JI. of Artificlal Intelligence In Education (1996) 7(3/4), 315-347

An Architecture For Plug-In Tutor Agents

STEVEN RITTER
Department of Psychology, Carnegie Mellon University
Pittsburgh, PA 15213, USA

KENNETH R. KOEDINGER
Human-Computer Interaction Institule
School of Computer Science, Carnegie Mellon University
Pittsburgh, PA 15213, USA

This paper outlines the authors’ efforts to build new learning
environments that incorporate tutoring elements into pre-ex-
isting software packages. Two systems are described; one
provides tutoring support in the Geometer's Sketchpad and
the other supports students using Microsoft Excel. Although
the implementation of these two systems was somewhat dif-
ferent, they share many basic components. An analysis of
their similarities and differences allows us to move toward a
set of standards for tutor agents that interact with complex
tools. By constructing learning environments in this manner,
we can leverage the power of existing workplace soflware
and educational microworlds to creale more powerful
learning environments.

INTRODUCTION

There are clear pedagogical benefits of well-designed intelligent tutors
as demonstrated by numerous studics (cf. Anderson, Corbett, Koedinger, &
Pelletier, 1995; Lajoie & Lesgold, 1989; Koedinger, Anderson, Hadley, &
Mark, 1995, Mark & Greer, 1995). Nevertheless, the cost of developing
large-scale intelligent tutoring systems and the difficulty of adapting them

316 Ritter and Koedinger

o curricular objectives other than those of the original designers has im-
seded their use in many domains (McArthur, Lewis, & Bishay, 1996,
Jrusilovsky, 1995). We are moving toward a new architecture for “plug-in
utor agents” to address these problcms and to further increase the flexibili-
'y and power of software environments that can provide intelligent learn-
ng support.

In contrast to the traditional “all-inclusive” architecture of intelligent
utoring systems (Anderson, 1988), plug-in tutor agents do not contain all
ispects of the lcarning cnvironment. Instcad, we are working toward a vi-
.ion where tutor agents can be easily cmbedded within existing workplace
.oftware tools or existing educational microworlds that are lacking in intel-
ligent Icarning support. By leveraging the power of existing tools, we can
reduce our development cost, and the resulting systems can provide better
tools for the workplace and better learning environments for the school.

New technologics arc changing the landscape of necessary skills in the
workplace and academics (SCANS, 1991) making it increasingly impor-

" Lant to aid students in acquiring software skills. The rising use of symbolic
caleulators, for example, is reducing the necd for paper-based symbolic
manipulation skills, just as numeric calculators have reduced, or even
climinated. the need for paper-based algorithms like finding the square
root of a number. Mathematics curricula, in particular, arc beginning to re-
flect the expectation that powerful tools (e.g., spreadsheets, graphs, and
symbolic algebra tools) will be available to workers, so these curriculum
reforms are focusing on support of reasoning skills, like expressing prob-
lems in algebraic form or wnung computer programs (NC'TM, 1989) In
order to properly use compu onal tools, workers need to both construct
appropriate tool mputs and then interpret outputs of the tools in ipht of

their nceds

While many software tools provide on-line help, the focus is on lower-
Jeved specilics of ool usce. Such tools do not provide learning support for
the higher-order reasoning that is necessary 10 usc the tool in real problem
solving. Plug-in tutor agents can fill this role.

EXAMPLES OF COMBINING TUTORS AND EXISTING SOFTWARE TOOLS

As first steps toward building plug-in tutor agents, we have created
two prototype learning environments that usc an cxisting software tool as
the interface to an intelligent tutor. We consider these initial attempts to be
important in identifying the desired architecture and capabilitics of tutor

Plug-In Tutor Agents 317

agents. _.n addition, our experience in building these i
some indications of the practicality of building mmﬁ_ mmozmm—mﬂm M“Samu
m<m.:m.Eo technology. As a way of illustrating these issues, we Em&% n:a d
scription of the .ao.&«: and use of our first prototype mwﬂn..:m Later iomﬁ '
c.mnw to mmsna_._wn their properties as a way of mrd_&:&u:.w the n.ozm::nv
co: and behavior of such systems. Finally, we present an initial ifi .
tion of u.vEm-i tutoring agent and the communication vnopooo_wm.,wom er.
acting with other tools in a complete learning environment er
A.f_“www”:on, mrh Eo.oaﬁm systems to be described were cognitive tutors
e M v.. %ouv implemented using the Tutor Development Kit
(Ande n clletier, ._oo:. The Tutor Development Kit (TDK) is a
isp- ased system that includes interface facilities, a production-rule
gine, Ea. facilities to maintain a student model and perform _Soi_om.sm
M_Mn_sm. Since these plug-in systems used other tools for their interfaces «mo
not take advantage of the TDK s interface facilitics in these systems ,

A TOOL-TUTOR FOR GEOMETRIC CONSTRUCTION USING
GEOMETER’'S SKETCHPAD

Overview of the System

The Geometer's Sketchpad (Jackiw & Finzer, 1993) is a comuncrcial
mo:.,zua tool for creating geometric constructions and dynamically investi
gating :55,, It functions both as an educational microworld _,ﬁ“n Wx 1 0 _H
and a._moo,\n_._:n propertics of gecomctric figures (cf. Schwartz. <n:2“_v_.o_::w.
& Wilson, chv and also as a tool for mathematical Ewou:..,r. In cqr“__ﬁ_u_hm
”ﬂwmrsw_ﬂamnmon and Anderson (1993b) proposed a learning environment
the : n,mnzn fﬁwn-m:vvo:oa. geometric conjecturing with existing

itor support for conjecture evaluation (Kocdinger & Anderson, 1993;
The first m—nu. in gecometric conjecturing is to construct :wca,m :.V _=<omh_v-
gate. We built a prototype tutor for geometric construction that
Sketchpad as the student’s workplace. ne

cw._mEn 1 shows the screcn as it looks to a student in the middle of a
waa MB. The problem statement appears as text in a Skefchpad file that is
oade em:w: the student starts the problem (see the text “Construct a sc
meint .7 just below the circle). This probiem asks the student to dra g
scgment and then construct a second scgment to cqual to the first ._,__o. Mﬁw

dent has drawn the first scgment (AB), drawn one end point of the second

318 Ritter and Koedinger

segment (C), and taken the crucial step of constructing a circle whose radi-
us is equal to the first scgment. At this point the student asks for help and
the tutor decides, based on the student’s progress so far, what it would do
next and gives an initial hint. As with other cognitive tutors, further help
requests yicld more specific hints.

From the user’s point of view, the system looks almost identical 1o the
Geometer's Sketchpad application. The only differences are that there is an
additional menu labeled Tutor which students can use to start and quit the
tutor, to request help, and to sclect the next problem. There is also a Mes-
sages window used by the tutor to provide hints and give feedback.

implementation

Sketchpad has the ability to “demonstrate” a sketch to be drawn on
one computer to any other computer in the classroom. When the tcacher’s
program is demonstraling a construction, it sends out messages in the form
of ApplcEvents (Apple Computer, 1993) to the students’ programs, telling
them to duplicate the actions of the teacher. When used with our tutor,
Sketchpad was run in “demonstration” mode, and the tutor intercepted
messages intended for “student” machincs. Since the demonstration mes-
sages provide information about what the student is doing, the tutor has
the information it nceds to interpret student acuons.

In practice, the demonstration facility did not always provide informa-
tion at the appropriatc grain-size for tutoring, so we had to aggregate ccr-
tain events into a single event which provided more approptiate informa-
tion for the tutor. For example, the Sketchpad action of drawing a scgment
resulted in four ApplcEvents: one for cach of the two end points created,
one for the connected line scgment, and one to indicate the completion of
the action. In response to this last AppleEvent, the three proceeding Ap-
plcEvents were aggregated into a single action appropriate for tutoring.

In some cases, the demonstration facility did not provide all the com-
munication capabilitics we nceded, but the Sketchpad dcvelopers gracious-
ly made experimental modifications to the software tool to help us build
this prototype. One desired modification was to inform the tutoring agent
which object was sclected at the time a hint is requested.

Another modification to Sketchpad was to include a Tutor menu that
students can use to start the tutor, to request help, and to sclect the next
problem. The Sketchpad developers added the ability to respond to a spe-
cial ApplcEvent that rcquests the addition of a menu and a list of menu

Plug-In Tutor Agents 319

items. The result of the tutor (or any other application) sending this Ap-
pleEvent request was a new menu appearing in Sketchpad. When an item
was sclected from this menu, Sketchpad sent out an AppleEvent indicating
which item was sclected. The tutor reccived this message and was able to
respond appropriately (by providing help, for example).

Sketchpad did not provide any way for the tutor to communicate back
to the student. We worked around this problem by configuring the screen
so that, when Sketchpad was the front-most application, a Mcssages win-
dow was visible in the background Lisp process, which was running the tu-
tor. This proved to be a reasonable work-around, but its drawback was that
users had to be instructed not to rearrange the windows on the screen (or
else they might hide the Messages window). If uscrs clicked on the Mcs-
sages window (bringing Lisp to the front), they were instructed to return to
the Sketchpad application.

Since we were unable to instruct Sketchpad 10 display graphic items in
different forms (like highlighting them in bold), we were limited to text
feedback to the user through the Messages window. One consequence of
this was that we could not “flag” incorrect objects, as we have done in oth-
er systems (Anderson, Conrad, & Corbett, 1993). In response to user er-
rors, we instructed the user (through the Message window) to use Sketch-
pad’s Undo menu item to return to a correct solution path.

& File Edit Displey Construct Transform Measure Work 0

T e ax no:aEm:Sman:. al | |

n. — Done _
.

T Login |!
Quit

S

Construct 2 segment
Then construct another segment congruent to the first.

HERA AN R RnR N CATRR RASRAR Bl 1] wu JrLE LY ik

Messages

You have a circie with the same radius as the segment AB. How can you
use this circle to draw another segment ol aqual langth? f

Figure 1. Geometer's Sketchpad and a tutoring agent for geometric
construction

320 Ritter and Koedinger

A TOOL-TUTOR FOR ALGEBRA PROBLEM SOLVING USING
MICROSOFT EXCEL

Overview of the System

The Excel Algebra Problem Solving Tutor is a variation of a learning
environment that we have been using to teach word problems in ninth-
grade algebra (Kocdinger, Anderson, Hadley, & Mark, 1995). In E.m sys-
tem, students are given a word problem such as: “A sitka spruce in the
Arctic Circle grows only 0.3 centimeters per year. How many centimeters
would this tree grow in a day? How long would it take for this tree to grow
1 meter?” Students answer these questions by completing a table that con-
tains two columns (one for the time the tree grows and another for its
height) and two rows (one for growing a day and one for reaching 1
mcter). In addition to completing the specific questions, students are asked
to come up with an algebraic expression for the height, to indicate the unit
of measure for each of the variables, and to create a graph of the line that
rclates height to time.

‘The original version of the lcarning environment uscd a tool that we
created specifically for this task, but it is clear that the graphing and table
functions are similar to those that we might find in a sprcadsheet. In addi-
tion. there is a clcar mapping between the algebraic expression for height
and (at lcast one version of) the Excel formula used to calculate cells in the
Leight column, For this reason, we defined a system which uses Excel 4.0
for the Macintosh in place of our own spreadsheet window.

From the user’s perspective the system looks much like Excel. There is
an additional Tutor menu from which the user can ask for help or exit the
tutor. When the system starts up, an Excel worksheet is opencd containing
the problem statement. On a scparate worksheet, borders are drawn around
cells to create a table similar to the onc they would sce in our own table tool.

Users have access 10 all of Excel's capabilities, although the features
nceded to perform their task are quite limited. They fill in the table by typ-
ing the appropriate headings, numbers, and algcbraic expressions. In the
“height” column, uscrs may enter an Excel formula to calculate the height,
given the time the tree grows. When the tutor needs to display a message to
the user, an Excel dialog appears.

Plug-In Tutor Agents 391

Implementation

We used Excel 4.0 for the Macintosh, which does not normally pro-
vide any descriptions of user actions. In order to provide the tutor with in-
formation about user actions, we took advantage of Excel's customization
facilities. We constructed a front-end to Excel (called “pseudo-Excel") that
looked just like the usual version and duplicated all of the usual functions.
From the user’s perspective, pseudo-Excel was identical to regular Excel.
In pseudo-Excel, however, any menu choice or cell entry caused an Ap-
pleEvent describing the user action to be sent to the tutor. This is essential-
ly the same approach used by Cypher (1993) to implement Eager (using
the Resolve spreadsheet) and by Fox, Grunst, and Quast (1994) for their
ExcellnExcel. We also used Excel’s customization facilities to create a Tu-
tor menu that contained a Help item. Choosing an item from that menu
created an AppleEvent similar to that gencrated for any other action in
pseudo-Excel.

Since a cognitive model and tutor for algebra problem solving alrcady
existed (in Lisp, using the TDK described carlier), conceptually all that
needed to be done was to unplug our home-grown table tool and plug in
Excel instcad, Most of the implementation work, then, involved creating a
module that could communicate between Fxcel and the existing tutoring
agent. The expert system component of the TDK expecls uscr actions to be
described as a “sclection-action-input” triple. This description corresponds
closely to the AppleEvent description of a user action (with the AppleEvent
itself corresponding to the action, the direct object corresponding to the se-
lection, and some other parameter representing the input). Excel and the
tutoring agent use different languages to refer to these elements, however,
so it was necessary to translate from one language to another. In our case,
the translator changed Excel’s references into data structures used by the
tutor. For example, “Cell R2C3 in Worksheet 1” (an Excel description of 2
cell) was translated into an identifier, “Cell23,” for the working memory
clement representing that cell in the tutor’s production system metuory.

Comununication between the tutor and Excel was straightforward. Excel
is fully scriptable through AppleScript, and we used this ability to provide
feedback to the user. For example, if the user entered a value into the table
which the tutoring agent determined to be incorrect, it sent AppleScripts
instructing Excel to change the font in that cell to outline form. In cases
where the user performed some action that was disruptive to the solution
(such as sorting the table), we instructed Excel to use its “undo” capability
to restore the earlier state. When we wanted to present an error message,

322 Ritter and Koedinger

the tutoring agent passed the message to the translator, which generated
AppleScript code telling Excel to display a dialog containing the message.
In response to any uses action, the tutoring agent informed the translator .%
any items that should be highlighted or unhighlighted, any messages (o dis-
play, and whether the action should be undone. The gﬁo—, oxvamm& these
requests in AppleScript, which was then used to modify the Excel interface.

BASIC ELEMENTS OF A LEARNING ENVIRONMENT

These prototypes led to the understanding of three clements of a .8o_
that need to be considered in order to implement a tutoring agent architec-
ture. First, we need to be able to monitor user actions. Second, we :ooa to
be able to give feedback, whether through text, images, or modifications to
the tool’s display. Finally, we need to be able to make some parts of the tu-
toring agent visible to the user. This last feature allows us to augment the
tool with a Help menu, for example. .

In both the Sketchpad and Excel tutors, we were able to monitor user
actions through AppleEvents. In the case of Sketchpad, the AppleEvents
were, for the most part, provided by the application itself, although some
modification by the application designers was required. In Excel, all of the

AppleEvent abilities had to be added to the program using its built-in cus-

outside of Sketchpad. Excel, in contrast, was fully scriptable, allowing us
to display text in a dialog or change the display and contents of any screen
elements. In essence, the Excel tutor was allowed to do anything in Excel
that a user could do using a Mouse and keyboard. .

The Geometer's Sketchpad did not ordinarily allow augmentation of
the tool so that we could add a Tutor menu to it, but we were able to ac-
~ quire a special yersion that allowed us to do so. Excel provided this ability
as part of its normal operation. .

In addition to these elements of the tool, our learning o:SB:BQ._G
need to track student performance across problems. Since the TDK provid-
ed integrated student modeling and knowledge tracing, we were able to

take advantage of those aspects of the system without any changes from our-

practice of writing TDK-only tutors. Still, a general plug-in tutoring archi-
tecture needs to consider these functions.

aos

Plug-in Tutor Agents 123

In general, a full tutoring system will consist of four parts: a tool, a tu-
toring agent, a curriculum manager, and a translator. The tool is the part
ongﬁgggggioggggwwgnwgﬁ
of the system that contains the domain knowledge necessary to provide
help to a student. The curriculum manager is responsible for maintaining
the student model and for guiding the student through the elements of the
curriculum. The translator is responsible for ensuring that the parts of the
system can communicate with each other. The following sections describe
cach of these objects in more detail.

Tool

A tool is a piece of hardware or software that can be used to perform
BQg*Ew%%BaFg»aﬁoB_ﬁ:a involved in choos-
ing (or designing) an appropriate tool for an educational system. One consid-
eration is that the tool be neither too weak nor too strong for the student’s lev-
el of knowledge. Although a symbolic algebra tool like Mathematica might be
appropriate for calculus students, it is probably too strong a tool to be used
with beginning algebra students. Among other things, it automatically
simplifies algebraic expressions and presents them in a canonical format.
These changes in the surface appearance of expressions might be confusing
to beginning students.

Another consideration is that the educational task, to the greatest ex-
tent possible, be performed with the tool. In part, this is a good educational
practice because it reifies abstract thought in specific activities with the
tool (Koedinger & Anderson, 1993c). For our purposes, though, this factor
is important because any planning or other activity that takes place outside
of the tool cannot be monitored by the tutoring agent.

The most important restriction on our solution to implementing plug-
in tutor agents is that we cannot expect tool authors to modify the function
or implementation of a tool in order to allow a tutoring agent to be used
with it. This follows for two reasons. First, we want to be able to work with
software that exists right now. Second, tool authors cannot and should not
be expected to fully anticipate the type or function of tutor agents that
might be used with their software. This allows us maximum flexibility in
designing tutor agents to perform different tasks. Our approach, then, is to
require tools to provide information about what the user is doing in the

tool. To the extent possible, we want that information to be ncutral about
the use to which that information will be put.

324 Ritter and Koedinger

In direct conflict with this principle is the fact that information must
be provided at some level of detail, and the choice of the appropriate level
does affect the use to which that information can be put. Consider a case
where a Microsoft Excel user pushes the mouse button at screen location
(100,200) and then moves the mouse and lets go of the button at screen lo-
cation (148,293). Suppose also that Excel responds to this action by mov-
ing the valuc of cell R4CS to cell R8C7. A low-level description of this ac-
tion would describe it in three (or cven morc) Steps: The uscr pushed the
mouse button at (100,200); the user dragged the mouse to (148,293); and
the user let go of the mouse button. This level of information can be pro-
vided by the operating system.

However, since we want to monitor the user’s actions with respect to
some high-level goal, we need to receive information about the semantics
of the uscr’s action, rather than the details of the manipulation of the inter-
face. In order to interpret this user’s action at the semantic level, the tutor
would have to know that (100,200) corresponds to the sclection border
(with the exception of the lower-right corner, which is used for extending
the selection) of cell R4C4 and that (148,293) corresponds to some point
within cell R8C7. To perform this translation, we would need complete in-
formation about what interface actions result in a change of selection, the
size of the sclection border, the size of the lower-right corner of the selec-
tion border, whether the “allow cell drag-and-drop” preference was sct, and
so forth. Clearly, this translation is a difficult task, and the dctails of the
translation are likely to change between different versions of the software.

A more appropriate description of the same event for tutoring purposcs
would refer to the action in terms of the work accomplished, not the uscr
interface actions that were perforined. 1o this case, we might describe the
user as having “Moved the value of cell R4C4 1o cell R8C7.” This descrip-
tion differs from the user-interface description in several ways. It combines
three discrete uscr-interface actions into a single event. In addition, it
refers to application-specific objects (like “cell R4C4”) instcad of user-
interface clements. The use of application-specific objects suggests
that this kind of description can only be provided by the application,
not the operating system.

Fortunately, the need for this kind of semantic description has long
been recognized (Gates, 1987) and is becoming standard in newly devel-
oped applications. In fact, the kind of descriptions that a tutoring agent re-
quircs are also required by OLE and OpenDoc in order to support script-
ing. AppleScript and OLE Automation are typically used to describe ac-
Uons at this level of detail. To support macro recording, OpenDoc requires

Plug-In Tutor Agents . 325

that applications, on request, describe all user actions in such terms. OLE
2.0 does not support recordability, but future versions are expected to in-
oo.nvo::n this feature. A “recordable” application which does so would be a
prime candidate for the tool component of a learning environment. The ex-
istence of recordable applications allows us to achieve the goal of “add-on”
systems described by the Eurohelp group (Breuker, 1990).

While guidelines for recordable applications allow some flexibility in
the way that actions are described (Apple Computer, 1993; Olsen & Dance
1988), the goals of providing reasonable descriptions for macro BSEQW
and of v.aoi&:m reasonable descriptions for tutor agents are, for the most
part, quite compatible. We can expect that, as plug-in tutor agents bccome
more Eoﬁ;.o:r application designers will take their existence into account
in nosm.S_n::m semantic descriptions, reducing the number of cases where
mnB@:o events developed for macro recording arc inappropriate for con-
structing tutor agents.

We need not commit to a particular component architecture (c.g.
OpenDoc or OLE) or a particular communication protocol (c.g. >uu
v._om,.\nzﬁ or OLE Automation) as long as we are assurcd that the :a‘o::m-
tion is at the appropriate level of detail. Typically, this description takes
94 form of a predicate describing the action, an argument describing the
object being acted upon, and any other parameters that are necessary to un-
aﬁ.mn:a the action. In most cases, the predicate will have three places de-
mn:Eam the subject, verb, and a direct object. For example, the action of
dragging a cell in Excel might be describcd as [Subject="cell R4C4";
verb="move”;move-location="cell R8C7"]. ,

vzo:_nq consideration for a tool is that we be able to programmatically
manipulate the tool’s content. This is important for giving fecdback. For
.nxu:i_n. it would allow us to display a ccll containing an crroncous value
in 8@ or to highlight a cell as a way of drawing the uscr’s attention to it. If
we «ufa. 1o disallow some actions in the tool or to immediately remove the
user’s erroncous steps, the tool must support programmatic access to an
undo comumand.

.5 un.::wma where the problems to be solved take a significant amount
of time, it is necessary to be able to tell the tool to restore some previous
state, so that the user may quit the learning environment without losing
work. If we have control over the tool’s objects, we can easily restore the
state of a partially completed problem by manipulating the tool’s content to
reflect that state.

In practice, we have found this rcquircment much casier to satisfy

than the requirement that the tool communicate appropriate information to

326 Ritter and Koedinger

the tutoring agent. Many tools are now controllable through some scripting
language (like AppleScript) and, in cases where that language is inadequate,
there are usually acceptable alternatives to communicating with the tool.

Although it is convenient to display messages through the tool, we
have found this to be a less important consideration, since there are often
alternate ways of displaying text messages. For example, under a compo-
nent architecture like OpenDoc, we can always embed the tool in a con-
tainer which provides a message window.

Tutor Agents

Tutor agents are picces of software that monitor users’ actions. The
nurposc of the monitoring may be to determine whether the user is per-
forming a task correctly or to provide advice (cither as a responsc to a us-
er’s request or due to recognition of some appropriate opportunity). Note
that the goals of recognizing crrors and giving advice arc independent. In
this broad dcfinition, tutor agents may include context-sensitive help sys-
tems (which give advice but do not recognize errors) and compilers (which
typically point out crrors but do not give advice). We believe that plug-in
tutor agents could be developed to address many of the kinds of help sys-
tems described in the Eurohelp project (Breuker, 1990).

Although the tutor agents in the systemns we have built are implement-
¢d as model-tracing expert systems, our proposal does not require a com-
mitment to tutor agents of this form. All 1t requires is that the tutoring
agent be able to cvaluate and respond to user aclions in some manuer. The
tutoring agent nceds to be able to accept information about user activity at
the grain-size discussed earlier, but some tutor agents may choose to inter-
pret actions at a higher grain-size. Similarly, some tutor agents may give
immediate feedback and require users to correct errors before continuing,
while others might remain silent until explicitly asked for help by the user.

For the most part, the tutoring agent has no visible user interface, so
users of a tool are not aware of whether a plug-in tutoring agent is operat-
ing. However, there are a few clements of the tutoring agent that should be
visible o the user. For example, we may want to present a Help menu that di-
rects the tutoring agent to provide help. Similarly, we may want to provide
menu items that the user can access to ask for a new problem or indicate com-
pletion of the current problem. In some implementations, the tutoring agent
may also be visible through a window used for presenting messages.

Plug-in Tutor Agents 327

In highly adaptable tools (like Microsoft Excel), it is possible to pro-
vide an interface to the tutoring agent through the tool itself. Component
architectures (like OpenDoc and OLE) allow the ability to embed such con-
trols in existing tools, accomplishing the same goal. This tends to blur the
distinction between the tool and the part of the tutoring agent visible
through the tool. Throughout this paper, we will refer to elements of the
tutoring agent visible to the user as part of the “tutoring agent interface,”
but the reader should be aware that, from the user’s perspective, these ele-
ments may appear to be part of the tool. Also, it is important to remember
that any user actions in the tutoring agent interface result in messages be-
ing sent to the translator, not the tutoring agent (although the translator
will typically route the message to the tutoring agent). This implementa-
tion allows a consistent manner of handling all user actions.

Curriculum Manager

The curriculum manager is responsible for deciding which problem to
present to the student. This decision can be as simple as picking the next
problem on a pre-sct list or can be as complex as picking a task bascd on
how well its features match a profile of user skill accomplishments. The
latter is achieved by the knowledge-tracing mechanism in traditional cog-
nitive tutors (Anderson ct. al, 1995). In a lighter weight, though less peda-
gogically supportive environment, the curriculum manager might be re-
placed by a problem entry dialog where the student sclects or constructs the
problem. Such dialogs have been implemented in cognitive tutors for alge-
bra cquation solving (Ritter & Anderson, 1995) and geometry theorem
proving (Kocdinger & Andcrson, 1993a).

Translator

The translator handles all communication between the tool and the tu-
toring agent. When necessary, it translates information from the language
of the tool into that of the tutoring agent (and vice versa). If more than one
tool or tutoring agent exists, the translator is responsible for routing mes-
sages to the correct component. Since the translator needs to know about
the communication requirements of the tool and the tutoring agent, it
needs to be customized for each learning environment.

The advantage of this design is that the tool and the tutoring agent can
be fully designed without knowledge of the details of the other. The ability

328 Ritter and Koedinger

to change the tutoring agent indcpendent of the tool is crucial in domains
in which we don’t develop the tool ourselves. In many domains, it makes
sense to use commonly available software tools. For example, we might use
either Mathematica or Maple as tools for solving calculus problems, and
we might use either Excel or Lotus 1-2-3 as tools for a business learning
environment. Different applications within a class typically have different
interfaces, but they share actions at the level of the semantic event. To the
degree that two tools share semantic events, a particular tutoring agent will
work equally well with either of them.

The existence of a translator also allows us to be more flexible in the
implementation of feedback. Since the tutoring agent describes feedback in
terms of scmantic events, the specific method of presenting feedback can
be customized for different audiences, for different system configurations,
and for difTerent tools using the same tutoring agent. For example, the se-
mantic command “Flag cell R4C4” could be translated to BorderAround
Cell “R4C4" Colorindex 3 (which, in Excel, draws a red border around
the cell) if the user had a color monitor and set OutlineFont of Font of Cell
“R4C4" to true (which displays the contents in outline font) if the user had
a monochrome monitor.

In the future, we would expect the translator to include natural language
translation facilitics as well. This would allow us to present text feedback in
the user's native language. With current technology, we can direct the trans-
lator to display a certain numbered message, and the translator can select the
text representation of that message based on the user’s language.

Yet another advantage of the translator design is that it allows multi-
ple tools and multiple tutors to be operating in a single system. That is, it
is possible to have mulliple tools sending messages to the translator. The
translator may then relay those messages (o a single or to multiple tutors
(depending on the tutoring agent design). 1t is also possible through this
architecture for a single tool to be supported by multiple tutors. Ritter and
Anderson (1995) describe an cquation-solving tutor which provides step-
by-stcp feedback. With this architecture, such a system could be supple-
mented by an “issue-bascd” tutor (Burton & Brown, 1982) which identifies
solution patterns across problems. In this case, the translator would send a
copy of the message 10 cach of the relevant tutors. There arc many issucs
still to be resolved about how the translator could mediate disagreements
between the tutors (both over the correctness of an action and ovcr access
to message windows and flagged items).

Plug-in Tutor Agents 329

TOWARD STANDARDIZATION

Based on our experiences in building the Sketchpad and Excel tutors,
we are able to take some steps toward standardizing the components of a
learning environment. Figure 2 illustrates the basic interaction within the
learning environment. The architecture consists of the four objects previ-
ously described. The rest of this section describes the specific routines used
to implement these objects.

USER
Mouse clicks. Messages.
typing. etc. highlighung of
ertors, etc
Tool
Semanuc
descnpuion of Scnipt 10 ighhight
user action errors, show messages.
(tool version) etc.

_ Translator x_

Descnpuion of elements

User aclion as. to highlight or
Selection unhighlight. messages.
Action undo request

Input

. Probiem definiion
Tutoring | @—————— | Cumiculum

Agent Manager

User performance info

Figure 2. General architecture for tutor agents

Tool

In keeping with our desire to work with tools without imposing a par-
ticular architecture on them, we do not define any particular propertics for
the tool other than the genceral propertics described previously. The tool is
required to cmit scmantic cvents corresponding to all uscr actions. Thesc
events should be at the intermediate grain-size discussed carlier. We do not
commit to any particular format for these events, but our systems have used
ApplcEvents for this purpose.

330 Ritter and Koedinger

Translator

The translator object needs to intercept all actions taken by the user
when using the tool. Typically, it translates these actions into selection-ac-
tion-input triples and passes the information to the tutoring agent. Al-
though the translation of the incoming semantic event into selection, ac-
tion, and input depends on the particular communication protocols for the
tool and the tutoring agent, we can define a standard variant of the transla-
tor which translates an AppleEvent into a selection-action-input form. For
example, in response to a SctData ApplcEvent, this method would set the
selection (o the value of the keyDirectObject parameler, the action to “Sct-
Data,” and the input to the valuc of the keyAEData paramcter. Similar
standard translations can be defined for all ApplcEvents.

The translator also needs to intercept Messages from the tutoring agent
1o the user. This allows the tutoring agent to describe feedback as semantic
cvents, which the translator can implement in a manner consistent with the
tool’s capabilitics. For cxample, some tools display messages in a fixed
window, while others may use a dialog which appears with the message (as
did the Excel tutor) and others may usc no message display at all (as with
the Skeichpad tutor). If the tool does not support message display, the
translator must be able to display messages in some other fashion. One
possibility is for the translator to display its own window;, another is for it
10 ask the tutoring agent to display a window (as the Sketchpad tutor did).

The implementation of highlighting and unhighlighting clements
clearly depends on the tool’s ability to display elements in different ways.
we allow complete flexibility in this implementation. The Excel tutor dis-
nlayed text in a different style, although it could just as casily put a border
around an errant cell. The Sketchpad tutor did not highlight clements at all.

Tutoring Agent

Messages received by the tutoring agent. The tutoring agent needs to re-
spond to six messages: start-problem, process-tool-action, process-help,
process-done, get-next-step, and reproduce-tool-state.

Start problem. The start-problem message takes two parameters, cOrre-
sponding to the initial and goal state of the problem. This message is typi-
cally sent by the curriculum manager. Systems which allow users 1o choose
a problem may scnd this message using the tutoring agent interface. Systemns

Plug-in Tutor Agents 331

which do not require users to specify their goals may not use this message
at all.

Process tool action. The process-tool-action message takes three parame-
ters, corresponding to the user’s sclection, action, and input. These param-
eters correspond closely to the standard semantic event description as sub-
ject, verb, and direct object. A fourth parameter is a unique action ID,
which the tutoring agent can use to refer to this action.

In response to the process-tool-action message, the tutoring agent
should update its representation of the problem state and decide how to
(and whether to) respond to the user’s action. If the tutoring agent decides
to respond, it sends one or more of the following messages to the transla-
tor: flag, unflag, point-to, send-message, undo, select, verify, update-as-
sessment, and start-activity. These events are described below.

Process help request. The process-help-request message is typically initiat-
ed by the user, by pressing a Help button or choosing a Help menu item
made visible through the tutoring agent interface. The translator routes this
message to the tutoring agent. The process-help-request message takes
three parameters: the user’s sclection, input, and a unique ID. The sclec-
tion is provided so that systcms can be sensitive to the user’s current focus
of attention. The user’s input will contain the topic in systems which allow
users to ask for help on specific topics. The input parameter can also be
used to support systems which provide different ways of asking for help
(e.g., the input could be “why” in onc case and “how” in another). Typically,
the system will respond to a process-help-request message with send-
message. In some cases, this will be accompanied by point-to, select, or
start-activity messages.

Process done. The process-done message takes no parameters. This mes-
sage is typically initiated by the user, by pressing a Donc button or choos-
ing a Done menu item made visible through the tutoring agent interface.
The translator routes this message to the tutoring agent. In systems where
assessient is updated upon completion of a problem (as opposcd to after
cach action), the tutor will rcspond to this message by sending update-
assessment. Other systems may use send-message (o send a congratulatory
message. In some learning environments, the tutoring agent may detect
completion of a problem and automatically move to the next one (without
user input). In such systems, the tutoring agent interface need not support a
Done button (or menu item), so the process-done message is not used.

Get next step. In some systems, it is desirable for the user to be able to ask
the system to perform some action, either instead of or in addition to pro-
viding help on an action to perform. In previous implementations of our

332 Ritter and Koedinger

tutoring systems (Koedinger & Anderson, 1993c), for example, we allowed
users to ask the system to “do this step for me.” The get-next-step message
results from such a request. It takes the selection as a parameter (s0 that the
user’s current focus of attention can be a factor in choosing the next step).
Get-next-step is initiated by the user through the tutoring agent inter-
face and sent to the translator. The translator sends the message to the tu-
toring agent and waits for a reply. The tutoring agent’s reply should con-
tain (up to) three parameters: the selection, action, and input for the next
step. The translator then changes these parameters into a scripting instruc-
tion for the tool. Clearly, this message can only be implemented by a tutor-
ing agent which is able to provide a correct user action. The tutoring agent
can return two error codes: kNoAction (the equation solver knows of no
correct action) and kDone (the problem has been completed).
Reproduce tool state. This message is a request 10 the tutoring agent to re-
produce a state of the tool and is typically initiated by the user through the
tutoring agent interface. It takes one parameter, which is either a descrip-
tion of the state to reproduce (¢.g., 3 statement of the form “student A’s
state on problem B™) or the constant kCurrentState. The tutoring agent
should respond with a scquence of perform-user-action mesSages. The pri-
mary purpose of this message is to recover from fatal errors in the tool. If
the tool and tutoring agent are running in diffcrent processcs and the tool’s
process crashes, the user should have access to a control which generates a
reproduce-tool-state message. This would allow the user to recover lost
work. In some systems, it may be possible for the tutoring agent of transla-
tor to detect an error situation and generate this event without intervention
by the user.

Messages sent by the tutoring agent. The tutoring agent has 10 com-
mands it can usc to communicate back to the user in response to either a
help request or a uscr action. These correspond to 11 messages: verify,
flag, unflag, point-fo, undo, send-message, select, :ﬁlﬁa-:?m.ﬁini.
stari-aclivity, perform-user-action, and get-user-value.

Verify. The verify message is used to indicate that the tutoring component
has received, understood, and responded to the user’s action. If the tutoring
component intends to send more than one message in response to a user
action (or request for help), the verify message is the last mcssage sent.
This message exists for several reasons. First, it can be uscd in systems
that require strict synchronization between user actions and tutoring
component evaluation. In such systems, it is desirable to prevent the uscr
from initiating an action until the tutor has fully responded to the previous

Plug-in Tutor Agents 333

».nno: (this is only an issue if the speed of the tutoring agent is slow rela-
tive to the speed of the user). In such systems, the translator may lock the
tool after each user action (using tool-appropriate scripting) and unlock the
tool upon receiving a verify event from the tutoring agent.

In some systems, the verify event is used to indicate to the user that the
tutor has completed its evaluation of an action, even if such completion is
not required before the user can continue. In a revised version of the Excel
tutor (see Figure 3), cell values were displayed in blue but were changed to
black upon verification by the tutor.

The verify cvent can also be used to implement corrections. For exam-
ple, it may be desirable to correct spelling errors for the student or to al-
ways round off decimals to a fixed number of digits. The verify event can
provide the corrected spelling (or rounded-off number).

. Finally, in systems with multiple tutor agents, the verify event pro-
S%..a. a way for the translator to ensure that it has received input about a
particular user action from every relevant tutoring agent before it relays
that feedback to the user. Systems which require none of these features may
not use the verify event at all.

. The verify message takes three parameters: the ID of the event being
verified (as passed in the process-tool-action and process-help-message
messages), a Boolean indicating whether the action being verificd was con-
sidered correct or incorrect, and a parameter indicating a value to use to rc-
place the user’s input (for corrections). The latter two arguments arc
optional.

.Zam. The flag message is a request to flag a particular item or set of items
in the tool. Flagging involves some visible and persistent change in the
display of the item. For text items, this may involve a change in font. For
A.u::uw itcins, this may involve drawing a border around the item or display-
ing the item in a different color. The particular implcmentation of flagging
is up to the translator. The flag message takes one parameter, which is a
description of the item to flag.

.Qx\:ﬁ. The unflag message is a request to return a particular item or sct of
items in the display to their unflagged state. This would be used in re-
sponsc to the user’s correction of a flagged item. The unflag message takes
one parameter, which is a description of the item to unflag.

Point-fo. The point-to message is a request to highlight or otherwise point
out a particular item or st of items in the display. The distinction between
pointing and flagging is that pointing is a temporary event used to
draw the user’s attention to something. Flagged items will become un-
flagged only when the user corrects an error. Pointed-to items can return to
their normal state once the user has noticed them.

134 Ritter and Koedinger

It is up to the translator to decide how to implement the pointing. That
is, the translator decides whether pointing to a text object results in setting
the text font to oulline, circling it, or drawing an arrow pointing to it. Sim-
ilarly, the duration of pointing is up to the translator. Conceptually, the
highlighting of an object should last until the user changes focus. Typical-
ly, this mecans that the object stays highlighted until the user changes the
current window or the sclection within the window, but the particular ac-
tions that define a change of focus may depend on the capability of the tool
or display device. In some cases (like when “pointing to” involves blinking
the item three times), the pointing may stop after a fixed period of time
rather than any action by the user. In some cases (like when AppleGuide is
used 1o circle an object), pointing will end without any action by the trans-
lator. In others, the translator might have to determine the change of focus
(by interpreting a message sent from the tool) and send a message back to
the tool to end the highlighting. The point-to message takes one parameter,
which is a description of the item to highlight.

Undo. The undo message is a request to undo the user’s action (that is, to
return the user tool to a previous state). This message is used in systems (or
portions of systems) which do not allow the user to continue afler an error.

The undo message takes two parameters: the action ID (as passed in

the process-tool-action message) and a Boolean indicating whether subse-
quent actions (if any) should also be undone. The second parameter is op-
tional. Depending on the tool and the cleverness of the translator, undoing
subscquent actions may be required.
Send-message. The send-message message is a request to present some text
to the user. The text can be specified as a single string or as a list of
strings. 1f a list is given, the translator should display the messages in the
list in order, at the request of the user. That is, the user should see the first
message and be provided with a More button that allows the user to sce
subsequent messages (a Previous Message button is also desirable). The
usar may chose not to sce all the messages in the sequence. We typically
use a series of messages in this fashion to give help. The initial help mes-
sage is a high-level goal, and subsequent messages give more specific in-
formation. The message text may be a “styled” string (or list of styled
strings), which includes information about typeface.

In addition to the text itself, this message can include three parame-
ters: pointers, presentation format, and message place. The pointers argument
provides a way to implement a point-to mechanism that is synchronized with
message presentation. This takes the form of a list equal in length to the
nuinber of text messages. Each element of this list can be null (indicating

Plug-in Tutor Agents 335

that no pointer is to accompany this message) or a list of objects that are to
be pointed-to when the user is viewing the corresponding part of the message.

The presentation-format parameter can be used to specify a preferred
way of displaying the message. Its value can be either kUseDialog, kMes-
sageArea, kUrgent, or kBestWay. kUseDialog specifies that the message
should be displayed in a movable modal dialog,. kMessageArea specifies
that the message should be displayed in a message arca (such as a space at
the bottom of a window or a window dedicated to displaying messages).
kUrgent specifies that the message should be displayed in a modal dialog
and accompanied by a beep. If the operating system supports it, the transla-
tor should try to present kUrgent messages o the uscr, cven if the current
application is not part of the learning environment. kUrgent messages are
intended for messages that indicate serious problems, such as system er-
rors. They should not be used for typical feedback. kBestWay specifies that
the translator (or display device) should decide how best to display the
message. Depending on the capabilities of the tool, the translator may de-
cide to ignore this parameter.

The message-place parameter gives further information when kMes-
sageArea is used as the presentation-format. This parameter specifies the
application and/or the window within that application in which to display
the message. For example, it might specify that the message should display
in the “graph window of the grapher.” If the presentation format is kMes-
sageArca and this parameter is omitted, it is up to the translator to select
an appropriate message arca.

As with pointing, messages shown with kMessageArea should disap-
pear with a change of context. Messages shown with a dialog will be dis-
missed by the user. The detection of the change of context is subject to the
same issues discussed with regard to the point-to message.

Select. The sclect message is used to change the focus of attention in the
tool. For most tools, this is interpreted as the place where keyboard input
would go. This message should be used sparingly, since it can be discon-
certing to users. In most cases, the proper response to a user who has asked
for help with an invalid sclection is to point to an appropriatc sclection
(through cither the scnd-message or point-to messages), rather than to sc-
lect it. The sclect message is a more appropriate response to a direct query
of the form “Where do I go next?” This message takes a single argument:
the object to select.

Update assessment. The update assessment message is used to indicate that
the tutoring component wants 10 change its assessment of the student’s
progress. In some systcms, progress is assessed afler every user action; in

336 Ritter and Koedinger

others, this update occurs only at the end of a problem (or at the end of a
serics of problems). The message takes three arguments: the measure to
update, the amount to change it, and the direction of the change. In our
systcms, the measure to update is given as a string specifying the skill to
update. The amount 10 change and direction of change parameters are op-
tional. Systems which always increment or decrement by a fixed amount
can omit the amount to change parameter. Systems which can provide ei-
ther a positive or negative amount to change may omit the direction pa-
rameter. The translator forwards this message to the curriculum manager.
Start activity. The start-activity message is a request to start some activity
for the user. This is something of a catch-all, which allows the tutoring
agent to initiate any activity. It is intended for instructional activities that
can take place without the {ntervention or knowledge of the tutoring agent.
Activities might include showing a picture or movie, pulling up a calcula-
tor, and so forth. This message takes one parameter: a description of the
activity to start.

Perform user action. The perform-uscr-action message provides a way for
the tutoring agent to affect the tool in the same way that the user does. This
message takes three parameters: the selection, action and input. The trans-
lator must convent these parameters into a script suitable for controlling the
1ool. This message is typically sent in response (o a reproduce-tool-state
message, but it can also be uscd in systems in which the user can ask for a
demonstration of a step or a sct of steps.

Get user value. The get-user-value message is used in cases where the tu-
toring agent nceds more information before it can determine the correct-
..css of a user action. This might be the case if the tool being tutorcd is not
fully emulated by the tutoring agent. For example, a tutoring agent for a
spreadsheet tool need not be fully able to calculate the values of formulas
in the spreadsheet’s formula language. If the user typed “=SQRT(R3C6)"
in cell R8C8 and then entercd 16 into cell R3C6, the tutoring agent may
not be able to determine that the value of cell R8C8 is now 4. The tutoring
agent could use the get-user-value message to determine the value of cell
R8CS8. The get-user-value message takes three arguments: the object, the
property that the tutoring agent wants to query, and a code indicating the
data type that the tutoring agent wishes to receive.

Plug-In Tutor Agents 337

Curriculum Manager

The curriculum manager accepts the update-assessment method. We
leave the specifics of the description of the measure to update to the partic-
ular implementation, since this will depend on how the tutoring agent
measures performance. In our tutors, we would send a list of skills and, for
each skill, the tutoring agent’s estimate of the user’s progress on that skill.
The curriculum manager would then choose a problem which emphasized
the student’s weakest skills. Other systems might simply take a count of
the errors made by the student. In systems which externalize the student
model (Paiva, Self, & Hartley, 1995), the curriculum manager is responsi-
ble for storing information in an appropriate format. The use of a single
update-assessment method to maintain the student model assumes a fairly
simple representation. Systems with more extensive student models may
need to add additional methods.

L

& Flle Edit View Insert format Tools Dats Window Tutor
B12

i
e Iucel tutor2 V= —— 1]
. Y

i n _ o _ n _0
A sitka spruce tree in the arctic Circle grows only =

0.3 centimaters per yeor

=

»

! How many centimeters would this tree grow in s day?
2 How many centimeters would this tree grow tn 100 yeers?
3. How many centimeters would this tree grow in 200 yeors? §

|l

-]
L

7.|4. How long would tt take for this tree Lo grow I meter?
B
G| Ladels Time 'Height
10 jUnits yesrs "n.-:a..:: 0
1% |formule k.3 ;. 3%
12 1 _u
13 2 100!
T4 3 200,
15 4 N
16.
¥
Tl AP TPR\ Sheett /Shentz FSheet3i [Sheetdl & AR AR 2 1]

Info: [Excel tutor2]Sheet!

Cell: B12

Formule: 1

Note: 1 i the time tn DAYS, but we want to use YEARS. Convert the time
from days to yesrs

Figure 3. A view of the revised version of the Excel Tutor (using Excel 5.0).
Note that, on the user’s color monitor, the number in cell B12 will be dis-
played in red, and Excel displays a red square in the upper right corner of
that cell, indicating that there is a note attached to it.

338 Ritter and Koedinger

OTHER ISSUES

We have developed several prototype systems based on czno:..v_o@
implementations of this architecture. Through this work, we have identi-
fied several issues which test the limits of the architecture.

Side Effects

Monitoring the user’s actions is not the same as Bo::ol.:m the tool’s
activity. For example, in a spreadshect, when the user types into one cell,
the tool might respond by updating values in 50 cells. However, the trans-
lator (and thus the tutoring agent) will only record one event: the user typ-
ing into a single cell. From the tutor’s point of view, the fact that 50 cells
changed is just a side effect of the user typing into the one cell. .

For most tutor agents, this is not a problem at all. The tutoring wmn.E
will have recorded events for each of the 50 formulas the user had earlier
typed in. If, at that time, the tutoring agent verified that the formulas were
entered correctly and if the user’s current entry is also correct, then the
agent may not need to check (or even know) the value of each of En. 50 on:.m.

Even so, a sophisticated agent could, in principle, determine &Eor
cells the spreadsheet would need to update on the user’s current action. If
the agent has enough knowledge about the spreadsheet’s formula _.m:mcmmn.
it could calculate the values put into each of the 50 cells. Alternatively, the
agent could use get-user-value 1o determine the values of the 50 cells. Ina
sprcadsheet that supports such a property, the tutoring agent may be able to
use get-user-value to ask the tool for the dependents of the current cell, so
that it does not have to determine which cells changed in response to the
user’s action. .

On some occasions, the data maintaincd by the tool may be different
from the data required by the tutoring agent. In such cascs, the tool consid-
ers the information relevant to the tutoring agent to be a side effect of E.o
data maintained by the tool. Consider a drawing tool like the Omo.sﬁmx s
Sketchpad in which the user wants to construct an w:.m_n of u.on&:: mea-
sure. The user joins two line scgments at a single “pivot” point. The user
then drags the end of one of the line segments to change the angle camions
themn. The tool might reasonably describe this activity as: ._mo_oncos =
pointl, action = “Move,” input = 50,50], representing 90. activity o.n mov-
ing the end point of the line scgment. However, the tutoring agent is con-
cerned with the angle this action formed between the two line scgments.

Plug-In Tutor Agents 339

If the tool supports a “measure angle” property, the tutoring agent
might be able to use get-user-value to determine the angle formed by the
user’s action. If not, then there is a slight mismatch between the abilities of
the tool and the desires of the tutoring agent. In this case, we would have
to work around the problem by having either the tutoring agent or the
translator calculate the angle based on the information it has about the po-
sition of the three points defining the line segments. The decision about
whether the tutoring agent or translator is responsible for this calculation
affects the generality of these components. If the translation is done in the
translator, we could more easily adapt the tutoring agent to a tool which
did support a measure angle property.

Grain-Size

There are some situations where user actions at the level of semantic
events are not sufficient. If we were concerned with the user’s typographic
errors or the specific way that the user accomplished a task (by a menu or
through a control key, for example), we would need access to user-inter-
face events.

It is fairly easy to see how the architecture could be augmented to sup-
port this goal. In an operating-system-dependent manner, the translator
could monitor user-interface events and send them to the tutoring compo-
nent along with (or instead of) the semantic events. The method of describ-
ing these events would differ from that used for semantic events, of course,
and it would be appropriate to define a separate message to be used for
sending cvents of this kind. Some systems might require that uscr-interface
and semantic cvents be coded so that the tutoring agent can dcterninine
which user-interface events go with which semantic events. The KATIE

system (Kosbie & Myers, 1993) integrates semantic and user-interface
cvents in this way.

Synchronization

Since the tool operates unhindered by the tutoring agent, there is po-
tentially a problem of synchronization between the tool and tutoring agent.
Specifically, a tutoring agent which is slow relative to the speed of the user
of the tool may allow the user to perform multiple actions before evaluating
the first one. This can cause two problems. First, it can be difficult to give

340 Ritter and Koedinger

feedback to the user on an action that happened several steps ago. It is usu-
ally unacceptable to interrupt the user with a dialog referring back to previ-
ous steps. Second, in some tools, it can be difficult for the user to correct
actions that have been performed on the assumption that previous actions
have been correct. This is especially the case for tools which do not provide
a large undo stack. A similar problem arises in tools which may allow the
user to put the system in a logically impossible state. This was the case in
our equation-solving system, where an error in arithmetic could crcate an
cquation that was not consistent with the one being solved. Although the
system could let the user continue at this point, the user could never reach
a correct answer (except by a fortuitous second error). This is a case where
it is probably best to correct the error before continuing.

The fcedback problem can largely be solved through good interface de-
sign. In the original version of the Microsoft Excel tutor, if the user en-
tered an incorrect value, the tutor immediately displayed a dialog with an
error message. In a revised version of the tutor (see Figure 3), the message
was attached to the errant cell in the form of 2 “note.” In Excel, cells with
attached notes appear with a red square in the corner. The note is visible in
an accompanying window when the cell is selected. Help messages (that is,
those messages that result from a user’s request for help) were still dis-
playcd in a dialog. 1f the message to be displayed resulted from a mistaken
user action, the tutoring agent sent the send-message message with the
presentation format parameter set to kMessageArea; when the message re-
sulted from a request for help, it used kUseDialog.

The second synchronization problem arises in cases where we do not
want the user to continue using the tool until an error has been corrected.
In this case, we want the tool to act as if the tutoring agent is an integral
component of the tool, rather than a more passive commentator.

The proposed architecture provides some mechanisms for supporting
this mode of interaction, but the specific solution will depend on the capa-
bilities of the tool. The basic technique is for the transtator to prevent the
user from acting (or accomplishing any work) between the time it receives
a scmantic event and the time it receives a verify message from the tutor-
ing component for that event. One way to accomplish this is for the trans-
lator to make the user’s document read-only when it receives a semantic
event and to return the user’s document to read-write afler receiving the
verify message. Another technique would be to have the translator send
undo events to the tool for any semantic events that arrive between the time
the original scmantic event arrives and the verify message is reccived.

Clcarly, neither of these techniques is ideal because both amount to slow-
ing down and interrupting the user in order to allow the tutoring component

Plug-In Tutor Agents 341

to function. However, it is important to recognize that such synchroniza-
tion techniques need be employed only in special situations and, even in
such situations, they will be visible to the user only if the tutoring compo-
nent is much slower than the user’s ability to operate the tool.

Goal Orientation

An important consideration in a learning environment is whether it is
aware of the user’s goals in performing some action. Our systems present a
problem to the user, thus defining the user’s high-level goals. Our propos-
als here are based on our experiences with such systems, but we believe
this architecture could be applicable to systems which need to infer user’s
goals from context.

For example, Eager (Cypher, 1993) monitors sequences of user actions
at the semantic level and recognizes when the user is performing a repeti-
tive task that can be more efficiently done with a macro. Such a system
could be built with this architecture, although the curriculum manager
would be absent.

Similarly, Tip Wizard in Microsoft Excel 5.0 looks for more efficient
ways for the user to navigate through the interface. For example, it might
detect that a user has moved through several levels of dialogs to perform an
action when the same action could be accomplished by pushing a function
key. Since this system is aimed at giving advice on manipulating the inter-
face, our architecture would need to be supplemented with information
about user-interface events, but the same principles would apply.

Relationship to Tool-Specific Help Systems

Many applications come with help systems. Plug-in tutor agents may
be seen as a special kind of help system, with the advantage that they are
tracking the user’s activity step-by-step, and thus can target advice to indi-
vidual users.

A tool-specific help system and a plug-in tutoring agent can comple-
ment each other well. If the user recognized that they wanted help with op-
crating the tool, the user could ask for tool-specific help. If the user wanted
1o know what action to take next, the uscr could ask the tutor. If the tutor-
ing component was developed to be tool-independent, its advice would stop
at the semantic level. For example, it might say “Enter 10 in the cell.” If

342 Ritter and Koedinger

the user still didn’t know how to proceed, the tutoring agent might call on
the tool-specific help system to give advice on using the tool (in this case,
the tutoring agent would want to present the tool’s advice on “how to enter
a value in a cell”). This tool-based advice may be different for different
spreadsheets. In this way, the tutoring agent can direct the user to tool-
specific instructions, even if the tutoring agent is written in a tool-
independent manner.

AppleGuide is an example of an advanced help system that could rea-
sonably be adopted to be used with a plug-in tutoring agent. The use of Ap-
pleGuide is especially promising because it, like the plug-in agent architec-
ture described here, works as a plug-in addition to an application.

Relationship to ESSCOTS

McArthur, Lewis, and Bishay (1996) provide an excellent argument
for using off-the-shelf sofiware as a basis for educational environments
(which they call ESSCOTS). We share their goals and enthusiasm for this
approach and believe that ESSCOTS and plug-in tutor agents illustrate two
diffcrent ways to take advantage of off-the-shelf soflware. The ESSCOTS
approach takes a complex software system and provides scaffolding so that
students can better take advantage of it. Through intelligent monitoring of
students’ skills, it is possible to structure the system so that it adapts to the
student’s current skill level.

The needs of our intelligent tutor agents have led us to focus on some-
what different issues in our communication with off-the-shelf software.
Tutor agents require a fairly fine-grained description of the student’s activ-
ity, so much of our activity has been concerned the content and format of
this information. In addition, we have tried to develop abstract specifica-
tions of off-the-shelf software, so that it is possible to substitute one off-the-
shelf tool for another, similar one. It is clear that the tool adaptability of-
fered by ESSCOTS would benefit our plug-in tutors, and, in future work, we
intend to explore ways in which we can offer adaptability in this framework.

Domain-Independence of the Translator

Despite our desire to write tutor agents for off-the-shelf tools, we have
sometimes been unable to identify an appropriate off-the-shelf tool for the
subject we want to tecach and so have had to write our own tools. Even in

Plug-In Tutor Agents 343

such cases, we have found it helpful to follow this architecture. In part, the
architecture helps to separate the responsibilities of the programmers on
the project. In part, the architecture allows us to define a series of tools to
work with a single tutoring component. This gives us the option of having
users work on a very restricted tool at the beginning and then gradually ad-
vance 1o a less restrictive but more powerful tool as they progress through
the curriculum.

One of the issucs that arises in designing such a system is how much
to rely on the translator to understand the operation of the tutoring compo-
nent. These issues relate to the expected domain of the tool. We have now
built several spreadsheet tools (and accompanying translators) to be used
with our algebra tutors. In these tutors, students use one column to repre-
sent the X variable and one row to represent the column heading.

Our spreadsheet tools generate cell references within semantic events
in R1C1 format. In some translators, we keep this format when we send in-
formation to the tutoring agent. The translator just offsets the specific row
and column numbers to account for the user’s placement of their table
within the full spreadsheet. From the tutoring component’s point of view,
the user always starts the spreadsheet at Row 0 and Column 0. This ap-
proach is very general, and it is easy to see how we might easily adapt a
translator written for our own tool to use Microsoft Excel. The tutoring
component has the responsibility of figuring out that Column 0 correc-
sponds to the X-variable column. Under this approach, authoring the trans-
lator is largely mechanical and, in fact, we arc working on a user-level au-
thoring tool for translators of this kind (Ritter & Blessing, 1996).

Another approach is to tailor semantic events 10 what we know abou!
our tutoring component. A difTcrent spreadsheet tool written for usc with
our algebra tutors uscs a translator which describes cells as (for example;
“the cell in the X-variable column and the column-heading row.” Since
this description refers to elements in the tutoring component’s descriptive
language, it requires that the tutoring component communicate some infor.
mation back to the translator and that the translator store some state infor-
mation. In this system, if the user chooses to put the X-variable column i1
Column 2 of the spreadsheet, the tool tclls the tutoring component (througl
the translator) that the user put the string “ X ™ in Row 2 of Column 2. Th
tutoring component then instructs the translator to name this columi
the “X-variable” column in subsequent references. The advantage of such :
system is that the tutoring component does not need to compute or maintaii
the mapping between row and column coordinates and semantic references.

344 Ritter and Koedinger

Either approach can be accommodated by the architecture described
here. The choice of one approach over the other depends on the expected
use of the tutoring component and translator.

Plug-In Tutors and the Internet

The desire to provide educational materials over the Internet has led
us to consider extensions to the architecture described here. We could
imagine the communication between any of the modules in a plug-in tutor-
ing agent taking place across the Internet, rather than between processes
on the same machine.

Because of the density of communication between the tool and tutoring
agent, fcedback from the tutor may be delayed if the communication be-
tween these elements travels over the Internet. Since the tool runs indepen-
dently of the tutor, however, students can continue to work with the tool,
regardless of tutor and network speed. When students make error-free
progress toward a solution, there will be no performance delays as the tool
processes each action locally while the remote tutor agent works to keep
up. During student thinking time the tutor can often catch up, but in some
cases students may want to wait for feedback or help messages. It is impor-
tant to note, however, that such delays, measured in seconds, will be much
shorter than the typical homework situation where the student must wait
until the next day for help from the teacher. For some applications, this so-
lution may be a reasonable one.

A second solution is to put both elements (along with the translator)
on the server side of the link. We are currently experimenting with a sys-
tem that uses an HTML form as the interface tool. This form communi-
cates with a CGI front-end, which forwards information to the translator.
This architecture allows complete re-use of the tutoring agent, but the na-
ture of HTML forms prevents us from implementing the kind of finc-
grained feedback that we typically use in our tutoring systems.

A third approach is for the tool, translator, and tutor to run on the cli-
ent side (perhaps as Java programs). This would allow (though not require)
more f{ine-grained feedback. If the curriculum manager were on the server,
comimunication over the Internet would only be needed when the student
wanted to load a problem or save work. The advantage of having the cur-
riculum manager on the server is that students would have access to their
work from any machine capable of connecting to the Internet.

Plug-In Tutor Agents 345

CONCLUSION

In our development of two systems that add tutor agents to pre-exist-
ing tools, we have begun to define a set of standards that will simplify the
creation of learning environments of this type. We believe that technology
has advanced to the point where it is practical to think about building sys-
tems this way. Furthermore, the resulting systems combine the best ele-
ments of workplace tools and educational microworlds with guided instruc-
tion that has proved to be effective.

Although the specifications described here are sufficient for the tutors
we have built in the past, we need to consider ways in which they could ap-
ply to the next generation of tutoring systems. Our architecture defines a
tutoring agent as a robot, which has certain senses for monitoring user per-
formance and certain effectors for communicating with others. The result
of our work on this architecture has been to describe a way of implement-
ing these senses and effectors using widely available technology.

By scparating the tutoring agent from the other components of the
learning environment, we can imagine, for example, developing a robotic
tutoring agent which interacts with students over the Internet in rooms of a
multi-user domain (MUD). While the standards introduced here define
senses and effcctors sufficient for the kind of learning environment we
have already built, more work needs to be done to determine whether
the type of interaction described here is appropriate in a wider variety
of environments.

References

Anderson, J.R. (1988). The expert module. In M.C. Polson & J.J. Richard-
son (Eds.), Intelligent tutoring systems (pp. 21-53). Hillsdale, NJ:
Lawrence Erlbaum.

Anderson, J.R., Conrad, F.G., & Corbett, A. T. (1993). The Lisp tutor and
skill acquisition. In J.R. Anderson (Ed.), Rules of the mind (pp. 143-
164). Hillsdale, NJ: Lawrence Erlbaum.

Anderson, J.R., Corbett, A.T,, Koedinger, K.R., & Pelletier, R. (1995).
Cogpnitive tutors: Lessons leamed. The Journal of the Leaming Sciences, 4
(), 167-207.

Anderson, J.R., & Pelletier, R. (1991). A development system for model-
wracing tutors. In Proceedings of the International Conference of the
Learning Sciences, (pp. 1-8). Evanston, IL.

Apple Computer, Inc. (1993). Inside Macintosh: Interapplication commu-
nication. Reading, MA: Addison-Wesley.

346 Ritter and Koedinger

Breuker, J. (1990). Eurohelp: Developing intelligent help systems. Copenhagen: EC.

Brusilovsky, P. (1995). Intelligent learning environments for programming:
The case for integration and adaptation. In Proceedings of the Seventh
World Conference on Artificial Intelligence in Education, (pp. 1-8).
Charlottesville, VA: Association for the Advancement of Computing in
Education.

Burton, R.R., & Brown, J.S. (1982). An investigation of computer coaching
for informal learning activities. In D. Sleeman & J. S. Brown (Eds.),
Intelligent tutoring systems, (pp. 79-98). New York: Academic Press.

Cypher, A. (1993) Eager: Programming repetitive tasks by demonstration.
In A. Cypher (Ed), Watch what 1 do: Programming by demonstration
(pp. 204-217). Cambridge, MA: MIT Press.

Fox, T., Grunst, G, & Quast, K. (1994). HyPLAN: A context-sensitive hy-
permedia help system. In R. Oppermann (Ed.), Adaptive user suppori,
(pp. 126-193). Hillsdale, NJ: Lawrence Erlbaum.

Gates, B. (1987). Beyond macro processing. Byte, 12(N, 11-16.

Jackiw, R.N., & Finzer, W.F. (1993). The Geometer's Sketchpad: Program-
ming by geometry. In A. Cypher (Ed)), Watch what I do: Programniing
by demonstration, (pp. 292-307). Cambridge, MA: MIT Press.

Koedinger, KR, & Anderson, J.R. (1993a). Effective use of intelligent
software in high school math classrooms. In Proceedings of the Sixth
World Conference on Artificial Intelligence in Education, (pp. 241-
248). Charlottesville, VA: Association for the Advancement of Com-
puting in Education.

Koedinger, K.R., & Anderson, J.R. (1993b). A cognitive tutor for mathe-
matical investigation and reasoning. Unpublished proposal manuscript
Koedinger, K.R., & Anderson, JR. (1993c). Reifying implicit planning in
geometry: Guidelines for model-based intelligent tutoring system de-
sign. In S. Lajoie & S. Derry (Eds.), Computers as cognitive tools.

Hilisdale, NJ: Erlbaum.

Koedinger, K.R., Anderson, J.R., Hadley, W.H., & Mark, M.A. (1995). In-
telligent tutoring goes 10 school in the big city. In Proceedings of the
Seventh World Conference on Artificial Intelligence in Education.
Charlottesville, VA: Association for the Advancement of Computing in
Education.

Kosbie, D.S., & Myers, B.A. (1993). A System-Wide macro facility based
on aggregate events: A proposal. In A. Cypher (Ed.), Watch what I do: Pro-
gramming by demonstration (pp- 433-444). Cambridge, MA: MIT Press.

Lajoie, SP., & Lesgold, A. (1989). Apprenticeship training in the work-
place: Computer coached practice environment as a new form of ap-
prenticeship. Machine-Mediated Learning, 3, 7-28.

Mark, M.A., & Greer, J.E. (1995). The VCR tutor: Effective instruction for
device operation. The Journal of the Learning Sciences, 4(2), 209-246.

McAsthur, D., Lewis, MW, & Bishay, M. (1996). ESSCOTS for learning:
Transforming commerical software into powerful educational tools.
Journal of Artificial Intelligence in Education, 6(1), 3-33.

Plug-In Tutor Agents 347

National Council of Teachers of Mathematics (1989). Curriculum and eval-
uation standards for school mathematics. Reston, VA: Author.

Olsen, D., & Dance, J. (1988). Macros by example in a graphical UIMS.
IEEE Computer Graphics and Applications, 8(1), 68-78.

Paiva, A, Self, J., & Hartley, R. (1995). Externalising learner models. In
Proceedings of the Seventh World Conference on Artificial Intelli-
gence in Education. Charlottesville, VA: Association for the Advance-
ment of Computing in Education.

Ritter, S., & Anderson, J.R. (1995). Calculation and strategy in the equa-
tion solving tutor. In Proceedings of the Seventeenth Annual Confer-
ence of the Cognitive Science Society.

Ritter, S., & Blessing, S.B. (1996). A vSmBBB._:m-g-aoBonm:w:o: tool
for retargeting instructional systems. In Proceedings of the Second In-
ternational Conference on the Learning Sciences. Charlottesville, VA:
Association for the Advancement of Computing in Education.

Ritter, S., & Koedinger, K.R. (1995). Towards lightweight tutoring agents.
In Proceedings of the Seventh World Conference on Artificial Intelli-
gence in Education (pp- 91-98). Charlottesville, VA: Association for
the Advancement of Computing in Education.

SCANS (1991). What work requires of schools: A SCANS report of Ameri-
ca 2000. Secretary’s Commission on Achieving Necessary Skills. U. S.
Department of Labor.

Schwartz, J. L., Yerushalmy, M., & Wilson, B. (1993). The geomelric sup-
poser: What is it a case of? Hillsdale, NJ: Erlbaum.

Acknowledgements

This material is based upon work supported by the National Science Foun-
dation and the Advanced Research Projects Agency under Cooperative
Agreement No. CDA-940860 and the CAETI project. This paper is an ex-
tension of work first reported in Ritter and Koedinger (1995).

