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We present a methodology for designing better learning environments. In Phase 1,
6th-grade students’ (n = 223) prior knowledge was assessed using a difficulty factors
assessment (DFA). The assessment revealed that scaffolds designed to elicit contex-
tual, conceptual, or procedural knowledge each improved students’ ability to add and
subtract fractions. Analyses of errors and strategies along with cognitive modeling
suggested potential mechanisms underlying these effects. In Phase 2, we designed an
intervention based on scaffolding this prior knowledge and implemented the com-
puter-based lessons in mathematics classes. In Phase 3, we used the DFA and sup-
porting analyses to assess student learning from the intervention. The posttest results
suggest that scaffolding conceptual, contextual, and procedural knowledge are prom-
ising tools for improving student learning.

Well-structured, organized knowledge allows people to solve novel problems and
to remember more information than do memorized facts or procedures (see
Bransford, Brown, & Cocking, 2001, for a review). Such well-structured knowl-
edge requires that people integrate their contextual, conceptual and procedural
knowledge in a domain. Unfortunately, U.S. students rarely have such integrated
and robust knowledge in mathematics or science (Beaton et al., 1996; Reese,
Miller, Mazzeo, & Dossey, 1997). Designing learning environments that support
integrated knowledge is a key challenge for the field, especially given the low
number of established tools for guiding this design process (Lesh, Lovitts, &
Kelly, 2000). In this article, we use our design of a lesson within a larger design ex-
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periment to illustrate the combination of a variety of methodologies drawn from
cognitive science and education to guide and evaluate our design.

In the introduction, we first provide an overview of our methods for designing
and evaluating a learning environment. Next, we review previous research on three
critical types of knowledge that we tried to elicit in our learning environment: con-
textual, conceptual, and procedural knowledge. Finally, we describe this study on
adding and subtracting fractions with sixth graders, including the scaffolds used to
elicit each type of knowledge.

DESIGNING LEARNING ENVIRONMENTS

Appropriate methods for designing and evaluating learning environments are still
emerging (Barab & Squire, 2004; Lesh et al., 2000). In this study, we illustrate the
potential benefits of combining four key methods drawn from cognitive science
and educational research for informing the design, evaluation, and revision of
learning environments. First, we used difficulty factors assessment (DFA) and
analyses of errors and strategy use to identify students’ prior knowledge.

DFA can be used to identify what problem features (i.e., factors) facilitate prob-
lem solving. Target factors are systematically varied and crossed with specific
problem contexts and numerical values so that the factors are not confounded with
these other problem features, leading to multiple versions of the assessment
(Koedinger & Nathan, 2004). For example, to evaluate the impact of having a story
context, one version of the assessment might ask children to add 1

2 + 2
3 in the con-

text of the story problem and to add 3
4 + 1

7 without a story context. The format of
the two questions would vary only in the presence of the story context. A second
version of the assessment would do the opposite: add 3

4 + 1
7 in the context of a story

problem and 1
2 + 2

3 without a story context. Collapsing data across the two ver-
sions provides estimates of student accuracy when a problem does and does not
have a story context, and these estimates are not confounded by potential differ-
ences in the difficulty of particular numbers used. In this study, we used DFA to
evaluate the effects of three different knowledge scaffolds on problem-solving ac-
curacy.

Analyses of students’ errors and strategy use on the DFA provide further in-
sights into how each problem factor impacts problems solving. Students’ errors
can be used to infer students’ incorrect problem-solving strategies (e.g., Siegler,
1976). Additional information on students’ strategies can be elicited via requests
for verbal self-reports or through analysis of overt behavior, including written
work (e.g., Koedinger & Nathan, 2004; Rittle-Johnson & Siegler, 1999).

Evidence regarding the factors that facilitate problem solving and clues regard-
ing how these factors influence the problem-solving process can be used to inform
a cognitive task analysis of the domain. The goal of a cognitive task analysis is to
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elucidate the likely decision processes, knowledge, and procedural skills needed to
complete a task (Lovett, 1998; Schraagen, Chipman, & Shalin, 2000). Such an
analysis can improve the design of instruction and assessment (e.g., Klahr &
Carver, 1988). To increase its power, a cognitive task analysis can be instantiated in
a cognitive model designed to simulate the proposed problem-solving process.
This model precisely articulates potential mechanisms and provides an avenue for
making predictions that are empirically falsifiable (Anderson, 1993; Koedinger &
MacLaren, 2002). We use a form of cognitive modeling we call knowledge-compo-
nent modeling, which is a middle ground between a paper-and-pencil task analysis
and a completely implemented production system model. Knowledge-component
modeling yields many of the benefits of a production system simulation but with
lower resource costs. Our knowledge-component modeling of student problem
solving yielded a detailed exploration of potential mechanisms underlying the im-
pact of each scaffold on problem-solving difficulty.

Thus, results from the DFA, analyses of students’errors and strategies, and cog-
nitive modeling provide a detailed description of students’ current problem-solv-
ing processes. In turn, this description provides a foundation for the design of in-
struction to improve children’s knowledge. For example, it identifies prior
knowledge possessed by many children that may be useful for bridging to (i.e.,
scaffolding) more complete knowledge of the domain.

This information is particularly valuable in combination with a design experi-
ment. Design experiments involve iterative redesign over the course of the project
based on observations and assessments gained while the study is being conducted
(e.g., Cobb, McClain, & Gravemeijer, 2003). During this iterative redesign, it can
be difficult to disentangle which features of the design experiment are driving its
effectiveness and thus, which features should be kept and which should be altered.
Identifying these key features is crucial for developing a pedagogical domain the-
ory, for extending the findings to new domains, and for contributing to theory on
how people learn (A. L. Brown, 1992). The combination of using DFA, strategy
and error analyses, and cognitive modeling at multiple phases of the design experi-
ment can provide such data. In this study, a DFA and supporting analyses were
conducted at the beginning of one unit within a design experiment and at the end of
the first iteration of the unit to help identify critical design features and to provide
suggestions for revisions.

TARGET KNOWLEDGE SOURCES

Our initial design was guided by prior research in cognitive science and mathemat-
ics education on the importance of at least three types of knowledge for problem
solving: contextual, conceptual, and procedural knowledge. We consider the role
of each type of knowledge following.
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Contextual Knowledge

First, consider the role of contextual knowledge in problem solving. This is our
knowledge of how things work in specific, real-world situations, which develops
from our everyday, informal interactions with the world (J. S. Brown, Collins, &
Duguid, 1989; Leinhardt, 1988; Mack, 1990; Saxe, 1988). Students’ contextual
knowledge can be elicited by situating problems in story contexts. In contrast,
problems can be presented symbolically using only mathematical symbols such as
numerals, operators, and variables.

There are contradictory claims for whether presenting problems in story con-
texts facilitates or hampers problem solving. A commonly held belief among the
general public, textbook authors, teachers, mathematics education researchers,
and learning science researchers is that story problems are harder than symbolic
problems (Nathan & Koedinger, 2000; Nathan, Long, & Alibali, 2002). This belief
is supported in part by national assessment data indicating that elementary-school
children in the United States generally do worse on story problems compared to
similar symbolic computation problems (Carpenter, Corbitt, Kepner, & Reys,
1980; Kouba, Carpenter, & Swafford, 1989). Systematic studies of U.S. elemen-
tary-school children solving single-digit arithmetic problems also indicate that
children often do better on symbolic problems than comparable story problems
(e.g., Cummins, Kintsch, Reusser, & Weimer, 1988; Riley, Greeno, & Heller,
1983). Linguistic difficulties, rather than insufficient mathematical knowledge,
seem to account for young children’s overall poorer performance on arithmetic
story problems compared to symbolic problems (Briars & Larkin, 1984; Cummins
et al., 1988; de Corte, Verschaffel, & de Win, 1985; Hudson, 1983; Kintsch &
Greeno, 1985; Riley et al., 1983).

In other instances, story problems can be easier to solve than symbolic prob-
lems. In particular, in multidigit arithmetic and early algebra, children are often
more successful at solving problems in familiar story contexts than comparable
problems presented symbolically (Baranes, Perry, & Stigler, 1989; Carraher,
Carraher, & Schliemann, 1985, 1987; Koedinger & Nathan, 2004; Saxe, 1988).
The benefits of story contexts arise because they elicit alternative, informal solu-
tion strategies and/or improved problem comprehension. These findings converge
with learning theories that have emphasized the role of contextual knowledge in
supporting the development of symbolic knowledge (e.g., Greeno, Collins, &
Resnick, 1996; Vygotsky, 1978).

How can we resolve these seemingly contradictory empirical results and theo-
retical perspectives on the relative difficulty of story and symbolic problems? The
explanation for differences across domains (e.g., single-digit addition vs. algebra)
may involve at least two key factors: (a) differences in children’s comprehension of
the target words and symbols and (b) differences in their facility with symbolic
strategies. These differences are largely based on children’s prior exposure to the
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target language and symbol systems. First, young children have pervasive expo-
sure to single-digit numerals, but some words and syntactic forms are still un-
known or unfamiliar. In comparison, older children have less exposure to large,
multidigit numerals and algebraic symbols and have much better reading and com-
prehension skills. Second, by early elementary school, many children have mas-
tered multiple strategies for adding single-digit numerals (Siegler, 1987; Siegler &
Jenkins, 1989). In comparison, older children frequently make errors when imple-
menting symbolic multidigit arithmetic or equation-solving strategies (Fuson,
1990; Hiebert & Wearne, 1986; Sleeman, 1985)

In this study, we evaluated the predictive value of these two factors for a new
age group and new domain—sixth-grade students learning to add and subtract
fractions. Students’ familiarity with fraction symbols (e.g., 2

3) is midway between
that of single-digit numerals and algebra symbols, and sixth graders are fairly pro-
ficient readers. By sixth grade, students can invent strategies for solving fraction
problems presented in real-world contexts (Mack, 1990, 1993) and have typically
learned but not mastered symbolic strategies for adding and subtracting fractions
(Kouba et al., 1989). We predicted that well-designed story problems would elicit
sixth graders’ contextual knowledge and be easier to solve than symbolic fraction
problems. Our claim is that although not all story contexts support learning and
problem solving, some do.

Conceptual Knowledge

Students also need to develop conceptual knowledge in a domain, which is inte-
grated knowledge of important principles (e.g., knowledge of number magnitudes)
that can be flexibly applied to new tasks. Conceptual knowledge can be used to
guide comprehension of problems and to generate new problem-solving strategies
or to adapt existing strategies to solve novel problems (Hiebert, 1986). Indeed, im-
proving children’s conceptual knowledge can lead them to use better prob-
lem-solving strategies (Perry, 1991; Rittle-Johnson & Alibali, 1999).

Although there is widespread agreement on the importance of conceptual
knowledge, how to tap this knowledge and encourage students to integrate it with
their contextual and procedural knowledge is less clear (Kilpatrick, Swafford, &
Findell, 2001). Visual representations of problems (such as pictures and diagrams)
are one potential scaffold for eliciting conceptual knowledge and facilitating inte-
gration. Within the domain of fractions, visual representations, such as fraction
circles and fraction bars, help to illustrate key concepts (Cramer, Post, & del Mas,
2002; Fuson & Kalchman, 2002). In turn, past research in a variety of domains has
indicated that visual representations can aid problem solving (e.g., Griffin, Case,
& Siegler, 1994; Koedinger & Anderson, 1990; Larkin & Simon, 1987; Novick,
2001) and improve learning and transfer (Mayer, Mautone, & Prothero, 2002). For
example, Fuson and Kalchman found that using a single visual representation of
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fractions facilitated students’ understanding of fractions and allowed them to in-
vent and refine strategies for multiplying fractions. In this study, we predicted that
a visual representation of fractions (fraction bars) would improve learning and
problem solving.

Procedural Knowledge

Finally, consider a direct source of problem-solving knowledge—knowledge of
subcomponents of a correct procedure. Procedures are a type of strategy that in-
volve step-by-step actions for solving problems (Bisanz & LeFevre, 1990), and
most procedures require integration of multiple skills. For example, the conven-
tional procedure for adding fractions with unlike denominators requires knowing
how to find a common denominator, how to find equivalent fractions, and how to
add fractions with like denominators. Learning all of these subcomponents si-
multaneously may overwhelm students (Anderson, Corbett, Koedinger, &
Pelletier, 1995; Sweller, 1988). A widely studied approach for avoiding this
problem is to model expert performance on the task either directly by a teacher
or tutor (Chiu, Chou, & Liu, 2002; Knapp & Winsor, 1998; Schoenfeld, 1985),
by written cue cards (Mayer et al., 2002; Scardamalia & Bereiter, 1985), or by
worked examples of problem solutions (Sweller, 1988). We predicted that pro-
viding a component of the conventional procedure would improve learning and
problem solving.

THIS STUDY

We evaluated the role of each of the three types of knowledge—conceptual, contex-
tual, and procedural—for sixth-grade students’ solving fraction addition and sub-
traction problems. Students’ knowledge was evaluated before and after they com-
pleted computer-based classroom instruction that scaffolded the three types of
knowledge. The unit was part of a larger design experiment on creating a sixth-grade
Cognitive Tutor course (Koedinger, 2002).

National and international assessments indicate that although fourth-grade
students have basic knowledge of fraction quantities, they have limited knowl-
edge of more difficult concepts, such as equivalent fractions, and of correct pro-
cedures for computing with fractions (Kouba et al., 1989; Kouba, Zawojewski,
& Strutchens, 1997). For example, on the mathematics section of the fourth Na-
tional Assessment of Educational Progress, only 53% of seventh-grade students
correctly solved the problem 31

2 – 31
3 (Kouba et al., 1989). In contrast to the rel-

atively poor performance on written, symbolic problems, interviews with stu-
dents have revealed students’ informal knowledge of fractions, especially in ev-
eryday contexts (Empson, 1999; Leinhardt, 1988; Mack, 1990, 1993; Mix,
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Levine, & Huttenlocher, 1999; Pothier & Sawada, 1983). Eliciting students’
prior, albeit fragmented, knowledge during problem solving should improve per-
formance. To accomplish this, we designed a scaffold to elicit a representative
component of contextual, conceptual, and procedural knowledge. The contextual
scaffold involved situating the computation in a real-world, candy bar context.
Past research on fraction learning indicates that food contexts are particularly
meaningful contexts for students (Mack, 1990, 1993). During earlier lessons on
comparing and finding equivalent fractions, discussing fractions as parts of a
candy bar emerged as a meaningful way for our students to think about frac-
tional quantities. Although a candy bar context may not be the ideal context for
thinking about fraction computations, it did provide a familiar context for our
students that had been developed in previous lessons.1 A candy bar context also
integrated with our visual representation of fractions—fraction bars. Fraction
bars are a particularly useful visual representations for facilitating thinking about
rational number concepts (Cramer et al., 2002; Fuson & Kalchman, 2002). For
example, they illustrate the meaning of fractions as parts of a whole, the impor-
tance of equal-size parts for combining fractions, and the impossibility of adding
two fractions and getting a fraction smaller than either addend. In prior lessons
on fraction concepts, fraction bars were the visual representation that our stu-
dents found particularly useful for linking to part–whole concepts, and thus,
fraction bars may elicit their conceptual knowledge.2 Finally, the procedural
scaffold was to provide a common denominator. Students’ most common error is
adding the numerators and denominators rather than using a common denomina-
tor. Thus, providing a common denominator should signal to students that they
should not add the denominators and should help them to implement a correct
procedure.

To evaluate whether each scaffold facilitated addition and subtraction of frac-
tions, we used DFA. We expected all three scaffolds to improve accuracy, reduce
common errors, and improve use of effective strategies at pretest. After participat-
ing in an intervention containing all three scaffolds, we expected the scaffolds to
have less impact on problem solving if the intervention had successfully facilitated
knowledge integration, thus reducing the need for explicit scaffolding.

DESIGNING KNOWLEDGE SCAFFOLDS 319

1We acknowledge that our candy bar context does not encompass the range of situations in which
students would need to add and subtract fractions, is somewhat contrived (e.g., most candy bars cannot
be broken into 20 pieces), and may be ambiguous to interpret at times (e.g., Is the whole one or two
candy bars?). We were available to answer student questions and our students seemed to relate to the
problems (partially because the context had been developed in previous lessons). However, in extend-
ing this work to other student populations, careful attention should be paid to the optimal contexts to
use.

2It is possible that fraction bars did not tap children’s conceptual knowledge. We return to this issue
in the Discussion.
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METHOD

Participants

Participants were 223 sixth-grade students drawn from two different populations
to increase the generalizability of the findings. Students participated as part of their
regular mathematics course, and thus, all students in the given classrooms partici-
pated. The first population was 137 students (69 female) from eight mathematics
classrooms at an urban, public middle school. At the school, 78% of students were
considered economically disadvantaged; approximately 50% were White; and
49% were African American. Average daily attendance in the school district was
89%. Students were using the National Council of Teachers of Mathematics stan-
dards-based curriculum Connected Mathematics (Lappan, Fey, Fitzgerald, Friel,
& Phillips, 2002) 4 days a week in the classroom and using the intelligent tutoring
system component of our sixth-grade Cognitive Tutor course 1 day a week.

The second population was 86 students (41 female) from four mathematics
classrooms in two suburban public schools (one elementary and one middle
school). At these schools, the percentage of economically disadvantaged students
was 12% and 20%, respectively, and over 95% of the students were White. Aver-
age daily attendance in each of these school districts was 94%. At one school, the
mathematics teacher was helping us to design the sixth-grade Cognitive Tutor cur-
riculum, and he was simultaneously using the curriculum in his classroom. The
course incorporated both a problem-based paper curriculum used in the classroom
3 days a week and an intelligent tutoring system used in the computer laboratory 2
days a week (Koedinger, Anderson, Hadley, & Mark, 1997). At the second school,
the teacher was piloting the new curriculum. Thus, the student body, the classroom
curriculum, and the teaching styles and attitudes varied across the schools.

Procedure and Materials

The study was conducted in three phases. Phase 1 was to identify students’ prior
knowledge of fraction arithmetic using a pretest that incorporated a DFA. Analy-
ses of student errors and strategy use and cognitive modeling of performance on
the assessment was used to better understand students’ prior knowledge. Phase 2
was to design and implement an intervention that built off of students’prior knowl-
edge in the domain. The intervention was implemented via an intelligent tutoring
system. Phase 3 was to administer a posttest that was identical to the pretest to as-
sess learning from the intervention. Students participated in the three phases over
approximately three, 40-min classroom sessions. Students went to their schools’
computer laboratory for these sessions once or twice a week as part of their normal
math class.
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Phase 1: Identifying prior knowledge. To evaluate students’ prior knowl-
edge, students first solved eight problems on adding and subtracting fractions. Half
of the problems were created using a DFA methodology. These four problems in-
volved adding or subtracting two symbolic fractions with unlike denominators.
Children completed one instance of each scaffold: none, contextual, conceptual, or
procedural. A critical feature of a DFA is that factors of interest are not confounded
with the particular calculations in the problem. Thus, four versions of the assess-
ment were generated based on fully crossing the four scaffold types with the four
required calculations as illustrated in Table 1. Figure 1 presents each of the scaf-
folds for the calculation 2

3 – 1
9 and illustrates how the four problems varied only in

the type of scaffold.
To strengthen the impact of the conceptual scaffold, we included fraction bars

depicting common incorrect answers to help students recognize the conceptual vi-
olations produced by the errors. To do so, we made all the questions multiple
choice, and each problem had four answer choices (see Figure 1): (a) correct, (b)
combine-both error (combine both numerator and denominator), (c) fail-to-con-
vert error (fail to convert numerators after finding a common denominator), and (d)
other error.

In addition to the four problems created using the DFA methodology, there
were four other problems designed to get a broader index of prior knowledge. They
were adding two fractions with the same denominator (3

7 + 2
7), adding three frac-

tions (9
10 + 1

5 + 1
2), subtracting mixed numbers (131

2 – 31
8), and identifying a ver-

bal description of the conventional procedure. These four problems were the same
across the four versions of the assessment.

The four versions of the assessment were randomly distributed to the students at
the beginning of the study, with 54 to 57 students completing a particular version.
Students spent approximately 10 min completing the assessment.

Students’ responses on the assessment were coded as one of the four response
categories outlined previously. If students wrote “Don’t know” or left the answer
blank, the response was coded as an other error. Students’ strategy use was coded
from their written work, using the codes described in Table 2. Unfortunately, stu-
dents’written work was not available for two out of the four classes at the suburban
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TABLE 1
Difficulty Factors Assessment Design: Distribution of Scaffolds Across

the Four Fraction Problems With Unlike Denominators

Form 3
4 + 2

12
1

4 + 1
5

2
3 + 1

9
1

2 + 2
7

1 Contextual None Procedural Conceptual
2 Conceptual Contextual None Procedural
3 Procedural Conceptual Contextual None
4 None Procedural Conceptual Contextual
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schools (one from each school). Students’ accuracy on the assessment did not dif-
fer across the four suburban classrooms, suggesting that the written work available
was representative of student problem solving.

Phase 2: Instructional intervention. All students participated in the same
instructional intervention, which was designed to build on their prior knowledge of
fractions identified in Phase 1. During the intervention, students solved fraction
addition and subtraction problems on a computer-based intelligent tutoring sys-
tem. The conceptual and contextual scaffolds were present for all problems. Simi-
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FIGURE 1 Example of each scaffold type used on the pretest and posttest for the problem
2

3 – 1
9.
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323

TABLE 2
Strategy Use: Percentage of Problems on Which Students Used Each Strategy, by Scaffold Type and Assessment Time

Pretest: Scaffold Typea Posttest: Scaffold Typeb

Strategy Written Work None Concept Context Procedure None Concept Context Procedure

None No work shown 78 72 81 22 65 66 59 22
Common denominator Wrote a common denominator and

equivalent fractions 15 16 15 35 35 30 38 60
Error in equivalent fractions Wrote a common denominator but

not equivalent fractions 2 2 0 36 0 2 1 17
Visual estimation Drew picture or marked given

fraction bars 0 2 5 0 0 1 1 0
Potential numeric estimationc Only written work was a fraction

not used as answer 3 7 0 2 0 1 0 0
Other 2 2 0 5 0 1 2 1

aN = 179. bN = 168. cOnly 5 out of the 22 instances were within one tenth of the correct answer, suggesting most were not numeric estimates.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
r
n
e
g
i
e
 
M
e
l
l
o
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
6
:
0
9
 
1
3
 
A
u
g
u
s
t
 
2
0
1
0



lar to the conceptual scaffold on the DFA, fraction bars displayed the value of each
given fraction as well as the value of the students’ answers. Similar to the contex-
tual scaffold on the DFA, all problems were presented in the context of two stu-
dents combining or finding the remaining amount of a candy bar (e.g., “Jared had
2

3 of a candy bar and Latesha ate 2
4 of the candy bar. How much of the candy bar

remained?”). To increase the relevance of the context to the students, real names of
sixth graders at each school were randomly chosen to be included in each of the
story problems (Cordova & Lepper, 1996). Anecdotal evidence suggested that stu-
dents often reasoned about the fraction bars as if they represented candy bars and
were motivated by having classmates’ names included in the problems.

The presence of the procedural scaffold (i.e., providing a common denomina-
tor) varied across three blocks of problems. In the first block of 12 problems, the
fractions had the same denominators, so the procedural scaffold was not needed.
On the second block of 24 problems, the fractions usually had unlike denomina-
tors, and the procedural scaffold was present—students were given a common de-
nominator. A “conversion scratch pad” was provided for students to find equiva-
lent fractions with a common denominator. Figure 2 contains a screen shot of a
completed problem from the second block of problems and illustrates the imple-
mentation of the conceptual, contextual, and procedural scaffold. On the third
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FIGURE 2 Screen shot of a completed problem from Block 2 on the intelligent tutoring
system used during the intervention.
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block of 25 problems, the procedural scaffold was removed (fading of scaffold-
ing). However, the conversion scratch pad was still available. Table 3 outlines the
three blocks of problems used during the intervention including the presence of
each scaffold.

When students made errors, a feedback message automatically appeared on the
screen in the help window. The feedback message noted what the error was (if it
was a common one) or suggested a first step for solving the problem. The feedback
message combined the three scaffold types. For example, if students entered 2

9 as
the answer to 1

4 + 1
5, a feedback message appeared saying, “You cannot just add

the top and bottom numbers together. Look at the pictures of the candy bars. To-
gether, Brittany and Mike have more than 2-out-of-9 pieces of a candy bar.” The in-
tervention program was written in Microsoft Visual Basic (Version 5.0) and was
presented on computers in the schools’ computer laboratories.

Students received a brief introduction to the tasks and computer interface by their
classroom teacher or Bethany Rittle-Johnson or another member of the project team
and then worked individually at their own pace for two to three class periods on the
intervention(approximately1½hrspentworkingon the interventionproblems).Be-
fore beginning the second block of problems, students studied a worked example of
adding two fractions with unlike denominators including fraction bars and a candy
bar context to justify each step (presented on the computer). The normal classroom
teacher and sometimes a member of the project team circulated among the students
and helped the students who were having difficulty. The availability of the teacher to
help individual students who are having difficulty while other students remain en-
gaged in the activity is one critical feature of Cognitive Tutors.

Phase 3: Posttest. The posttest was identical to the pretest. Five of the
items on the assessment were similar to those presented during the intervention
(i.e., adding fractions with the same denominator and the four DFA items on add-
ing or subtracting fractions with unlike denominators). The other three items had
not been seen during the intervention (i.e., adding three fractions, subtracting
mixed numbers, and identifying a verbal description of the conventional proce-
dure) and thus served as an index of transfer.

Students completed the posttest when they finished the intervention or at the
end of the 3rd day (even if they had not completed the intervention). They were
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TABLE 3
Characteristics of Blocks of Problems Presented During the Intervention

Block Fraction Type Number of Problems Scaffolds Present

1 Same denominator (e.g., 3
9 + 2

9) 12 Concept and context
2 Unlike denominators (e.g., 1

4 + 2
3) 24 Concept, context, and procedure

3 Unlike denominators (e.g., 3
4 + 3

7) 25 Concept and context
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randomly given one of the four versions of the assessment (between 43–60 stu-
dents completed each version). Unfortunately, there were not opportunities for stu-
dents who missed class to make up missed work on the computer, and thus, some
students solved substantially fewer intervention problems. Nevertheless, these stu-
dents were included in the sample to evaluate the effectiveness of the intervention
under typical classroom conditions.

RESULTS

We report the results in three sections. We begin with the results from Phase 1 on
students’ prior knowledge. This section includes findings from the DFA, the sup-
porting error and strategy analyses, and the knowledge-component modeling of
the findings. Next, we report the posttest results from Phase 3 to give an overview
of learning from the intervention. Finally, we report descriptive data from Phase 2
to provide a qualitative sense of learning during the intervention.

Phase 1: Identifying Prior Knowledge

Our sixth-grade students had some prior knowledge of fraction addition and sub-
traction. Average accuracy across the eight pretest items was 45%. Considering the
individual items, over 80% of students correctly added two fractions with the same
denominator. Adding and subtracting fractions with unlike denominators was
much more difficult; accuracy was 40% averaged across the four items of this type.
Similarly, accuracy ranged from 37% to 42% correct on the other three items (i.e.,
adding three fractions, subtracting mixed numbers, identifying a verbal descrip-
tion). Students at the suburban schools had higher accuracy scores than students at
the urban schools at pretest (Ms = 62% vs. 35% correct), F(1, 221) = 51.9, p <
.0001. Accuracy scores did not differ for male students and female students (both
45% correct; there were no gender differences in any analyses). Our primary inter-
est in Phase 1 was identifying whether and how the conceptual, contextual, and
procedural scaffolds aided problem solving.

Accuracy on the DFA items at pretest. Students solved four DFA prob-
lems on the pretest, all involving adding or subtracting fractions with unlike denomi-
nators. Each problem had one of four scaffold types; to avoid confounding scaffold
type with particular calculations, four different assessment forms were used (see Ta-
ble 1). As expected, overall performance on the four forms was similar (p = .26).

As shown in Table 4, students had the least success on the no-scaffold problem
and the most success on the procedural scaffold problem, and the effects of the
scaffolds were similar across the two school locations (even though students at the
suburban schools outperformed the students at the urban schools (Ms = 52% vs.
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33% correct), F(1, 221) = 13.93, p = .0002. A student’s response for each scaffold
type was categorical, so pairwise sign tests were used to compare performance on
problems with different scaffolds collapsed across the two schools. Children were
more likely to choose the correct solution on each of the scaffolded problems com-
pared to the no-scaffold problem (ps < .001). Their success on the procedural-scaf-
fold problem was marginally better than on the contextual- or conceptual-scaffold
problems (p = .07 and .08, respectively).

Errors on the DFA items. To understand how the scaffolds improved accu-
racy, we examined the kinds of errors students made on the four DFA problems.
The scaffolds reduced problem difficulty largely because they reduced the com-
mon error of adding or subtracting both the numerators and denominators (com-
bine-both error; see Table 4). Students were less likely to make a combine-both er-
ror on each of the scaffolded problems compared to the no-scaffold problem (all ps
= .05). Although the procedural scaffold did not eliminate this error (as might be
predicted), it did reduce this error more than the other two scaffolds (ps < .0001).

The conceptual scaffold also reduced the error of using a common denominator
but not converting the numerator (fail-to-convert error) compared to the no-scaf-
fold problem (p = .004). The contextual and procedural scaffolds did not reliably
impact this error type (p = .58 and .10, respectively). Only the conceptual scaffold
provided direct support for noticing that the fail-to-convert error leads to an impos-
sible answer.
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TABLE 4
DFA Performance at Pretest: Proportion of Children Making

Each Response Type Across the Four Scaffold Types Overall
and by School Setting

Scaffold Type

Response Type None Conceptual Contextual Procedural

Overalla

Correct .30 .42 .41 .49
Combine both .38 .28 .30 .12
Fail to convert .21 .12 .19 .27

Urban schoolb

Correct .20 .37 .32 .44
Combine both .50 .36 .39 .15
Fail to convert .18 .08 .18 .28

Suburban schoolsc

Correct .44 .50 .55 .57
Combine both .19 .14 .15 .06
Fail to convert .27 .19 .20 .27

Note. DFA = difficulty factors assessment.
aN = 233. bN = 137. cN = 86.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
r
n
e
g
i
e
 
M
e
l
l
o
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
6
:
0
9
 
1
3
 
A
u
g
u
s
t
 
2
0
1
0



The scaffolds did not impact whether students attempted to solve the problems,
largely due to a ceiling effect. Students only left the answer blank or responded
“don’t know” on 5% of trials, with little difference between problem types.

Strategy use on the DFA items. Students’written work provided some ad-
ditional insight into how each scaffold impacted problem solving. As shown in Ta-
ble 2, the procedural scaffold greatly increased how often students showed their
work; one third of students showed evidence of using a correct common-denomi-
nator procedure, and another third of the students used a common denominator but
had difficulty finding equivalent fractions on this problem. On the other problem
types, the most frequent work shown was the correct common-denominator proce-
dure. Students showed very limited evidence of using alternative strategies, such
as visual or numeric estimation, on any of the problems. Finally, there was no evi-
dence of students using multiplication or division on any of the problems, and none
of the incorrect answers were a result of multiplying or dividing the given frac-
tions. Overall, most written work indicated correct or incorrect use of the conven-
tional common-denominator procedure.

In summary, the conceptual, contextual, and procedural scaffolds each helped
students to add and subtract fractions correctly. Each of the scaffolds reduced com-
bine-both errors, but only the conceptual scaffold consistently reduced fail-to-con-
vert errors. Students’ written work suggests that correct answers were found using
the conventional common-denominator procedure across the four problem types.

Knowledge-component modeling of pretest DFA results. To better un-
derstand how the scaffolds impacted problem solving, we created and compared
three potential cognitive models of pretest performance. First, we generated mod-
els based on hypothesized knowledge components needed to solve the problems,
and then we fit the models to the accuracy and error data reported previously. In-
specting where the models converged and deviated from the observed data pro-
vided insights into the strengths and weaknesses of the proposed models.

All models consisted of independent variables capturing the difficulty of hy-
pothesized knowledge components and16 equations using the independent vari-
ables to predict students’ responses (correct, combine-both error, fail-to-convert
error, and other error) on the four problem types (conceptual, contextual, proce-
dural, or no scaffold). Although quantitative in nature, the models are meant pri-
marily as a tool for thinking qualitatively about experimental data and comparing
alternative theoretical models for explaining the data (Aleven & Koedinger, 2002).

First, we generated four base equations for predicting the frequency of the four
response types on the unscaffolded problem. Students’written work suggested that
they primarily used the conventional procedure of finding a common denominator
to add or subtract fractions. This procedure involved three core knowledge compo-
nents—(a) find a common denominator (cd), (b) find equivalent fractions (ef), and
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(c) combine (add or subtract) numerators when the denominators are the same
(cn). For our purposes, these knowledge components represented both the selec-
tion and the implementation of the knowledge. The probability of finding the cor-
rect answer was the product of the probability of using each of these knowledge
components (cd × ef × cn; additional descriptions of the equations are in Appendix
A). The probability of making a combine-both error could simply be the default
approach if students did not find a common denominator (and our modeling work
supported this inference; not cd). The fail-to-convert error reflected the probability
that students found a common denominator, did not find equivalent fractions, but
still combined numerators (cd × not ef × cn). All remaining errors were in the
“other” category.

Next, we adapted these base equations to capture the effect of each scaffold. For
the procedural scaffold, we added a knowledge component, use given common de-
nominator (u), which replaced find common denominator in the four equations for
this scaffold (see Appendix A). For example, to add 1

4 + 1
5 when given the common

denominator 20, students did not need to find a common denominator. However,
they did need to notice and use the given common denominator. Thus, the proba-
bility of finding a correct answer on this problem would be the product of the prob-
ability of u (e.g., 20), ef (e.g., 5

20 and 4
20), and cn (e.g., to get 9

20; u × ef × cn).
For the conceptual and contextual scaffolds, we explored three potential mecha-

nisms underlying their effects on performance. All three mechanisms were based on
prior research and theory that has suggested that conceptual and contextual knowl-
edge support magnitude based, part–whole representations of fractions (Cramer et
al., 2002;Leinhardt, 1988;Mack,1990,1993).The threemechanismswere (a)alter-
native common denominator (eliciting a magnitude-based alternative to finding a
commondenominator), (b)estimation(elicitinganalternative, estimation-basedso-
lution strategy), and (c) reject implausible answers (prompting students to reject im-
plausible solutions). Modeling each of these mechanisms required adding one new
knowledge component to the base model, and the equations used in each model are
listed in Appendixes A, B, and C. To model this data, we generated separate models
for each mechanism and within each model used the same equations for the concep-
tual- and contextual-scaffold problems. This approach was a practical rather than
theoretical decision. There was simply not enough variability in observed responses
between the different scaffolded problems to include multiple mechanisms in the
same model or to model the effects of conceptual and contextual scaffolds sepa-
rately. Future research using multiple instances of each problem type should yield
data that makes a more fine-grained approach feasible.

First, consider the alternative-common-denominator mechanism. The concep-
tual or contextual scaffold may have elicited a magnitude-based representation of
fractions that allowed students to reason through the need for equal-size pieces
(i.e., a common denominator) and use their number sense to find a common de-
nominator. For example, to add 1

4 + 1
5 in the candy bar context or with fraction
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bars, a student could either find a common denominator symbolically (e.g., by
multiplying 4 × 5) or she or he could use the context or pictures to reason about the
problem, recognizing that quarters and fifths cannot be combined and that both can
be further divided into 20ths. To model this alternative approach, the find-com-
mon-denominator knowledge component was supplemented with a knowledge
component for finding the common denominator by reasoning about magnitudes
in each base equation (see Appendix A).

Second, consider the estimation mechanism, which provides an alternative to
the common-denominator procedure. Students could estimate the answers visually
(e.g., drawing or using the given fraction bars) or use benchmarks such as 1

4, 1
2 ,

and 1. Because the assessment was multiple choice, estimation was a sufficient
procedure for selecting a correct answer. For example, to add 1

4 + 1
5, a child might

estimate that 1
5 is close to one fourth, know that combining two fourths yields one

half, and thus find the answer closest to 1
2 . Alternatively, a child might look at or

draw fraction bars for 1
4 and 1

5 and mentally combine the amounts, noting that the
answer is close to 1

2. To model this estimation procedure, the four base equations
were adjusted to included the probability of finding the correct answer through es-
timation as an alternative to using the conventional common-denominator proce-
dure (see Appendix B).

Finally, consider the reject-implausible-answers mechanism in which students
continue to use incorrect procedures to find answers, but their conceptual or con-
textual knowledge of fractions prompts them to reject implausible answers. Both
the combine-both and fail-to-convert errors lead to answers that are smaller than
either addend and thus to answers that violate a principle of addition. For example,
after making a combine both error when adding 1

4 + 1
5, a student might recognize

that 2
9 is smaller than 1

4 and thus cannot be the correct answer. This should moti-
vate him or her to solve the problem again (although this knowledge component
does not provide information on how to solve it differently). To model this rejec-
tion of implausible answers, the base equations for the combine-both error and the
fail-to-convert error included a knowledge component representing the probability
of rejecting these responses (see Appendix C).

To evaluate the three models (one for each potential mechanism underlying the
conceptual/contextual scaffold), we used the Generalized Reduced Gradient
method offered by the Microsoft® Excel Solver to find the values of the knowledge
components in each model that best predicted the frequency of the four response
types on the four problem types at pretest (using maximum likelihood estimates).
This yielded 16 predicted response frequencies for each problem type as well as
probability estimates of students using each knowledge component. Comparing
the predicted and observed response frequencies offered insights into how each
potential mechanism would impact problem solving. In Figure 3, for each model,
the predicted frequency of each response is displayed as a line graph superimposed
over the observed frequency of each response displayed as a bar graph. The ability
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FIGURE 3 Predicted frequency of response choices produced by each knowledge-component model at pretest. The predicted frequencies are dis-
played as line graphs superimposed over the observed frequency of each response at pretest (displayed as bar graphs).
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of each model to capture the seven key empirical findings of the DFA at pretest is
outlined in Table 5.

Both the alternate-common-denominator and the estimation models captured
each key empirical finding except the decrease in fail-to-convert errors for the con-
ceptual scaffold. In contrast, the reject-implausible-answers model predicted the
decreases in fail-to-convert errors but did not predict the observed increases in cor-
rect answers. This suggests that the reject-implausible-answers mechanism may
be used in conjunction with one of the other two mechanisms. Overall, all three
models predicted the observed frequency of responses quite well, supporting the
plausibility of our cognitive models and the potential role of each mechanism.

The models also provided estimates of the probability of successfully imple-
menting each knowledge component as shown in Table 6. Comparing the probabil-
ity estimates provided an estimate of the relative difficulty and use of each knowl-
edge component. Finding a common denominator and finding equivalent fractions
were equally difficult; the probability of doing either correctly was in the mid .60s
across the three models. This suggested that we should consider scaffolding find-
ing equivalent fractions as well. By comparison, combining numerators once the
denominators were the same and using a given common denominator were easier
skills (probabilities in the .80s). Finally, the alternate-common-denominator, esti-
mation, and reject-implausible-knowledge components were used infrequently
(probabilities of using each correctly were below .25 across the three models).

Overall, the conceptual- and contextual-knowledge scaffolds seemed to pro-
vide backup approaches for solving the problems such as finding a common de-
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TABLE 5
Summary of Each Knowledge-Component Models’ Ability to Capture

the Key Findings of the Pretest Difficulty Factors Assessment

DFA Finding
Alternate Common

Denominator Estimation
Reject Implausible

Answers

Frequency of correct responses
Procedure > none √ √ √
Concept and context > none √ √ x
Procedure > concept and context √ √ √

Frequency of combine-both-errors
Procedure < none √ √ √
Concept and context < none √ √ √
Procedure < concept and context √ √ √

Frequency of fail-to-convert errors
Concept < none √a

Note. DFA = difficulty factors assessment. “Procedure > none” for correct responses indicates
that correct responses were more likely on the procedural scaffolded item than on the no-scaffold item.

aIncorrectly predicts reduction in fail-to-convert errors on context problems.
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nominator through reasoning about fraction quantities, estimating the solution, or
rejecting implausible answers. Scaffolding procedural knowledge seemed to re-
place a relatively difficult skill of finding a common denominator with an easier
skill of using a common denominator.

Summary and implications. The sixth-grade students had a fair amount of
prior knowledge of fractions. For example, most could add fractions with the same
denominator. In contrast, students had great difficulty adding or subtracting frac-
tions with unlike denominators, and the most frequent error was to combine the nu-
merators and denominators. Providing a procedural scaffold improved accuracy,
suggesting that some students had procedural knowledge for finding equivalent
fractions and adding like fractions but that this knowledge was masked by not us-
ing a common denominator. The conceptual and contextual knowledge scaffolds
improved accuracy because they seemed to elicit prior knowledge that allowed
them to implement backup approaches for solving the problems. Instruction using
these three scaffolds should improve students’ability to add and subtract fractions.

Phase 3: Posttest Results

In this section, we explore the impact of the intervention, which incorporated all
three scaffolds, on learning from pretest to posttest. Of the total number of stu-
dents, 33 students did not complete the posttest because they were absent from the
classroom on the 3rd day. These students scored lower on the pretest than did stu-
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TABLE 6
Probability Estimates for Each Knowledge Component

in the Knowledge-Component Models at Pretest and Posttest

Pretest Posttest

Knowledge
Component

Alternate
Common

Denominator Estimate

Reject
Implausible

Answers

Alternate
Common

Denominator Estimate

Reject
Implausible

Answers

Find common
denominator .62 .65 .66 .82 .84 .82

Find equivalent
fractions .67 .64 .66 .79 .79 .78

Combine
numerators .82 .81 .87 .90 .90 .93

Use given
common
denominator .88 .88 .88 .89 .89 .89

Magnitude-based
componenta .24 .12 .10 .16 .00 .15

aVaried by model.
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dents who completed the posttest (M = 32% vs. 48% correct), F(1, 221) = 6.96, p <
.009. Such attrition is common in classroom research, and it is not surprising that
students who tended to miss school more frequently had lower initial knowledge.
The following results may slightly overestimate learning from our intervention in
this population, but the existing sample is still more representative of the general
population than is typical in educational research.

Changes in accuracy at posttest. Students solved more problems cor-
rectly at posttest compared to pretest (M = 45% to 61% correct), t(189) = 7.50, p <
.0001. Amount of gain was nearly identical for students in the urban and suburban
locations and for male and female students.

The assessment included both learning and transfer problems. Five problems
were structurally similar to those presented during the intervention (adding and
subtracting two fractions with like and unlike denominators), and students im-
proved in performance on these learning problems (Ms = 51% to 66% correct),
t(189) = 7.19. Three of the problems were novel (e.g., subtracting mixed numbers);
students also improved in accuracy on these transfer problems (Ms = 43% to 53%
correct), t(189) = 4.52. Indeed, students’ accuracy improved significantly on seven
out of the eight individual items as shown in Table 7.

To assess individual change from pretest to posttest, we calculated a percent
gain score for each student: (posttest percentage correct – pretest percentage cor-
rect) / (100 – pretest percentage correct). This yielded a score from 0 to 100, re-
flecting the percent gain for each child. Of the students, 7% (n = 16) were at ceiling
at pretest and thus were omitted from this analysis. Students’ average gain from
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TABLE 7
Pretest-to-Posttest Changes: Proportion of Children Making Each Response Type

on Individual Assessment Problems

Correct Answer Combine-Both Error Fail-to-Convert Error

Problem Type Pretest Posttest Pretest Posttest Pretest Posttest

Unlike denominators
No scaffold Learn .32 .52* .33 .17* .23 .18
Conceptual Learn .43 .58* .26 .16* .12 .17
Contextual Learn .44 .57* .27 .18* .19 .16
Procedural Learn .49 .66* .10 .04* .28 .17*

Same denominator Learn .85 .95* .13 .04* na na
Adding 3 Transfer .42 .55* .26 .16* .18 .16
Subtracting mixed Transfer .44 .58* .25 .22 na na
Verbal description Transfer .42 .47 .16 .05* na na

Note. N = 190. na = not applicable. Students who did not complete the posttest are not included in the pre-
test data.

*p < .05, change from pretest to posttest based on pairwise comparisons.
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pretest to posttest was 37%, and we categorized students as making no gain, mod-
est gain (less than 50% gain), or high gain (at least 50%). Approximately a third of
the sample (35%) made high gains, another third (28%) made modest gains, and
the remaining third (38%) made no gain.

A critical factor in predicting percent gain was how many intervention prob-
lems a student solved. The two were correlated, r(172) = .42, p < .0001, and stu-
dents in the three categories differed in the number of intervention problems
solved, F(2, 171) = 18.96, p < .0001. In particular, students in the no gain and mod-
est gain groups were much less likely to have started the final section of the inter-
vention on which the procedural scaffold was no longer given than students in the
high gain group (66% and 63% vs. 95% of students started the final section, re-
spectively; χ2(2, N = 173) = 19.252, p < .0001.

Although there was no effect of school location on overall amount of gain, the
distribution of students in the three gain categories varied by school location, χ2(2,
N = 173) = 16.82, p = .0002. Students at the suburban schools were twice as likely
to be in the high-gain group as students at the urban school (51% vs. 24% of stu-
dents), whereas students in the urban schools were more likely to be in the modest
gain group (13% vs. 37% of students). Again, differences in percent of gain were
linked to number of intervention problems solved, with students at the suburban
school completing more intervention problems in the allotted time (Ms = 93% vs.
72% of intervention problems), F(1, 172) = 30.14, p < .0001. Students in the subur-
ban schools were more likely to be in class and to be engaged in instructional activ-
ities. In summary, many students seemed to learn from the intervention, but some
students did not, especially if they did not have sufficient time to complete the
no-procedural scaffold section of the intervention.

Changes in errors at posttest. Students’ improvement at posttest was par-
tially due to a reduction in the number of combine-both errors across the problems
from pretest to posttest (22% to 13% of problems), t(189) = 5.93, p < .0001. A re-
duction in combine-both errors occurred on every problem but one (see Table 7).
There was not a decrease in fail-to-convert errors across the problems (p = .10), but
fail-to-convert errors decreased for the procedural scaffold problem (Ms = 28% to
17% of problems), p = .009.

Effects of scaffolds (DFA) at posttest. Given students’ improved knowl-
edge of strategies for adding and subtracting fractions, what was the relative im-
pact of the different scaffolds at posttest? As shown in column 4 of Table 7, the
contextual and conceptual scaffolds had less impact on accuracy at posttest, and
accuracy on the problems was no longer reliably different from accuracy on the
no-scaffold problem (p = .22 and .11, respectively). In contrast, the procedural
scaffold continued to improve accuracy at posttest compared to the no-scaffold
problem (p = .0004). The procedural scaffold also led to better performance than
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the contextual or conceptual scaffolds (ps < .05). The superior performance on the
procedure-scaffold item was partially due to a reduction in combine-both errors
compared to each of the other problems (ps < .0001; see column 6 of Table 7).
None of the scaffolds reduced fail-to-convert errors at posttest.

Inspection of students’ written work further supports these findings (see Table
2). Compared to pretest, students were much more likely to show written evidence
of using a correct common-denominator procedure and somewhat less likely to
show use of other strategies at posttest. The largest change was on the procedural
scaffold item; over 60% of students showed evidence of using the correct com-
mon-denominator procedure, and students were much less likely to make errors in
finding equivalent fractions.

Knowledge-component modeling at posttest. The same three models
used to capture performance on the DFA items at pretest were refit to students’per-
formance on the DFA items at posttest. Our key interest was in changes in the prob-
ability estimate for each knowledge component from pretest to posttest (all three
models had an extremely good fit to the posttest data, rs = .99). As shown in Table
6, the probability of correctly finding a common denominator and correctly find-
ing equivalent fractions both improved substantially from pretest to posttest, re-
gardless of which model is considered. There was also a smaller improvement in
combining numerators correctly. Interestingly, changes in the probability esti-
mates for the magnitude-based knowledge component, which varied by model,
were not consistent across the three models. The probability of using the alter-
nate-common-denominator approach or using estimation both decreased (and
such a decrease is also supported by their written work; see Table 2). In contrast,
the probability of rejecting implausible answers increased. Although such differ-
ences must be interpreted with caution, they suggest that instruction and experi-
ence may impact each mechanism differently.

Summary. The posttest results suggest that the intervention, which included
scaffolds for all three types of prior knowledge, facilitated learning to add and sub-
tract fractions. At posttest compared to pretest, children were more accurate across
a range of problems, made many fewer common errors such as adding the numera-
tor and denominator, had less need for the scaffolds, and seemed more likely to
correctly use the conventional procedure. The knowledge-component models sug-
gested that children had improved in their ability to carry out each component of
the conventional procedure. Changes in their use of alternative, backup approaches
seemed to vary based on the proposed mechanism.

Learning During the Intervention

Descriptive data from the intervention sessions provided clues for how the inter-
vention supported learning and why some students did not learn much. Students’
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answers during the intervention were recorded through the computer software.
Due to technical difficulties, data at the urban school were not reliably recorded
during the intervention. Thus, data in this section are from the two suburban
schools and may not be representative of learning pathways at the urban school.

The answers provided by two students illustrate a successful and an unsuccess-
ful learning pathway. First, consider Brittany, who figured out the common-de-
nominator procedure during the first half of the intervention and quickly general-
ized the procedure to problems without the procedural scaffold. At pretest,
Brittany solved two problems correctly and made fail-to-convert errors on the re-
maining problems. On the first block of intervention problems (in which fractions
had the same denominator), she solved all 12 problems correctly on the first try.
However, when she started the second block of problems (in which fractions had
unlike denominators), she had great difficulty finding equivalent fractions. On the
1st problem, she initially made a fail-to-convert error and then a combine-both er-
ror. Next, she started using the conversion scratch pad (because she was prompted
to do so) but seemed to randomly guess what the new numerator should be (e.g.,
converting 1

4 to 12ths, she tried: 4
12 , 5

12 , 6
12 , 1

12 , 2
12). She persisted with random

guessing for the new, converted numerators for 5 more problems. On the 7th prob-
lem, she made a single error finding equivalent fractions but solved the problem
correctly on the second attempt. She solved 14 out of the remaining 18 problems in
this block correctly on the first attempt (76%).

When a common denominator was no longer given, Brittany continued to solve
a majority of the problems correctly (84%). She always found a common denomi-
nator and equivalent fractions and only made one error when doing so. However,
she did not find the least common denominator but rather multiplied the two de-
nominators together, even when one denominator was a multiple of the other (e.g.,
used 20 sevenths for 8

9 + 1
3). This led to arithmetic errors when she needed to re-

duce the fraction for the final answer. Thus, she had learned a correct but cumber-
some procedure for adding and subtracting fractions. Brittany maintained her use
of a correct procedure on the posttest, solving all of the learning problems and two
out of the three transfer problems correctly.

Contrast this with Katie, who did not learn from the intervention. Katie also
solved 2 problems correctly at pretest and typically made fail-to-convert errors on
the other problems. On the first block of problems during intervention, she solved
75% of problems correctly. During the second block of problems (in which frac-
tions no longer had the same denominator), she only solved 38% of the problems
correctly. Her initial attempts typically included a fail-to-convert error, followed
by seemingly random guessing (e.g., for 1

3 + 1
6: answers 2

6, then 2
3, then 2

12 , and
then attempts to use the conversion tool by converting 1

6 to 2
6, 3

6, and 6
6). She

solved problems correctly when the denominators were “friendly” (e.g., 1
2 – 1

4; 1
5

+ 1
10) and toward the end of Block 2 solved some harder problems correctly (e.g.,

2
10 – 1

15), but she continued to have difficulty converting to equivalent fractions on
many problems. She began the third block of problems but only had time to solve
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10 of the 25 problems. On these problems, she always identified a common de-
nominator but continued to make errors in finding equivalent fractions. Katie
showed no improvement on the posttest.

Brittany’s pattern of figuring out a correct procedure when a common denomi-
nator was given and then quickly adapting this procedure to find a common de-
nominator on her own (as indexed by performance above the median in Block 2 to
Block 3) was evident in 43% of students. Of students in this high performance
group during the intervention, 66% were in the high pretest-to-posttest gain cate-
gory. Katie’s pattern of struggling throughout the problems with unlike denomina-
tors (as indexed by performance below the median on both Blocks 2 and 3) was ev-
ident in 30% of students. Of the students in this low-performance group during the
intervention, 50% showed no gain from pretest to posttest.

Brittany and Katie also illustrate a common pattern across the students: Finding
equivalent fractions was very challenging for students whether or not a common
denominator was given. This arose even though students had recently completed a
unit on fraction concepts (and were 80% correct on equivalent fraction problems
on the unit posttest). Students who learned from the intervention improved their
ability to find equivalent fractions within the context of adding and subtracting
fractions, whereas for other students, the intervention was insufficient for support-
ing this learning.

DISCUSSION

In this study, we illustrated the use of a multimethod, multiphase approach to de-
signing learning environments. Using this approach, we identified promising
knowledge scaffolds, explored potential mechanisms underlying their effective-
ness, and designed and evaluated a learning environment incorporating these scaf-
folds. In the discussion, we first consider the methodology used in this study, then
discuss implications for potential mechanisms underlying each knowledge scaf-
fold, and finally discuss implications for designing better learning environments.

Benefits of Integrated Methodology

In Phase 1, DFA was combined with error and strategy use analyses and knowl-
edge-component modeling to identify what types of scaffolds facilitated problem
solving and to provide clues to the strategies and mechanisms underlying these ef-
fects. In Phase 2, we designed a learning environment based on the findings of
Phase 1 and implemented the intervention with a wide range of students as part of
their regular mathematics curriculum. In Phase 3, we used the same methodology
as in Phase 1 to evaluate the effectiveness of the intervention and to inform the iter-
ative redesign of the intervention.
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DFA is an efficient and effective method for gaining unconfounded, causal evi-
dence for what problem factors make problems easier or harder to solve. DFA in-
volves systematically varying target factors and creating multiple versions of the
assessment so that these factors are not confounded with other problem features
(Koedinger & Nathan, 2004). Comparisons of problem-solving accuracy provide
direct evidence for the effects of the target factors on problem-solving perfor-
mance (e.g., that a story context made fraction problems easier to solve). Thus,
DFA provides direct evidence of students’ prior knowledge.

DFA can also be used in pretest–posttest designs to identify changes in which
factors facilitate or hamper problem solving after instruction or experience. For ex-
ample, in this study, the conceptual and contextual scaffolds facilitated problem
solving at pretest but not at posttest. This suggested that these knowledge scaffolds
had been integrated with children’s problem-solving knowledge by posttest and no
longer needed to be elicited directly. In contrast, the procedural scaffold continued
to improve performance at posttest, suggesting that students needed additional ex-
perience to fully integrate knowledge of finding a common denominator with their
problem-solving strategy.

In addition to evaluating students’ accuracy on a DFA, analyses of errors and
strategy use provide insights into potential mechanisms underlying the effects of
different problem factors. Consider two examples from this study. First, the proce-
dural scaffold did not eliminate the combine-both error, indicating that some stu-
dents’ difficulty went beyond failure to know how to find a common denominator
and included not knowing how to use a common denominator and find equivalent
fractions. Second, students typically showed evidence of using the conventional
common-denominator procedure rather than alternative strategies such as estima-
tion across the problem types. At the same time, only the conceptual scaffold reli-
ably reduced both combine-both and fail-to-convert errors, suggesting that some
alternative strategy must have been supported by this scaffold.

The use of knowledge-component modeling allowed us to explore how alterna-
tive mechanisms could account for these outcomes. Perhaps the most useful and
least transparent benefit of cognitive modeling is helping researchers clarify and
specify their thinking. The mechanisms explored in this study had been proposed
by others and were supported by our data, but the process of modeling these mech-
anisms forced us to hypothesize how different mechanisms might be implemented
(e.g., an alternate common-denominator process likely does not replace finding a
common denominator symbolically but rather serves as a backup approach) and
predict error patterns (e.g., a reject-implausible-answers mechanism reduces the
frequency of common, implausible errors without improving accuracy). Such in-
sights guide future iterations of the design process and contribute to domain theo-
ries of how children learn specific content knowledge. A second benefit of knowl-
edge-component modeling is the ability to compare probability estimates at a
given time and over time. These comparisons provide clues to which knowledge
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components are most difficult or most commonly used at a given time, which
knowledge components are strengthened by an intervention, and which knowledge
components still need additional instructional focus. Overall, knowledge-compo-
nent modeling provides a research tool that is less time consuming and more acces-
sible to the average researcher than implementing a running computer model while
retaining the need for greater precision and evaluation than a paper-and-pencil task
analysis or verbal model.

This set of methods is an ideal addition to design experiments. Design experi-
ments have emerged as a predominant methodology for studying and improving
student learning within the complexity of functioning classrooms (Barab &
Squire, 2004). Nevertheless, it is often difficult to disentangle necessary, suffi-
cient, and peripheral features of the design. Integrating DFA, analyses of strategies
and errors, and knowledge-component modeling with design experiments offers a
powerful methodology for evaluating what instructional features facilitate or harm
problem solving and for exploring how the features impact learning and perfor-
mance.

Mechanisms Underlying the Impact of Each Scaffold

This methodology allowed us to specify and compare potential mechanisms un-
derlying the effects of our conceptual, contextual, and procedural scaffolds. First,
consider why the conceptual and contextual knowledge scaffolds may have facili-
tated accurate problem solving. This research provides direct evidence to support
the hypothesis put forth in the National Research Council’s synthesis of the mathe-
matics education literature:

More specifically, say these researchers, instruction should build on students’ intu-
itive understanding [italics added] of fractions and use objects or contexts [italics
added] that help students make sense of the operations. The rationale for that ap-
proach is that students need to understand the key ideas in order to have something to
connect with procedural rules. For example, students need to understand why the
sum of two fractions can be expressed as a single number only when the parts are of
the same size. That understanding can lead them to see the need for constructing
common denominators. (Kilpatrick et al., 2001, pp. 240–241)

Situating a problem in a real-world context or providing visual models of frac-
tion concepts seemed to do just that. Students were much less likely to make a con-
ceptual error such as adding the numerator and denominator and were more likely
to find the correct answer when either scaffold was present. We hypothesize that
scaffolding conceptual and contextual knowledge improves students’ problem
solving via improved problem representation. In particular, both types of knowl-
edge may help students to represent the magnitude of fractions as parts of a whole
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rather than simply the symbol of one number over another (e.g., Cramer et al.,
2002; Hiebert & Wearne, 1996; Hiebert, Wearne, & Taber, 1991; Mack, 1990,
1993; Rittle-Johnson, Siegler, & Alibali, 2001). We explored three potential mech-
anisms that rely on magnitude-based representations: (a) an alternative, magni-
tude-based, backup approach to finding a common denominator; (b) an estima-
tion-based solution strategy (Mack, 1990, 1993); and (c) rejection of implausible
answers (Hiebert & LeFevre, 1986). The first was the mechanism most compatible
with our error and strategy use analyses; students most often showed evidence of
using the common-denominator procedure and rarely showed evidence of using
estimation, whereas the reject-implausible mechanism did not provide a route to
improved accuracy. Rejecting implausible answers may be an additional mecha-
nism elicited by conceptual knowledge, as they were the only mechanism and scaf-
fold, respectively, to reduce fail-to-convert errors. Future research using finer grain
assessments and think-aloud protocols should be used to further evaluate the via-
bility of each of these mechanisms both alone and in conjunction with one another
and how and when the mechanisms underlying the influences of contextual and
conceptual knowledge differ.

Compared to the conceptual and contextual knowledge scaffolds, the proce-
dural knowledge scaffold seemed to influence problem solving through a different
mechanism. The procedural scaffold (i.e., providing a common denominator)
seemed to facilitate problem solving by replacing the difficult skill of finding a
common denominator with the easier skill of using a common denominator. This
might avoid overwhelming students’ working memory resources and free up re-
sources to focus on identifying relevant information and successfully completing
other components of the task.

Implications for Designing Learning Environments

An understanding of students’ prior knowledge and problem-solving processes
guided our design of a computer-based intervention incorporating the three knowl-
edge scaffolds. This intervention seemed to support learning and transfer for a ma-
jority of students. The sixth-grade students’ ability to add or subtract two fractions
with unlike denominators (without scaffolding) was below the national average for
seventh graders at pretest (32% vs. 53%) but matched this average at posttest
(52%; Kouba et al., 1989). Similarly, on the transfer item of adding three fractions,
students were below the international average for eighth graders at pretest (42% vs.
49%) and above this average at posttest (55%; Harmon et al., 1997). The absence
of a control group in this study prevents us from making causal conclusions on the
source of learning, but the findings suggest that scaffolding conceptual, contex-
tual, and procedural knowledge during instruction is a promising tool for improv-
ing learning.
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Three general design suggestions emerged from integrating these findings with
past research: (a) story contexts may be useful scaffolds for introducing new tasks
or problem types, (b) visual representations may facilitate problem solving, and (c)
scaffolding intermediate procedural steps and then fading the scaffolding may sup-
port learning and problem solving. We are not claiming that these principles are al-
ways true but rather that they can be helpful when designing instruction. We con-
sider each suggestion in turn.

First, in many domains, carefully chosen context problems can provide a useful
way to introduce symbolic problems (cf. Carraher et al., 1987). Contrary to con-
ventional wisdom, adding and subtracting fractions in a story context was easier
than the symbolic version of the problem. This adds to prior evidence that students
are more successful on context problems than symbolic problems in early algebra
(Koedinger & Nathan, 2004) and sometimes in multidigit arithmetic (Baranes et
al., 1989; Carraher et al., 1987; Saxe, 1988). The general lesson is that students
must comprehend mathematical symbols just as they must comprehend English
sentences.

Unless students already have extensive exposure to the target symbol system
and effective strategies for working with the symbols (e.g., single-digit addition
for middle-class children), we predict that students will do better on story prob-
lems and benefit from initial instruction being embedded in familiar story con-
texts. This prediction is in line with constructivist ideas that people’s everyday ex-
periences provide funds of knowledge on which they can build formal, symbolic
knowledge (e.g., Greeno et al., 1996; Vygotsky, 1978).

Second, visual representations can support learning and problem solving (e.g.,
Griffin et al., 1994; Koedinger & Anderson, 1990; Larkin & Simon, 1987; Novick,
2001). In this study, fraction bars were used to illustrate key fraction concepts (e.g.,
3

5 as 3-out-of-5 pieces), and their inclusion led to improved performance at pretest
and may have facilitated learning during the intervention. The visual representa-
tion was the only scaffold that reliably reduced both types of common errors at pre-
test—combining numerators and denominators and failing to convert the numera-
tors after finding a common denominator. Both of these errors violate fraction
concepts (e.g., adding two fractions cannot lead to a smaller quantity). The visual
representation may have allowed students to reason through how to find common
denominators based on magnitude and to reject answers that were not conceptually
possible.

Other intervention projects on rational numbers and algebra have also used a
single, unifying visual representation (e.g., number line) to elicit conceptual
knowledge and improve problem solving (Fuson & Kalchman, 2002; Kalchman,
Moss, & Case, 2001; Moss & Case, 1999). Nevertheless, the visual representation
used in this study may have facilitated learning and performance by more sur-
face-level processes than tapping conceptual knowledge. For example, students
may have used the fraction bars to estimate the solutions by visually combining, or
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subtracting, the two quantities without linking the quantities to fraction concepts.
This option is less feasible during the intervention when students needed to enter a
specific fraction as the answer before a visual representation of the answer was
provided. Overall, we hypothesize that visual representations of key concepts can
elicit conceptual knowledge and facilitate learning and problem solving.

Third, procedural scaffolds may support learning and problem solving by al-
lowing for successive approximation of the target skill (Anderson et al., 1995; Col-
lins, Brown, & Newman, 1989; Renkl, Atkinson, Maier, & Staley, 2002). Scaf-
folding a difficult component of the target skill (e.g., finding common
denominators) can allow students to develop and implement other component
skills such as converting to equivalent fractions. As students master some compo-
nents of the target skill, the scaffolding is faded. Such an approach is often used
during cognitive apprenticeships as the skilled adult gradually fades help and sup-
port (Collins et al., 1989). Thus, we hypothesize that it is useful to include com-
plete models of expert performance (e.g., worked examples or modeling by teach-
ers), scaffolded problem-solving practice (e.g., providing components of the
procedure via hints or partial worked examples), and unscaffolded problem-solv-
ing practice. The appropriate balance and transition between these phases requires
additional research. For example, in future iterations of our intervention, we are
considering providing additional modeling of correct problem solving (especially
finding equivalent fractions) by using methods such as partial worked examples
(Renkl et al., 2002).

This study raises two additional issues for future research. First, what are the
benefits and drawbacks to using multiple instances of a particular knowledge scaf-
fold (e.g., candy bar, measurement, and sharing contexts) rather than a single ex-
emplar? Second, how does integrating different types of scaffolds (e.g., conceptual
and procedural) influence problem solving? The methodology outlined in this
study will allow us to address these issues in future research.

CONCLUSION

Combining a variety of methods from cognitive science and education provides
valuable tools for designing more effective learning environments. Identifying stu-
dents’ prior knowledge and the components of the target task that are more or less
difficult for students are important first steps, and DFA, error and strategy analy-
ses, and knowledge-component modeling provide a powerful package of tools for
doing just that. In this study, DFA indicated that contrary to popular opinion, story
contexts, not symbolic problems, facilitated problem solving at pretest. Providing
visual representations of the quantities or one step in the conventional procedure
also improved problem solving. Analyses of strategies and errors combined with
knowledge-component modeling suggested mechanisms underlying the effects of
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each scaffold at pretest. These scaffolds were then used when designing a learning
environment on fraction addition and subtraction. Finally, repeating the DFA and
supporting analyses at posttest provided valuable data for evaluating and improv-
ing the initial learning environment and thus provide valuable tools for the iterative
redesign process integral to design experiments.
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APPENDIX A
Equations Used in Alternative-Common-Denominator Model

Problem Type Response Category Equation Verbal Explanation

No scaffold Correct cd × ef × cn Find common
denominator (cd), find
equivalent fractions
(ef), and combine
numerators (cn)

Combine-both error 1 – cd Do not find cd

Fail-to-convert error cd × (1 – ef) × cn Find cd, do not find ef,
and cn

Other error cd × (1 – cn) Remaining errors: Find cd
and do not cn

Procedural scaffold Correct u × ef × cn Use given common
denominator (u), find ef
and cn

Combine both error 1 – u Do not u

Fail-to-convert error u × (1 – ef) × cn u, do not find ef, and cn

Other error u × (1 – cn) Remaining errors: u and
do not cn

Conceptual or
Contextual scaffold

Correct (cd+ (1 – cd) × m) ×
ef × cn

Find cd or find
magnitude-based
common denominator
(m), and find ef, and cn

Combine-both error 1 – (cd + (1 – cd) × m) Do not find cd nor find m

Fail-to-convert error (cd + (1 – cd) × m) ×
(1 – ef) × cn

Find cd or find m, and do
not find ef, and cn

Other error (cd + (1 – cd) × m) ×
(1 – cn)

Remaining errors: Find cd
or find m and do not cn
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APPENDIX B
Estimation Model: Equations for Conceptual

and Contextual Scaffold Problems

Problem Type Response Category Equation Verbal Explanation

Conceptual or
Contextual scaffold

Correct st + (cd × ef × cn) ×
(1 – st)

Estimate the answer (st) or
find common
denominator (cd), find
equivalent fractions (ef)
and combine numerators
(cn), if don’t estimate

Combine-both error (1 – st) × (1 – cd) Do not st and do not find cd
Fail-to-convert error (1 – st) × (cd × (1 – ef)

× cn
Do not st and find cd, do

not find ef and cn
Other error (1 – st) × (cd × (1 – cn) Remaining errors: Do not

st, and find cd, and do
not cn

Note. Equations for no scaffold and procedural scaffold problems were the same as the alternative-com-
mon-denominator model.

APPENDIX C
Reject-Implausible-Answers  Model: Equations

for Conceptual and Contextual Scaffold Problems

Problem Type Response Category Equation Verbal Explanation

Conceptual or
Contextual scaffold

Correct cd × ef × cn Find common denominator
(cd), find equivalent
fractions (ef), and
combine numerators (cn)

Combine-both error (1 – cd) × (1 – r) Do not find cd and do not
reject implausible (r)

Fail-to-convert error cd × (1 – ef) × cn ×
(1 – r)

Find cd, do not find ef, cn,
and do not r

Other error cd × (1 – cn) + (1 – cd)
× r + cd × (1 – ef) × cn

× r

Remaining errors: Find cd
and do not cn, or make
combine-both or
fail-to-convert error, but
r

Note. Equations for no-scaffold and procedural-scaffold problems were the same as the alternative-com-
mon-denominator model.
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