
For 25 years, we have been working to understand math-
ematical cognition through the use of cognitive modeling 
and applying that knowledge to constructing curricula 
(both text and software) that are more educationally ef-
fective than preexisting approaches. This work has been 
successful on many levels. It has advanced knowledge 
of cognition in general and of mathematical cognition in 
particular; the resulting curricula have proven to be edu-
cationally effective in school settings; and the curricula, 
as commercial products, have found a strong following in 
the school marketplace.

We believe that our development model, which involves 
a close and continuing relationship among basic research, 
applied research, and field testing, can serve as a model 
for other efforts to apply cognitive psychology to educa-
tion. In this article, we describe some of the history of 
our efforts, our view of the relationship between basic re-
search and development, and some directions for further 
research.

Background
The work that led to Carnegie Learning’s Cognitive Tu-

tors began in the psychology and computer science depart-
ments at Carnegie Mellon University. John Anderson had 
been developing the adaptive control of thought (ACT; 
later, ACT-rational, or ACT-R) theory of cognition. ACT-R 
is a unified theory of cognition (Newell, 1973, 1990) that 
aims to explain the full range of human cognition. ACT-R 
was implemented as a computer program, which has the 
advantage of requiring the theory to be precise about all of 
its claims. Anderson (1983) had seen great success in using 

ACT-R to model laboratory results in learning, memory, 
and problem solving, and he was challenged to show that 
the same basic approach could explain cognition outside of 
a laboratory environment.

In its application to psychological laboratory studies, 
the aim of an ACT-R model is to interpret behavior. In 
order to interpret behavior, the model needs to correctly 
represent human knowledge and also to understand how 
that knowledge results in particular behaviors. When ap-
plied to education, this representation of knowledge re-
sults in predictions about what students can and cannot 
do as well as predictions about what activities and experi-
ences will help students learn to achieve curricular goals.

The representation of knowledge inherent in this kind 
of model is called a cognitive model, and the approach of 
using a cognitive model in a tutoring system has come 
to be called a cognitive tutor. The first tutoring systems 
built in this way addressed computer programming and 
mathematics (Anderson, Boyle, Corbett, & Lewis, 1990; 
Anderson, Boyle, Farrell, & Reiser, 1987; Anderson, Con-
rad, & Corbett, 1989).

GPT and ANGLE, both tutors for geometry proofs 
(Koedinger & Anderson, 1993), were successful in a 
school setting. Their success, however, appeared to be 
highly dependent on the teacher’s ability to integrate the 
tutoring software into broader classroom goals. This, 
along with Koedinger’s personal experience teaching a 
geometry class, focused the research group on the im-
portance of working with teachers and administrators to 
understand schools’ curricular needs more broadly. As a 
consequence, the research team for the products that be-
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came Carnegie Learning’s Cognitive Tutors included Bill 
Hadley, who had taught mathematics for almost 30 years 
and was the 1995 recipient of the Presidential Award for 
Excellence in Mathematics Teaching. This team set out 
to build curricula that would be based on solid cognitive 
research, be focused on emerging national and state stan-
dards, and address the practical needs of students, teach-
ers, and administrators.

One decision was to design a complete course, includ-
ing the text, Cognitive Tutor software, ancillary materials, 
and training for teachers. The inclusion of text endowed 
the curricula with some aspects (e.g., collaboration, dia-
gramming, and writing about mathematics) that were eas-
ier to do on paper than on the computer. The combination 
of text and software also helped to position the software as 
a regular, routine part of mathematics instruction. Instead 
of using the software as a “bonus” for advanced students 
or as a review for students who were lagging, the hybrid 
curricula set the expectation that software could be used 
as a part of primary instruction. Pilot implementations led 
to a model in which students used the software 2 days per 
week, with classroom activities structured by the text on 
the other 3 days each week.

The curricula proved to be educationally successful 
(Koedinger, Anderson, Hadley, & Mark, 1997; Koedinger, 
Corbett, Ritter, & Shapiro, 2000; Ritter & Anderson, 
1995) and popular with students and teachers.

The Relationship Between Research 
and Development

The federal government’s No Child Left Behind legisla-
tion mentions “scientifically based research” more than 
110 times. This points to the importance of basing educa-
tion on scientific research, but there are varying opinions 
about what it means for a curriculum to be “scientifically 
based.” In our view, scientifically based research involves 
more than the demonstration that a curriculum is effective. 
An essential component is an explanation of why the cur-
riculum is effective. Without a theoretical framework as a 
guide to understanding the conditions that lead to effec-
tive mathematics instruction within a curriculum, we have 
little hope of replicating success so that we can expand 
and improve instruction over time.

We think of the process of building a research-based 
curriculum as having four components: (1) basing the 
curriculum on a solid theoretical foundation, (2) applying 
the basic theory to the particular domain and objectives 
of interest, (3) evaluating results, and (4) developing and 
implementing a methodology for improving the curricu-
lum on the basis of use.

Theoretical Basis
ACT-R (Anderson, 1990, 1993; Anderson et al., 2004; 

Anderson & Lebière, 1998) forms the primary theoretical 
basis of Cognitive Tutors. The primary use of the ACT-R 
theory has been to model important characteristics of human 
behavior, including error patterns and response times in 
studies of a variety of cognitive tasks. Most of this work 
has been conducted in the laboratory, but ACT-R has also 
been applied outside of the laboratory in areas related to 

human–computer interaction, training, and education. This 
work has resulted in hundreds of publications (see act-r.psy 
.cmu.edu/publications/index.php for an extensive list). 

A full explanation of ACT-R is beyond the scope of this 
article, but some of the tenets important to education (An-
derson, 2002) include the following.

First, there are two basic types of knowledge: proce-
dural and declarative. Declarative knowledge includes 
facts, images, and sounds. Procedural knowledge consists 
in an understanding of how to do things. All tasks involve 
a combination of the two types of knowledge. As we learn, 
we generally start out with declarative knowledge, which 
becomes proceduralized through practice. Procedural 
knowledge tends to be more fluent and automatic than 
declarative knowledge. Elements of procedural knowl-
edge are referred to as rules or productions because they 
specify the conditions under which they are applicable 
and the actions (including changes in mental state) that 
result from applying them. Declarative knowledge tends 
to be more flexible and also more broadly applicable than 
procedural knowledge. We often refer to elements of de-
clarative knowledge as “facts.”

Second, the knowledge required to accomplish complex 
tasks can be described as the set of declarative and proce-
dural knowledge components relevant to the task.

Third, both declarative and procedural knowledge 
become strengthened with use (and weakened with dis-
use). Strong knowledge can be remembered and called 
to attention rapidly and with some certainty. Retrieval of 
weak knowledge may be time-consuming, effortful, or 
impossible. Different knowledge components may rep-
resent different strategies or methods for accomplishing 
a task (including incorrect ones). The relative strength 
of these components helps determine which strategy is 
used. Learning involves the development and strength-
ening of correct, efficient, and appropriate knowledge 
components.

It is important to understand that the use of terminology 
in the present article differs somewhat from that in an edu-
cational context. For example, a “procedure” in ACT-R is 
simply a component of knowledge that can produce other 
knowledge components and/or lead to external behavior. 
In mathematics education, we might refer to the proce-
dure of solving a linear equation. An ACT-R model of that 
task would consist of many productions and facts that are 
brought to bear. Even a simple task such as adding integers 
may consist of many productions, including ones associ-
ated with recalling arithmetic facts, executing counting ac-
tions, and so forth (see Lebière, 1999).

The view that emerges from ACT-R is that learning is a 
process of encoding, strengthening, and proceduralizing 
knowledge. This process happens gradually. New knowl-
edge will be forgotten (or remain weak enough to stay 
unused) if it is not practiced, and elements of knowledge 
compete to be used on the basis of their strength (Siegler 
& Shipley, 1995). Since the ability to perform a task relies 
simply on the individual knowledge components required 
for that task, education is most efficient when it focuses 
students most directly on those individual knowledge 
components that have relatively low strength.
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The interaction between declarative and procedural 
knowledge leads to an emphasis on active engagement 
with the conceptual underpinnings of procedures, so that 
students appropriately generalize this knowledge (Rittle-
Johnson & Koedinger, 2002, 2005; Rittle-Johnson & 
Siegler, 1998; Rittle-Johnson, Siegler, & Alibali, 2001). 
Since procedural knowledge includes the context in which 
it is applicable, educational activities need to be structured 
so that students can practice procedures within an appro-
priate range of contexts.

Decomposition of complex tasks into individual knowl-
edge components leads to a pedagogical model emphasiz-
ing practice of individual components, independent of the 
larger task. At the same time, some knowledge compo-
nents (e.g., integration of information from smaller com-
ponents) are inherent to the larger task, which provides 
another rationale for emphasizing performance within an 
appropriate context. Corbett and Anderson (1995a) report 
a LISP Tutor study that concludes that learning is most ef-
ficient if students master component skills first and subse-
quently receive scaffolding on how to integrate them into 
more complex tasks.

To use a sports analogy, it is important for batters to 
take batting practice because this will allow a baseball 
player to receive intensive practice with most of the skills 
involved in hitting a ball. However, it is also important for 
the batter to play in games, since some skills (e.g., reading 
the infield) can be practiced only in that context.

Application of Principles
Although the ACT-R theory provides a cognitive mod-

eling framework, it does not specify the particular skills 
that comprise the ability to solve a linear equation, for 
example. In order to create instruction in mathematics, we 
need to understand the knowledge components involved 
in completing a particular task. It is not enough to know 
the components involved in expert performance of the 
task; we also need to know the components exercised by 
students learning to perform the task. Much of our ap-
plied research in mathematics has concerned identify-
ing the particular skills and methods that students use to 
complete mathematical tasks (see Corbett, McLaughlin, 
Scarpinatto, & Hadley, 2000; Koedinger & Anderson, 
1990; Mark & Koedinger, 1999). Often, these skills do 
not correspond to expert beliefs (Koedinger & Nathan, 
2004; Nathan & Koedinger, 2000a, 2000b).

One technique that we have used to understand how 
students approach mathematics problems is to track their 
eye movements as they work through a problem (Gluck, 
1999). Consider the task of a student completing a table 
of values based on a word problem such as that shown in 
Figure 1.

In Figure 1, part of the table that represents the word 
problem has been completed. The student has filled in 
the columns with the independent and dependent quan-
tities relevant to the situation presented in the problem, 
specified the units of measurement for these quantities, 
and provided a formula to show their relationship. The 
student next needs to calculate the amount of money re-
maining after 2 h. There are at least two ways to perform 

this task. First, the student might reason from the problem 
scenario (perhaps imagining having $20 and then using 
repeated subtraction to calculate the money left after 
spending $4 two times). A second method would be to use 
the algebraic expression and then substitute 2 for x and 
calculate the result. If a student has produced the table 
shown in Figure 1 (including the algebraic expression for 
the amount of money left), we might expect that he or she 
would then use the algebraic expression and execute the 
second method. In fact, Gluck (1999) found that when stu-
dents were answering a question such as the first question 
in Figure 1, they looked at the problem scenario but not at 
the expression about 13% of the time. Students looked at 
the expression (sometimes along with the scenario) 54% 
of the time. Almost 34% of the time, they looked at neither 
the expression nor the problem scenario.

As a result of these and other data (see Koedinger & 
Anderson, 1998), the Cognitive Tutor curriculum treats 
the search for the algebraic expressions for simple word 
problems as an induction task. The formula row, shown as 
the second row in the table of Figure 1, is now presented 
at the bottom of the table, after the rows corresponding to 
the two questions. This has the effect of asking students 
to solve the individual problems (How much money will 
you have after 2 hours? and How many hours can you 
play before you run out of money?) first and then use a 
generalization of their reasoning to come up with the alge-
braic expression. In later units of curriculum, as the situ-
ations and algebraic expressions become more complex, 
we encourage students to go from the word problem to 
the expression and then to use the expression to compute 
specific values.

Beyond the design of mathematical tasks, the ACT-R 
theory guides instruction in Cognitive Tutor because the 
software includes an active cognitive model, which is 
similar to there being an ACT-R model within the soft-
ware (Corbett, Koedinger, & Anderson, 1997). This model 

You have been saving money and
now have 20 dollars for video
games. During your time at the
arcade, you spend 4 dollars per
hour. 

How much money will you have
after 2 hours?

How many hours can you play
before you run out of money?

time money

hours

21

2

Unit dollars

xFormula 20 – 4x

Help Done

Figure 1. Partially completed word problem task used in an 
eyetracking study.
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serves two purposes. First, the model follows student ac-
tions in order to determine the particular student’s strategy 
in solving a problem. The technique by which it does this is 
called model tracing. Second, each action that the student 
takes is associated with one or more skills, which are ref-
erences to knowledge components in the cognitive model. 
Individual student performance on these skills is tracked 
over time (and displayed to students in the “skillometer”). 
Cognitive Tutor uses each student’s skill profile to pick 
problems that emphasize the skills on which the student 
is weakest (Corbett & Anderson, 1995b). In addition, the 
skill model is used to implement mastery learning. When 
all skills in a section of the curriculum are determined to 
be sufficiently mastered, the student moves on to the next 
section of the curriculum, which introduces new skills.

Careful Evaluations
The development of curriculum involves many deci-

sions, and there is often room for disagreement about how 
learning theory should be applied in particular cases. For 
that reason, we believe that careful evaluation is an essen-
tial part of the process.

Our development process has included many forma-
tive evaluations of individual units of instruction (see, e.g., 
Aleven & Koedinger, 2002; Corbett, Trask, Scarpinatto, & 
Hadley, 1998; Koedinger & Anderson, 1998; Ritter & An-
derson, 1995). In addition, we have conducted several large 
evaluations of the entire curriculum (combining text, soft-
ware, and training components in a single manipulation).

Early evaluations of Cognitive Tutors for programming 
and geometry showed great promise, with effect sizes of 

approximately 1 SD (Anderson, Corbett, Koedinger, & 
Pelletier, 1995). In studies of the Algebra I Cognitive Tutor 
conducted in Pittsburgh and Milwaukee (Koedinger et al., 
1997), students were tested both on standardized tests 
(SAT and Iowa) and on performance-based problem solv-
ing. Cognitive Tutor students significantly outscored their 
peers on the standardized tests (by about 0.3 SDs), but the 
difference in performance was particularly pronounced 
on tests of problem solving and multiple representations, 
on which the Cognitive Tutor students outscored their 
peers by 85%, representing effect sizes ranging from 0.7 
to 1.2 SDs.

In Moore, Oklahoma, a study was conducted in which 
teachers were asked to teach some of their classes using 
Cognitive Tutor and some using the textbook they had 
been previously using (Morgan & Ritter, 2002; National 
Research Council, 2003). The result was that the Cogni-
tive Tutor students scored higher on a standardized test 
(the ETS Algebra I End-of-Course Assessment), received 
higher grades, reported greater confidence in their math-
ematical abilities, and were more likely to believe that 
mathematics would be useful to them outside of school. 
This study was recognized by the U.S. Department of 
Education’s What Works Clearinghouse as having met the 
highest standards of evidence. This study showed effect 
sizes of approximately 0.4 SDs.

The Miami–Dade County school district studied the use 
of Cognitive Tutor Algebra I in 10 high schools. An analy-
sis of over 6,000 students taking the 2003 FCAT (a state 
exam) showed that students who used Cognitive Tutor 
significantly outscored their peers on the exam (Sarkis, 
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2004). The findings were particularly dramatic for special 
populations. The study showed that 35.7% of students re-
ceiving Exceptional Student Education who use Cognitive 
Tutor passed the FCAT, in comparison with only 10.9% 
of such students who used a different curriculum. For stu-
dents with limited English proficiency, 27% of Cognitive 
Tutor students passed the FCAT, as opposed to only 18.9% 
of such students in another curriculum.

Methodology for Improvement
ACT-R provides guidelines for educational pedagogy 

and for constructing tasks that are likely to increase learn-
ing. The theory also provides a way for us to test and im-
prove our curriculum over time.

Cognitive Tutor observes students. As an observer, it 
sees everything the student does within its interface at ap-
proximately 10-sec intervals, for 2 days per week over a 
school year. However, the cognitive model is not a pas-
sive observer. It is continually evaluating the student and 
predicting what the student knows and does not know. By 
aggregating these predictions across students, we can test 
whether or not the cognitive model is correctly modeling 
student behavior.

Consider what an observer should see across time in a 
classroom. If students are learning, they should be mak-
ing fewer errors over time. However, the activities given 
to the students over time should also increase in difficulty. 
In a well constructed curriculum, these two forces should 
cancel each other out, leading to a fairly constant error 
rate over time. In fact, that is what we see in the Cognitive 
Tutor curricula. Figure 2 shows the percent correct, over 

time, for 88 students using the Cognitive Tutor Geometry 
curriculum in a school. The percentage correct remains 
fairly constant over time.

ACT-R makes the strong claim that learning takes place 
at the level of the knowledge components. Thus, if we 
consider only actions that involve a particular knowledge 
component, we should see an increase in percent correct 
over time (Anderson et al., 1989). Figure 3 shows percent 
correct for the same group of students as in Figure 2, this 
time tracking only those student actions that the cognitive 
model considers to be relevant to a single skill (calculating 
the area of a regular polygon, in an orientation in which 
one side is horizontal).

If ACT-R is correct in its assertion that performance 
of a complex task is determined by the individual knowl-
edge components contributing to the performance of that 
task, then each skill in the cognitive model should show a 
learning curve such as this one. Failure to see learning on 
one of the component skills must mean that the cognitive 
model implemented in the tutor is not correctly represent-
ing student knowledge.

In the development of our algebra tutor, we discovered 
that the model was overpredicting student performance in 
solving some equations of the form ax 5 b. An analysis 
of the data revealed that the overprediction was due, in 
part, to the case in which a 5 1. In retrospect, the ex-
planation for this overprediction is obvious. In the case in 
which a 5 1, the student needs to understand that the 
expression x means “1 times x” and that, otherwise, 
the equation can be solved using the same operations as 
would be applied to any equation of the form ax 5 b. (An-
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other way to think about this error is that some students 
have learned a rule equivalent to “if the equation is of 
the form ax 5 b, then divide by the number in front of 
the variable.” But when the coefficient is 1, the student 
doesn’t see a number but just a negative sign, so the rule 
does not apply.) Now that recognition of x as 1 times x 
has been added to the cognitive model, Cognitive Tutor 
automatically adjusts instruction to test whether or not 
the students have mastered that skill and automatically 
provides extra practice on such problems to students who 
need it. In addition, we can target instruction specifically 
to this skill.

The process of analyzing learning curves and improv-
ing our fit of these curves to the data has, to this point, 
been laborious. We have recently been exploring the pos-
sibility of automating the process of discovering flaws in 
the cognitive model (Cen, Koedinger, & Junker, 2005; 
Junker, Koedinger, & Trottini, 2000), and this is an active 
focus of research at the Pittsburgh Science of Learning 
Center (www.learnlab.org).

We believe that in the near future we will be able to 
greatly extend our ability to understand and accurately 
model students’ mathematical cognition. In addition to 
improved statistical modeling techniques, the expansion 
of Carnegie Learning’s customer base and the ability to 
aggregate student data over the Internet provides us with 
the ability to look at student cognition both more deeply 
and more broadly.

We have now collected data from over 7,000 students 
using Cognitive Tutor in a pre-algebra class. These data 
comprise over 35 million observations, which amounts to 
observing an action for each student about every 9.5 sec. 
With a database of this size, we expect to be able to de-
tect subtler factors affecting learning, including the effec-
tiveness of individual tasks, hints, and feedback patterns. 
We are starting to apply microgenetic methods (Siegler 
& Crowley, 1991) to see whether or not we can identify 
key learning experiences, which could contribute to better 
cognitive models of individual differences in prior knowl-
edge or learning styles and preferences. We believe that the 
combination of a dense data stream of student behavior and 
a large sample of students will allow us to greatly expand 
our knowledge of students’ mathematical cognition and 
advance our ability to help students learn mathematics.
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