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Background. Knowledge of concepts and procedures seems to develop in an
iterative fashion, with increases in one type of knowledge leading to increases in the
other type of knowledge. This suggests that iterating between lessons on concepts and
procedures may improve learning.

Aims. The purpose of the current study was to evaluate the instructional benefits of
an iterative lesson sequence compared to a concepts-before-procedures sequence for
students learning decimal place-value concepts and arithmetic procedures.

Samples. In two classroom experiments, sixth-grade students from two schools
participated (N ¼ 77 and 26).

Method. Students completed six decimal lessons on an intelligent-tutoring systems.
In the iterative condition, lessons cycled between concept and procedure lessons. In
the concepts-first condition, all concept lessons were presented before introducing the
procedure lessons.

Results. In both experiments, students in the iterative condition gained more
knowledge of arithmetic procedures, including ability to transfer the procedures to
problems with novel features. Knowledge of concepts was fairly comparable across
conditions. Finally, pre-test knowledge of one type predicted gains in knowledge of the
other type across experiments.

Conclusions. An iterative sequencing of lessons seems to facilitate learning and
transfer, particularly of mathematical procedures. The findings support an iterative
perspective for the development of knowledge of concepts and procedures.

Children often must learn both fundamental concepts and correct procedures for

solving problems in a domain. There is now general consensus that knowledge of

concepts and procedures are both important, that they influence one another during
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learning and development, and that early development of concepts is desirable

(Baroody, 2003; LeFevre et al., 2006; National Research Council, 2001). However, it is

not clear how soon procedures should be introduced to children. Based on an iterative

perspective, we hypothesized that early introduction of procedures after an initial

concept lesson would benefit learning. In two experiments, we compared sixth

graders’ learning of decimal place-value concepts and arithmetic procedures after
completing a set of computer-based lessons presented in an iterative or concepts-before-

procedures sequence.

Relations between knowledge of concepts and procedures

Concepts are ideas generalized from particular instances, especially principles that

govern a domain, such as place-value and regrouping concepts for multidigit numbers.

In contrast, procedures are step-by-step action sequences to solve problems, such as

procedures for adding and subtracting (Blote, Klein, & Beishuizen, 2000; Hiebert &

Wearne, 1996; Rittle-Johnson, Siegler, & Alibali, 2001). Debates in psychology and

education have often focused on which type of knowledge develops first or is more

important (see Baroody, 2003; Hiebert & LeFevre, 1986; Rittle-Johnson & Siegler, 1998;

Star, 2005 for reviews). However, these debates may have obscured the gradual
development of each type of knowledge and the interactions between the two

knowledge types during development. Specifically, knowledge of concepts and

procedures may develop iteratively, with increases in one type of knowledge leading to

gains in the other type of knowledge, which in turn lead to further increases in the first

(Rittle-Johnson, Siegler, & Alibali, 2001).

Past research on mathematics learning is consistent with this iterative perspective.

First, children who have greater knowledge of procedures in a domain often have

greater knowledge of concepts in that domain (e.g. Byrnes & Wasik, 1991; Cowan &
Renton, 1996; Hiebert & Wearne, 1996). Second, longitudinal studies indicate that

children’s knowledge of concepts and procedures in a domain develop over the same

extended period of time (Canobi, Reeve, & Pattison, 2003; Fuson, 1988; LeFevre et al.,

2006). Third, improving children’s knowledge of procedures can lead to improvements

in their knowledge of concepts, and vice versa (Peled & Segalis, 2005; Rittle-Johnson &

Alibali, 1999). Finally, prior knowledge of concepts can predict improvements in

knowledge of procedures after a problem-solving intervention, which in turn, predicts

improvements in knowledge of concepts (Rittle-Johnson et al., 2001). Overall, an
iterative perspective is a very promising approach for explaining the development of

knowledge of concepts and procedures.

If children typically learn through such an iterative process, modeling instruction

after this iterative process could facilitate learning. This perspective implies that

concepts and procedures should both be introduced early in the learning cycle, and

lessons should iterate between the two. In addition to the following typical

developmental process, an iterative sequencing of lessons might support better

learning for at least two other reasons. First, gaining some knowledge of procedures
reduces demands on working memory during problem solving and may free resources

for reflecting on the conceptual underpinnings of the task (Sweller, van Merrienboer, &

Paas, 1998). Second, it leads to greater spacing of lessons of a particular type, which has

been shown to improve recall (e.g. Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006;

Dempster, 1988). In addition, we speculate that it may help highlight the relevance of

each lesson type for the other and support knowledge integration.
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Most instruction iterates between a focus on concepts or procedures at some level,

without exclusive attention to only one type of knowledge over the course of months.

However, some theory and instructional practices suggest that knowledge of concepts

Q1

should be developed extensively before introducing lessons on procedures. In a

concepts-before-procedures (concepts-first) sequence, knowledge of concepts is

developed for an extended period of time before procedures are developed in a
particular domain (see Baroody, 2003 for a review). A concepts-first ordering of lessons

follows the developmental sequence advocated by prominent theories of cognitive

development. Children are said to need knowledge of concepts in order to generate and

choose effective procedures (Geary, 1994; Gelman & Williams, 1998; Halford, 1993).

Reform efforts in mathematics education in the US advocate for extended development

of concepts before introducing procedures. For example, the most widely used reform-

oriented middle-school math curriculum in the US, Connected Mathematics, dedicates

considerable time to developing knowledge of concepts before computational
procedures are introduced (e.g. in the sixth-grade series, rational numbers concepts

are the focus of unit 4 and rational number procedures are the focus of unit 7; Lappan,

Fey, Fitzgerald, Friel, & Phillips, 2002).

In support of a concepts-first lesson sequence, some research indicates that prior

instruction on procedures can interfere with developing knowledge of concepts

(Kamii & Dominick, 1998; Pesek & Kirshner, 2000). For example, Pesek and Kirshner

(2000) found that fifth graders who received instruction on procedures before

beginning lessons on related concepts performed worse at post-test than students who
received the concept, but not the procedure, lessons. Together, research evidence and

educational practice suggest that a concepts first sequencing may lead to greater

learning than an iterative sequencing because of the potential downsides to practising

procedures early in the learning cycle.

Developing knowledge of decimal concepts and procedures

The current study focused on improving children’s knowledge of decimal concepts and

procedures. Unfortunately, students often have basic misconceptions about decimals

(Glasgow, Ragan, Fields, Reys, & Wasman, 2000; Kouba, Carpenter, & Swafford, 1989)

and struggle to implement correct procedures for adding and subtracting decimals

(e.g. Hiebert & Wearne, 1985).

Our intervention focused on the decimal concepts of place value and regrouping and

on procedures for adding and subtracting decimals. In the place-value lessons, students
wrote numbers in place-value charts and represented the numbers in several different

ways (see Figure 1). In the arithmetic lessons, students read word problems and solved

the addition or subtraction problems embedded in the stories (see Figure 2). Each lesson

was expected to take students half to one-and-a-half class periods to complete. The task

analysis in Table 1 highlights two key features of the lessons. First, the place-value

lessons isolated two concepts that students often violate when doing arithmetic – place

value and regrouping. Students had the opportunity to explore these ideas without the

added demands of identifying relevant quantities in word problems and doing arithmetic
computations. Second, the arithmetic lessons could be completed with or without links

to the concept lessons. In particular, the alignment step and the borrowing step could

be completed using overlapping steps from the place-value task. Thus, this study

evaluated whether it is better to fully develop relevant concepts before practising
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procedures that can build on those concepts or if it is better to introduce the procedures

earlier in the learning cycle. We tested the following hypotheses:

Iterative instruction hypothesis. Based on the iterative model, we hypothesized that

an iterative lesson sequence should lead to greater improvements in knowledge of

place-value concepts and arithmetic procedures than a concepts-first sequence. Two

specific benefits should be to reduce procedural errors and to increase access to
regrouping relations.

Iterative relations hypothesis. Knowledge of concepts at pre-test should predict

improvements in knowledge of procedures and knowledge of procedures at pre-test

should predict improvements in knowledge of concepts.

EXPERIMENT 1

The decimal lessons were embedded in a larger design experiment on creating a sixth-

grade math course (Koedinger, 2002). The current study focused on the decimal lessons

within the intelligent tutoring system component of the course.

Method

Participants
Initial participants were all 88 sixth graders, who were typically 11 years old, from

fourmathematics classrooms at two suburbanpublic schools in theUS.Of these students,

11 were absent for the pre-test or post-test, leaving 77 students in the final sample, 41 of

Figure 1. Screen shot of an Experiment 1 place-value item with a money context and unconstrained

values.
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them female. One mathematics teacher from each school participated, and each teacher

taught two sections of mathematics. Students’ assignment to class period had not been

based on their achievement and teachers followed the same lesson plans with each class.

Intervention
There were three place-value concept lessons and three arithmetic procedure lessons.
All children completed the same lesson, which were implemented in our intelligent

tutoring system. In the place-value lessons, students were asked to enter a number in a

place-value chart and then to show the value of the number in 4–9 novel ways using

regrouping (see Figure 1). On the initial items, the method of regrouping was

unconstrained. On the later items, one column in the place-value chart was filled in,

constraining the possible set of answers and encouraging students to think about the

items in different ways. In the first place-value lesson, the items (N ¼ 16) were

presented in a money context and using money terminology for the place values (as in
Figure 1). Using money contexts to introduce decimals is suggested in state standards, in

curricula, and by teachers (Glasgow et al., 2000), and familiar contexts can elicit

informal strategies and help students avoid nonsensical errors (Koedinger & Nathan,

2004; Rittle-Johnson & Koedinger, 2005). On the two subsequent lessons, the items

Figure 2. Screen shot of an Experiment 1 & 2 arithmetic item with a money context and place-value

labels on the chart.
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(N ¼ 8 per lesson) were presented without context and symbolic place-value names

were used in the place-value chart (e.g. tenths, hundredths).

In the arithmetic lessons, students were given word problems that required adding

or subtracting two decimal numbers. Students entered the numbers in a chart and

completed the computations. In the first lesson, items (N ¼ 7) were presented in a
money context, and monetary place-value column labels were included on the chart

(see Figure 2). In the second lesson, items (N ¼ 8) were in presented in non-money, and

often unfamiliar, contexts and standard place-value labels were included on the chart.

Thus, in the first and second lessons, explicit links were made to the place-value lessons.

In the third lesson, the items (N ¼ 30) were also presented in non-money contexts but

the chart did not include place-value labels. Across lessons, the intelligent tutoring

system provided customized hint and feedback messages to guide students when they

had difficulties.
In the iterative condition, the first place-value lesson was followed by the

first arithmetic lesson, followed by the second place-value lesson, and so on. In the

Table 1. Task analysis of place-value and arithmetic tasks

Place-value task
(see Figure 1 for sample item)

Arithmetic task
(see Figure 2 for sample item)

1. Determine place value of left-most digit and
type it in the appropriate column. Type
remaining digits in appropriate columns to
the right

1. Read problem and identify numbers to type in
each row of worksheet

2. Pick a digit to reduce and note its place value 2. Align numbers
3. Retrieve regrouping relation: relation

between target place value and another place
value. (e.g. 1 one is 100 hundredths).
(Borrowing alternative: always use the relation
1-to-10 for two side-by-side columns,
ignoring place value)

a. If column labels: for each number, do step 1
from place-value task

4. Use fact to reduce digit: reduce target digit
by retrieved amount

b. If no column labels: type first number. Type
second number so the decimal points are in the
same column (Conceptual alternative: for each
number, do place-value step 1 and align digits
that overlap in place value)

5. Use fact to increase digit: increase appro-
priate digit by the retrieved amount.

3. Subtract, beginning with right-most column

6. Type remaining digits, which have kept the
same value

a. If top digit is greater than or the same as the
bottom digit, then retrieve fact: top digit 2
bottom digit. Enter fact in answer row. Go to
next column and repeat

7. Repeat steps 2–6 as needed b. If top digit is less than bottom digit, then need
to borrow in top row. Reduce the digit in the
column to the left by one and add ten to the
digit in the current column. Go to next column
and repeat. (Conceptual alternative: retrieve fact
relating current place value to place value of
column to the left. Continue with place value
steps 4 and 5)
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concepts-first condition, all three place-value lessons were presented before the

arithmetic lessons.

Assessments
On the pre-test and post-test, students completed six items on decimal place-value and

regrouping concepts and six items on decimal arithmetic procedures. Half of the items
incorporated a money context and half of the items did not, and items from one version

of the assessment are shown in Table 2. The two familiar items for each knowledge type

had the same format as items presented during the intervention, but used different

numbers. The four novel items for each knowledge type had a different format and

required extension of knowledge developed during the intervention. A second version

of the assessment was created by switching the numerical values presented in the

money and non-money problems, so that money context was not confounded with

particular numerical values. The same two forms of the assessment were randomly
distributed at pre-test and post-test.

Coding
The place-value assessment was worth a possible six points. On the two familiar place-

value items, students received a point if at least half of their representations of the
number were correct; the other four items had a single answer and were each worth a

point. On familiar place-value items, we also scored the number of different, correct

regrouping relations a student used to complete the task (see Table 1). A unique

regrouping relation was coded each time a student correctly reduced a different digit or

combination of digits (e.g. trading a one for 10 tenths, trading 5 ones and 1 tenth for 510

hundredths).

The arithmetic assessment was also worth a possible 6 points, one point for each

item answered correctly. Students’ incorrect answers were coded for presence of two
common errors:

Table 2. Sample assessment items from Experiment 1

Familiar Near transfer 1 Near transfer 2

Place-value items
Money context Show 10 different ways

that you can give Ben
$3.89 (on a place-value
chart)

2 dimes are worth how
many pennies?

What is one way to show
$7.42 using more than 2
pennies?

No context List 10 different ways to
show the amount 4.07
(on a place-value chart)

3 tenths are worth how
many hundredths?

What is one way to show
9.05 using more than 5
hundredths?

Arithmetic items
Money context You had $8.72. Your

grandmother gave you
$25 for your birthday.
How much money do
you have now?

You buy a super-size candy
bar for $1.12, a bag of
chips for $3.39 and a
pack of soda for $4.
What is your total cost?

Martha’s dinner cost
$8.50. If she gives the
waiter $20.00, how
much change should she
receive?

No context Subtract: 64.57 2 8 Add: 2.29 þ 3 þ 4.35 Subtract: 30.00–9.70
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(1) alignment errors, such as aligning numbers on the right, rather than by place value,

before computing and

(2) borrowing errors, such as failing to decrement the borrowed-from digit (e.g.

302 9:70 ¼ 21:30).

A second person coded the errors made by half of the participants and the number of
regrouping relations used for 20% of participants, and exact agreement was 91% for

each. Finally, for each assessment, we calculated students’ gain score as post-test

accuracy 2 pre-test accuracy.

Procedure
Students participated in a pre-test, intervention and immediate post-test. After

completing the pre-test, students worked individually on the lessons during their

mathematics period, which lasted 40–50min a day. Each intervention condition was

implemented as a different software application, so class, rather than student, was used

as the unit of randomization because it was too confusing for the teachers to ask

different students to use different software applications within the same class. For each

teacher, we randomly chose one class period to participate in each condition so that
condition was not confounded with teacher or school.

Students went to the school computer laboratory twice a week to work on the

lessons. They took from four to eight weeks to complete the lessons, with an average

time of 4 h, 0min spent on the lessons (SD ¼ 75min; Range: 114–552min). Students in

the two condition did not differ in the time spent on the intervention, p ¼ :43.
As soon as they completed the decimal lessons, students completed the post-test.

After eight weeks, nine students had not finished the tutor due to a combination of

being absent or not staying on task; six of these students were in the iterative condition.
These students were given the post-test without having completed the tutor because the

teachers wanted them to move to the next unit. Including these students may

underestimate the effect of condition since they did not complete all the intervention

material, but we included them to better estimate the effects under normal classroom

conditions.

Results and discussion

Pre-test
We confirmed that accuracy was similar for the iterative and concepts-first conditions at

pre-test on the arithmetic items and on the place-value items, p’s . :2 (see Table 3). We

also compared accuracy across the assessment on the money context vs. no context

items. Students were much more accurate on problems presented in money contexts
than without context (M ¼ 70% correct, SD ¼ 22 vs. M ¼ 39% correct, SD ¼ 26),

Fð1; 75Þ ¼ 112:27, p , :001, h2 ¼ :60. Money contexts should elicit useful prior

knowledge during instruction.

Iterative instruction hypothesis
Students in the iterative condition made greater knowledge gains than students in the

concepts-first condition, at least on the arithmetic items (see Figure 3). To confirm the

effects of condition on learning, we conducted a mixed-measures ANCOVA on gain

8 B. Rittle-Johnson and K. Koedinger
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Table 3. Proportion correct on familiar and novel arithmetic and place-value items in Experiments 1

and 2 (standard deviations in parentheses)

Pre-test Post-test

Concepts-first Iterative Concepts-first Iterative

Experiment 1
Arithmetic .64 (.22) .56 (.32) .72 (.25) .79 (.22)

Familiar .59 (.33) .46 (.37) .71 (.32) .81 (.27)
Novel .67 (.24) .62 (.34) .72 (.28) .78 (.28)

Place value .45 (.26) .51 (.26) .67 (.26) .73 (.25)
Familiar .39 (.35) .46 (.37) .72 (.36) .81 (.30)
Novel .48 (.28) .53 (.27) .64 (.30) .69 (.30)

Experiment 2
Arithmetic .52 (.37) .23 (.28) .84 (.19) .94 (.12)

Familiar .57 (.39) .37 (.44) .96 (.14) 1.0 (.01)
Novel .47 (.28) .10 (.19) .72 (.38) .87 (.23)

Place value .23 (.21) .25 (.35) .76 (.25) .61 (.31)
Familiar .22 (.33) .27 (.39) .92 (.19) .58 (.40)
Novel .23 (.25) .22 (.32) .61 (.41) .64 (.36)
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Figure 3. Experiment 1 gain scores by condition for each item type. (Estimated marginal means with

standard error bars).
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scores, with condition and overall pre-test accuracy as between-subject factors and

knowledge type (place value or arithmetic) and familiarity (familiar or novel) as within-

subject factors. Preliminary analyses indicated that the effect of condition was similar

across the two schools, so a condition by school interaction term was not included in

the final model.

Students in the iterative condition made greater knowledge gains than students
in the concepts-first condition, Fð1; 74Þ ¼ 4:55, p ¼ :04, h2 ¼ :06 (see Table 3 and

Figure 3). To some extent, condition interacted with knowledge type; the effect of

condition was somewhat stronger on arithmetic items than on place-value items,

Fð1; 74Þ ¼ 2:97, p ¼ :09, h2 ¼ :04. Condition did not interact with familiarity, p ¼ :38.
The only other significant effect was a main effect for familiarity; gains were greater on

familiar items than novel items, Fð1; 74Þ ¼ 15:85 p , :001, h2 ¼ :18. To follow-up the

potential interaction between condition and knowledge type, we conducted separate

analyses on the arithmetic and place-value assessments. On the arithmetic assessment,
students in the iterative condition made greater knowledge gains than students in the

concepts-first condition, Fð1; 74Þ ¼ 7:07, p ¼ :01, h2 ¼ :09, and this effect did not

interact with familiarity, p ¼ :29. On the place-value assessments, students in the two

condition made equivalent gains, p ¼ :98, and this non-effect did not interact with

familiarity, p ¼ :86.
One benefit of the iterative sequence was reducing procedural errors. Students in

the iterative condition were less likely to make alignment errors on the arithmetic items

than students in the concepts-first condition (M ¼ 8% vs. 20% of the 4 relevant items),
Fð1; 72Þ ¼ 6:04, p ¼ :02, h2 ¼ :09, after controlling for differences in accuracy and

frequency of alignment errors at pre-test. Borrowing errors were very infrequent at post-

test across the two conditions. A second consequence of the iterative sequence was to

increase the diversity of regrouping relations used on the familiar place-value items at

post-test. Students in the iterative condition used more regrouping relations on the

items than students in the concepts-first condition (M ¼ 1:86, SD ¼ 0:69 vs. M ¼ 1:54,
SD ¼ 0:69), Fð1; 76Þ ¼ 4:13, p , :05, h2 ¼ :05.

Iterative relations hypothesis
We expected prior knowledge of one type to predict improvements in knowledge of the

other type. To evaluate this, we regressed pre-test place-value and arithmetic knowledge

on gains in arithmetic knowledge and on gains in place-value knowledge. Greater place-

value knowledge at pre-test was associated with greater gains in arithmetic knowledge,

partial r ¼ :235, tð74Þ ¼ 2:08, p ¼ :04, over and above the effect of pre-test arithmetic

knowledge. However, greater arithmetic knowledge at pre-test was not strongly

associated with greater gains in place-value knowledge, partial r ¼ :137, tð74Þ ¼ 1:19,
p ¼ :24, over and above the effect of pre-test place-value knowledge.

EXPERIMENT 2

Iterating between place-value and arithmetic lessons on decimals facilitated arithmetic

learning, compared to completing all the place-value lessons before the arithmetic

lessons. In Experiment 2, we sought to replicate this finding using revised lessons and

assessments and randomly assigning students to condition.
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Method

Participants
Twenty-six sixth-grade students (15 female) agreed to participate. The students
were from two classrooms in a small, public, suburban elementary school taught by the

same teacher.

Intervention
The place-value lessons were modified so that students only needed to represent a value
in three different ways; showing a value in ten ways seemed overly cumbersome for

students in Experiment 1. In the arithmetic lessons, items with borrowing across a zero

were added and 9 fewer items were presented. Otherwise, the lessons were very similar

to the Experiment 1 lessons.

Assessment
The assessment from Experiment 1 was modified to align with the changes to the

intervention items and to eliminate money-context items since students were near

ceiling on these items at post-test in Experiment 1. For each knowledge type, there were

two familiar items and two novel items, and the items are shown in Table 4. Each item

was worth one point. We also coded errors, as in Experiment. A second person coded all

of the relevant items, and exact agreement was 89–100%.

Procedure
The procedure was the same as Experiment 1, except that children within a classroom

were randomly assigned to condition, resulting in 13 students per condition. The two

conditions were implemented in the same software application; we had developed the
technical capacity to assign different lesson orders to students using the same

application. Students spent an average time of 1 hour and 54min on the lessons (range

was 80–199min).

Table 4. Assessment items from Experiment 2

Item type Familiar Novel

Place value In a place-value chart, enter 5.49 to
show the place value of each digit
(not scored because students were
at ceiling). Then:

a. Which amounts are worth the same
amount as 3.5? (need to select at least
one correct choice)

a. Increase the number of hundredths to
19. How many ones and tenths will
you need to make 5.49?

b. 2 ones are worth how many
hundredths?

b. What is another new way to show
the amount 5.49?

Arithmetic a. Add: 64.57 þ 29 b. Subtract: 760 2 5.68
b. Mike and Matt are training for a race.

Mike runs 22.4 miles every weekend,
and Matt only runs 8 miles. How much
further does Mike run than Matt each
weekend?

b. Mary is mailing 3 packages. The
packages weigh 13 lbs, 0.52 lbs, and
2.5 lbs. What is the total weight of all
3 packages?
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Treatment of Missing Data
Five students did not complete the pre-test, and 3 different students did not complete

the post-test. Because the proportion of missing data was above 15% at pre-test,

statisticians strongly recommend the use of imputation, rather than the traditional

procedure of omitting participants with missing data. Simulation studies have found

that using Maximum Likelihood (ML) Imputation when data is missing at random
leads to the same conclusions as when there is no missing data (Peugh & Enders,

2004; Schafer & Graham, 2002). The data was missing completely at random

(confirmed by Little’s MCAR test: x2ð16Þ ¼ 9:20, p . :9). As recommended by Schafer

and Graham (2002), we used the Expected Maximization (EM) algorithm for ML

estimation via the missing value analysis module of SPSS. The student’s missing scores

were estimated from all non-missing values that were included in the analyses

presented below.

Results and discussion

Pre-test
Although students were randomly assigned to condition, students in the concepts-first

condition were more accurate on the arithmetic assessment at pre-test,

Fð1; 24Þ ¼ 4:975, p ¼ :035, h2 ¼ :17 (see Table 3). There were no differences between

conditions on the place-value assessment (p . :8). Pre-test knowledge was included as a

covariate in subsequent analyses.

Iterative instruction hypothesis
The effect of condition was not consistent across the different knowledge types (see

Figure 4). We conducted a mixed-measures ANCOVA on gain scores, with condition
and overall pre-test knowledge as between-subject factors and knowledge type (place

value or arithmetic) and familiarity (familiar or novel) as within-subject factors. There

was no main effects for condition (p ¼ :44), but there were interactions between

condition and knowledge type, Fð1; 23Þ ¼ 21:33, p , :001, h2 ¼ :48 and between

condition and familiarity, Fð1; 23Þ ¼ 9:72, p ¼ :005, h2 ¼ :30. To better understand

these interactions, separate analyses were done on the arithmetic and place-value

assessments.

First, consider gains in arithmetic knowledge. As in Experiment 1, students in
the iterative condition made greater gains than students in the concepts-first

condition, Fð1; 23Þ ¼ 22:72, p , :001, and the effect was substantial, h2 ¼ :50 (see

Table 3 and Figure 4). The effect of condition interacted with familiarity such that

the effect for condition was larger for novel items than for familiar items (perhaps

due to a ceiling effect on the familiar items), Fð1; 22Þ ¼ 5:25, p ¼ :03, h2 ¼ :19.
Greater accuracy reflected a reduction in common errors; 25% of students in the

concepts-first condition made a borrowing error, whereas none of the students in

the iterative condition did. Alignment errors were virtually eliminated across the
items at post-test.

Next consider gains in place-value knowledge. The main effect for condition,

Fð1; 23Þ ¼ 4:25, p ¼ :05, h2 ¼ :16, was qualified by a condition by familiarity

interaction, Fð1; 23Þ ¼ 10:04, p ¼ :004, h2 ¼ :30. As shown in Figure 4, students in

12 B. Rittle-Johnson and K. Koedinger

BJEP 642—12/12/2008—ROBINSON—316799



the concepts-first condition made greater gains on the familiar items, but students in the

iterative condition made greater gains on the novel items.
Students’ responses on the familiar place-value items gave one clue to why

students in the concepts-first condition were more accurate on the familiar place-value

items, but less accurate on the novel items. Most of the students in the concepts-first

condition appeared to use a consistent approach to complete the items (i.e. 5.49 as

(a) 5 ones, 3 tenths and 19 hundredths, and (b) 5 ones, 2 tenths and 29 hundredths).

This could reflect use of a single regrouping fact or adoption of a borrowing

procedure to complete the items. In the concepts-first condition, 75% of students

used this approach, whereas only 18% used it in the iterative condition, x2ð1Þ ¼ 7:43,
p ¼ :006. Students in the iterative condition used tenths-to-hundredths regrouping

when it was required on the first item, but used other approaches, such as regrouping

ones-to-tenths, on the second item. It may be that students in the concepts-first

condition relied on a borrowing procedure for solving the items after repeated

practice with the format during the intervention. However, this procedure did not

seem to transfer to novel problem formats or to reduce borrowing errors on the

arithmetic assessment.

Iterative relations hypothesis
As in Experiment 1, greater place-value knowledge at pre-test was associated with

greater gains in arithmetic knowledge, partial r ¼ :45, tð23Þ ¼ 2:44, p ¼ :02, over and
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Figure 4. Experiment 2 gain scores by condition for each item type. (Estimated marginal means with

standard error bars).
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above the effect of pre-test arithmetic knowledge. In addition, greater arithmetic

knowledge at pre-test was associated with greater gains in place-value knowledge,

partial r ¼ :51, tð23Þ ¼ 2:81, p ¼ :01, over and above the effect of pre-test place-value

knowledge.

GENERAL DISCUSSION

Our hypotheses were generally confirmed, with a few caveats. First, an iterative
ordering of lessons generally resulted in larger knowledge gains, particularly for

arithmetic knowledge. Second, knowledge of one type predicted knowledge of another

type in each of the experiments. We discuss implications of this research for the

relations between knowledge of concepts and procedures and for mathematics

education.

Implications for the relations between knowledge of concepts and
procedures

Knowledge of concepts and procedures may develop best in an iterative process, with

improvements in one type of knowledge supporting improvements in the other type of
knowledge, supporting further improvements in the first. The current study converges

with past research indicating that prior knowledge of one type can influence gains in the

other type of knowledge (e.g. Canobi et al., 2003; LeFevre et al., 2006; Rittle-Johnson

et al., 2001; Schneider & Stern, 2005). More importantly, it extends prior research by

demonstrating that experimentally manipulating the order of instruction to follow an

iterative sequence can improve learning, compared to a concepts-before-procedures

sequence. This is particularly impressive given that all participants completed the same

lessons; only the order of lessons differed.
The iterative lesson sequence consistently improved knowledge of procedures. In

particular, students in the iterative condition made fewer arithmetic errors and were

better able to transfer their procedures to less familiar arithmetic items, key features of

mathematical competence. The iterative sequence seemed to strengthen an arithmetic

procedure that utilized concept-supported steps (see Table 1).

The effects of lesson order on knowledge of concepts were less consistent. For the

most part, the iterative sequence increased the number of regrouping relations students

used, but led to comparable gains in accuracy on the concept items. When the familiar
items did not require use of multiple regrouping facts in Experiment 2, the iterative

condition led to lower gains on these items. Indeed, three-quarters of students in the

concepts-first condition used an approach akin to borrowing, compared to fewer than a

quarter of students in the iterative condition. This highlights a potential consequence of

presenting all the concept lessons together; students may generate a procedure for

completing the items and no longer reflect on the underlying concepts. This may be

particularly true on easier tasks.

An iterative perspective moves us beyond debates over which type of knowledge
develops first and focuses attention on how an iterative learning cycle might facilitate

knowledge change. This study offers clues to at least four potential pathways. First, an

iterative cycle could lead to improved knowledge retrieval. Iterating between lessons on

concepts and procedures leads to distributed, rather than massed, practice. Distributed
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practice may lead to greater attention to each new problem, greater variability in the

context cues associated with the information, and/or greater retrieval practice, which in

turn improves recall of the information (Dempster, 1988; Raaijmakers, 2003; Thios &

D’Agostino, 1976). Second, an iterative cycle may improve choices among competing

procedures, increasing use of correct procedures and decreasing use of incorrect

procedures (Lemaire & Siegler, 1995). Third, iterating between lessons could support
knowledge integration. For example, two of the procedural steps could be done with or

without links to the relevant concepts (see Table 1). Noticing links between the tasks

could support integration of related concepts and procedures. Finally, an iterative cycle

may improve adaptation of existing procedures to the demands of novel problems by

encouraging use of concepts to evaluate the relevance of known procedures to novel

problems and to adapt the known procedure for use on the new problems (Anderson,

1993). Future research is needed to assess the viability of each of these potential

pathways.

Educational implications

At least two suggestions for mathematics education can be drawn from the present

findings. First, interleaving lessons focused on concepts and procedures may facilitate

learning. Fortunately, recent articulation of reform ideas indicates increasing attention
to an iterative approach (National Research Council, 2001), and the current study

provides critical evidence to support this claim and adds urgency to following the

recommendation.

Second, distributing material on a given topic over many weeks, rather than covering

it in a single block, may facilitate learning. The benefit of distributed practice (i.e. the

spacing effect) is a ubiquitous finding in psychology, but prior research has rarely used

school-like activities or been conducted in the classroom (Dempster, 1988). Further,

most research on the spacing effect has focused on memorizing facts or completing
perceptual-motor skills. The current study provides much needed evidence for

extending research on the spacing effect to a moderately complex task and to a

classroom setting.

Limitations and future directions

This study raises several additional issues that need to be addressed in future research.

First, potential limitations of an iterative sequence for inculcating knowledge of

concepts must be addressed. We suspect students in the concepts-first condition made

greater gains on the familiar place-value items in Experiment 2 because they learned a

narrow procedure for the task. Nevertheless, a potential trade off between the two

different lesson sequences for developing knowledge of concepts vs. procedures merits

additional research. This research should also include more extensive and varied
concept lessons.

Second, an iterative sequence must be compared to a procedures-then-concepts

lesson sequence. Some theories of development suggest that children first acquire

procedural knowledge and then gain conceptual knowledge from reflecting on the

procedures (Inhelder & Piaget, 1980; Siegler, 1991). Students in the current study had
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some knowledge of procedures at pre-test, and some knowledge of procedures may be

necessary to fully benefit from the concept lessons.

Third, the benefits of an iterative sequence must be evaluated across a broad range of

mathematical topics and with students who vary in mathematical abilities. Place-value

concepts are highly relevant for arithmetic procedures, but in topics in which the

concepts and procedures are not as clearly linked, an iterative sequence may be less
beneficial. An iterative lesson sequence may also be less beneficial if the target concepts

or procedures are more complex. Given individual differences in mathematical abilities

(Dowker, 2005), different lesson sequences may also impact students differently.

Understanding when and for whom an iterative lesson sequence benefits learning will

inform theories on the development of conceptual and procedural knowledge as well as

educational practice.

Fourth, the optimal length and spacing of individual lessons must be explored. An

iterative approach suggests breaking lessons into smaller segments than is commonly
done in order to interleave lessons on concepts and procedures. But, how much of one

type of lesson should precede another type of lesson? Prior research on distributed

practice suggests that there will not be a simple rule for determining the best length and

spacing of lessons; the optimal spacing of information depends on how long the

information needs to be remembered (Cepeda et al., 2006).

Finally, the benefits of an iterative lesson sequence may extend beyond conceptual

and procedural lessons. For example, iterating between concrete and symbolic

representations of arithmetic procedures within class periods is more effective than
presenting lessons using concrete representations before moving on to symbolic

representations (e.g. Fuson & Briars, 1990). This suggests that an iterative lesson

sequence may have general benefits for knowledge integration that are not specific to

conceptual and procedural knowledge. Given the potential benefits of iterative lesson

sequences for mathematics learning, these issues merit additional research.
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