and response. If the response was incorrect but the student 
provided an answer to another item the system gave a 6s study opportunity of both the 
pair tested and the pair which the student provided a response for.  

Pre- and post-quizzes tested the ability to translate 54 items randomly selected 
from the full item set for each student. Items did not repeat from pre-quiz to post-quiz. 

3.2   Results 

The main effect of interest was time spent practicing by students in each condition. Using 
the raw data there was no significant effect (M = 1.26 hours for optimized practice and  
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M = 1.12 for flashcard practice). However, these values overestimate the preference for 
the flashcard version since some students merely allowed the flashcard tutor to run with-
out practicing and this happened more frequently for the flashcard condition. To alleviate 
this, we choose to only consider practice in a condition if probability correct was greater 
than 0.1 overall. This conservative analysis filtered out students that allowed the tutor to 
run without practicing. Using this filtered data there was a preference for the optimized 
version (M’s equal 1.24 and 0.86 for optimized and flashcard conditions, t = 2.37, p = 
.020, Cohen’s d effect size = .25).  

While the post-quiz results could not be used to establish whether practice was 
more effective in one condition, it was possible to determine the correlation of prac-
tice in each version with gain in post-quiz scores. To do this we computed the correla-
tion of 8 measures of practice in the tutor with the improvement in performance from 
pre-quiz to post-quiz. These measures included for each condition: total time (raw 
value), total time filtered to remove p(success) < 0.1 values, total count of correct 
responses, and probability correct during practice. Only 2 correlations were signifi-
cant. First, the count of correct responses in the optimized condition correlated with 
pre-test to post-test gain, r = 0.421 (p = 0.000036). Second, the raw time spent in the 
flashcard condition was negative correlated with r = -0.366 (p = 0.00121) pre-test to 
post-test gain. This negative correlation was driven by the few subjects that used the 
flashcard condition but did not attempt to respond to the drills as discussed above. 

 

Fig. 2. Average learning curves across the first 5 practices for items in either condition 

Figure 2 (created from the raw data) helps us understand why the preference oc-
curred. The figure illustrates the average correctness for items  in each condition as a 
function of the repetition. As the figure illustrates, students found practice in the op-
timized condition to be easier due to the narrower scheduling used by the optimization 
condition. In contrast, the lower performance for the flashcard condition showed it 
was more difficult, which we also take to be an effect of scheduling. Curiously, we 
also see an advantage for the first drill of practice when the algorithm was simply 
introducing the item. This benefit is different than the optimized scheduling benefit 
and was probably due to the procedure of randomizing the related pairings in groups 
of three and introducing them relatively close together (minimum of 2 intervening 
trials) in the schedule. However, this grouping would not have significantly affected 
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later trials because item schedules were dependent on performance after the first trial 
in the optimized condition. 

4   Experiment 2 

This between-subjects experiment applied the optimization algorithm to teach learn-
ing components rather than to directly train the items that would be tested. To do this 
experiment we relied on the structure of Chinese characters. Each Chinese character 
contains one radical item that forms part of the character (sometimes characters have 
more than one radical, but one radical is always primary). Figure 3 provides an exam-
ple. As we can note the “see” radical forms part of the verb for “to think”. This  
experiment tested the idea that learning these radical components would improve 
learning of the characters. While this particular benefit has been found before [6], and 
theory of part-whole transfer makes it seem likely it can be reproduced [7], we 
thought it would be interesting to explore this paradigm as a prototype for one type 
application of the optimal training of basic facts. So, while no single part of this ex-
periment is novel, it remains an important test because it shows real world applicabil-
ity by bringing a part whole training paradigm into the classroom using a design that 
measures long term effects on future learning rates. 

覺得
to think

見
“see” radical

 

Fig. 3. Example of a Hanzi character and a constituent radical it contains 

This experiment was run concurrently with Experiment 1; however, this study in-
dependently randomly assigned subjects into either an experimental “radical” training 
condition or a control “Hanzi” training condition. Both conditions used optimally 
scheduled practice. The hypothesis was that the “radical’ components learned in the 
experimental condition would produce better learning of Hanzi characters. In contrast, 
practicing in the Hanzi condition should not improve learning since assessment used a 
different set of Hanzi than was used in practice. (The Hanzi control condition was 
intended to rule out the possibility that experience with the software by itself might 
cause any effects found.) The students were asked to complete one hour practice in 
the condition they were placed; however, some students practice more or less than 
that amount. 

4.1   Participants, Stimuli and Procedures 

We only analyzed data from students that had produced complete data on the pre-quiz 
and post-quiz. According to this criterion there were 94 participants, 46 of which were 
randomized into the radical condition and 48 of which were randomized into the 
Hanzi condition. 
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The radical set used for training was provided by the Chinese professor and in-
cluded 154 radical pairs that were identified as components of the Hanzi characters 
students had to learn for Chinese I. Since some radicals appeared in multiple charac-
ters, we choose to introduce the radicals in the order from most frequent to least fre-
quent. For the Hanzi control condition the practice set corresponded to the Hanzi 
characters for the first three units of the course. In the classroom version of the ex-
periment, the Hanzi set contained 90 practice items, while the online only version 
contained 106. In both radical and Hanzi practice conditions, the practice items were 
both radical/Hanzi  pinyin trials and radical/Hanzi  English trials. Thus, for ex-
ample, there were 77 radicals trained, each of which appeared in 2 pairings. 

For the pre and post-quizzes, we tested randomly selected Hanzi items from the 
last 3 units of the course. Since the post-quizzes occurred at mid semester, this meant 
that the items were unfamiliar and unlearned for the majority of students. Both pre-
quizzes and post-quizzes had the same structure, with 27 items tested each with 2 drill 
trials. Items did not repeat from pre-quiz to post-quiz. The goal of the quizzes was to 
produce a learning rate score for each quiz that was a measure of the average correct-
ness on the second drill of a character minus the average correctness of a first drill. 
For example, on a pre-quiz, a student might get only 1 of 27 items correct for the first 
drills on the pre-quiz and then get 10 of 27 items correct for the second drills. This 
would indicate a 33% learning rate for the pre-quiz for this student. 

4.2   Results 

We were interested in comparing learning rates from the pre-quiz and post-quiz to see 
if there was an advantage for the post-quiz learning rate as compared to the pre-quiz 
learning rate. First we ran an ANOVA that compared the gain in learning rate from 
pre-quiz to post-quiz using the pre-quiz learning rate result as the covariate. This 
result showed the significant advantage for radical training (F (1, 91) = 5.62, p = 
0.020, d = 0.49). The mean gain in learning rate was 12.8% in the radical condition 
and 6.6% in the Hanzi practice condition. Raw pre-quiz learning rates were 28.8% for 
radical training and 27.2 for Hanzi training. Raw post-quiz learning rates were 41.6% 
for radical training and 33.8% for Hanzi training. 

Additionally, we were interested in whether this more accurate learning also trans-
lated to faster performance on the post-quiz. To look for this we compared the reduc-
tion in time for the post-quiz compared to the pre-quiz using the pre-quiz duration as a 
covariate. This result showed a significant benefit for the radical condition (F (1, 91) 
= 4.04, p = 0.048, d = 0.42). The mean time saved on the post-quiz was 46.1s for the 
radical condition and 17.6s for the Hanzi condition. These values are considerable 
since the average completion time on the pre-quiz was only 394 seconds. 

Finally, we wanted to make sure that the result was not driven merely by better 
time on task in the radical condition. The difference for total practice time was not 
significant, nor was it significant when pre-quiz duration was used as a covariate (M = 
3771s for the optimized condition and M=3428s for the flashcard condition). 

5   Discussion 

To address the importance of these basic facts, this paper described a theoretically 
based, algorithmic method of scheduling performance for such basic facts. This 
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method takes advantage of well know properties of memory such as the benefits of 
recency, frequency and spacing to optimize the efficiency of such fact learning. We 
tested this method of practice in 2 experiments. In Experiment 1 we were able to 
show that students tend to use the optimized practice more often when given the op-
portunity to choose an alternative more conventional schedule of practice. This result 
suggests that students either found the system more effective or more enjoyable. The 
higher level of correct performance for the optimization condition shown in Figure 2 
may be the one reason why people prefer the optimized practice. Experiment 2 fo-
cused on efficacy, showing that learning using this method may automatically transfer 
to new contexts in a naturalistic classroom setting.  
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