
Automatic and Semi-Automatic Skill Coding
With a View Towards Supporting On-Line

Assessment

Carolyn ROSÉ, Pinar DONMEZ, Gahgene GWEON, Andrea KNIGHT, Brian JUNKER,
William COHEN, Kenneth KOEDINGER

Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh PA, 15213

Neil HEFFERNAN
Worcester Polytechnic Institute

100 Institute Road, Worcester MA, 01609-5357

Abstract. This paper explores the problem of automatic and semi-automatic coding of
on-line test items with a skill coding that allows the assessment to occur at a level that
is both indicative of overall test performance and useful for providing teachers with
information about specific knowledge gaps that students are struggling with. In
service of this goal, we evaluate a novel text classification approach for improving
performance on skewed data sets that exploits the hierarchical nature of the coding
scheme used. We also address methodological concerns related to semi-automatic
coding.

1. Introduction
The goal of the TagHelper project [5] is to develop text classification technology to address
concerns specific to classifying sentences using coding schemes developed in support of
educational research an other behavioral research fileds. A wide range of behavioral
researchers including social scientists, psychologists, learning scientists, and education
researchers collect, code, and analyze large quantities of natural language corpus data as an
important part of their research. Currently there are a wide range of corpus analysis tools
used to support corpus analysis work either at a very low level (e.g., word frequency
statistics, collocational analyses, etc.) or at a high level (e.g., exploratory sequential data
analysis once a corpus has been coded with a categorical coding scheme), but no widely
available tools to partly or fully automate the time consuming process of doing the
categorical behavioral coding or content analysis. In this paper, we address both technical
and methodological concerns in developing technology for streamlining the categorical
type of protocol analysis.

As an additional focus, in this paper we explore the potential of supporting on-line
assessment with technology for automatic and semi-automatic skill coding of assessment
items based on predictions from the text of the problem statements. On this level, the work
reported in this paper is part of a larger effor towards addressing the “Assessment Dilema”,
which is a fundamental dilemma teachers face in trying to use assessment to guide
instruction. Specifically, assessment takes time away from instruction and teachers cannot
be sure the time spent assessing will improve instruction enough to justify the cost of lost

Artificial Intelligence in Education
C.-K. Looi et al. (Eds.)
IOS Press, 2005
© 2005 The authors. All rights reserved.

571

instructional time. We are addressing this dilemma by building and experimentally
evaluating the effectiveness of a web-based "Assistment" system for middle school math in
Massachusetts. On-line testing systems that grade students and provide reports reduce the
demands on the teacher. However, they do not fundamentally address the assessment
dilemma. In contrast to previous approaches, the Assistment system aims to 1) quickly
predict student scores on standards-based tests, 2) provide feedback to teachers about how
they can specifically adapt their instruction to address student knowledge gaps, and 3)
provide an opportunity for students to get intelligent tutoring assistance as assessment data
is being collected. Assistments provide more focused instruction than the feedback that is
typically given by on-line multiple-choice systems. A skill coding of assessment items is
meant to facilitate assessment of student knowledge on individual skills. The resulting
model of student mastery can then be used for predicting total scores on standards based
tests as well as mastery on individual standards. A detailed assessment of student
knowledge is meant to keep teachers informed about the individual needs of their students
in order to support them in their task of preparing their students for the tests.

In the remainder of the paper we discuss in greater depth how a skill coding of assessment
items can be used to facilitate on-line assessment. We then discuss alternative coding
schemes we have been exploring. Next we discuss recent success in fully automatic skill
coding using the 39 Massachussetts state standards for math at the 8th grade level
(MCAS39). We also present results from an empirical evaluation of a coding interface that
demonstrates the impact of automatic predictions on coding speed, reliability, and validity
for semi-automatic skill coding. We conclude with discussion of current directions.

2. Motivation for Skill Coding for Assessment
The purpose of coding math problems with required skills is to eventually allow us to
compute predictions about performance on state exams based on a limited number of
interactions with the Assistments system (e.g., approx. 20 minutes per week). This is still
work in progress. One of our planned approachs is to track each student’s progress on the
multiple skills and other cognitive components needed to do well on state tests, through a
fully multidimensional IRT model or Bayesian inference network (e.g., 13) based on
Assistment data. From this, one can predict the student’s performance on a set of test
questions tapping a distribution of skills similar to that seen in past state assessments.
However, state tests are largely still developed using unidimensional IRT as a scaling tool
[e.g. 10,8], which tends to force most individual differences to be driven by total test score.
While there have been some successes developing multidimensional diagnostic reports for
national tests such as the PSAT/NMSQT [4], our preliminary work with MCAS historical
data suggests that fine-grained individual differences are swamped by gross number-correct
groupings of students on high-stakes state tests, making multidimensional prediction
problematic.

We are developing a cognitively-based, state-independent representation for encoding
mathematical competency. This representation will be used to code state learning
objectives, state test items, whole Assistment items and individual Assistment scaffolds.
This coding then serves multiple functions within the proposed infrastructure. First, it
allows us to draw correspondences between state standards and those of other states as well
as the NCTM standards from which they are derived. As a byproduct, it allows us to match
individual Assistment items to the corresponding NCTM standards as well as individual
state standards. The proposed representation is finer grained than typical state standards.
Thus, we argue that it is more suited to the task of predicting item difficulty because it
explicitly represents the factors that make an item either difficult or easy for students.

C. Rosé et al. / Automatic and Semi-Automatic Skill Coding572

NCTM

MCAS P.7

PSSA 2.8.8.E

(algebra strand)

Figure

While the state stand
for mathematics, th
component represen
state standards. Fig
and the relevant lea
(PSSA) for that prob
standards for differ

C. Rosé et al. / Automatic and Semi-Automatic Skill Coding 573
Figure 1 – Sample Assistment Item

Overlap Unique Non-Overlap

"Use symbolic algebra to
represent situations and
to solve problems,
especially those that
involve linear
relationships."

“Set up and solve linear
equations and inequalities
with one or two variables,
using algebraic methods,
models, and/or graphs."

- specifies number of
variables

- models and graphs in
addition to algebraic
expressions

"Select and use a strategy
to solve an equation or
inequality, explain the
solution and check the
solution for accuracy."

- explaining the solution

- checking the answer

 2 Non-overlap of individual state learning objectives

ards for mathematics nationwide are all based on the NCTM standards
e example problem in Figure 1 illustrates why a state-independent
tation of mathematical knowledge is required for generalizing across
ure 2 displays the non-overlap between the relevant NCTM standard
rning objectives for Massachusetts (MCAS) and that of Pennsylvania
lem. Because of the lack of direct correspondence between individual
ent states as well as between NCTM standards and state specific

standards, a more basic and fine grained representation is needed to demonstrate the precise
connection between these different but very strongly related systems of standards.

A key characteristic of our cognitively-based knowledge representation is that it is
composed of a vector of learning factors that distinguish problems from one another and
predict item difficulty based on scientific findings from prior research and available state
test results. An example of a learning factor is that students are known to have more
trouble with scatter plots than line graphs partly because they are less common [1].
However, even important distinctions do not apply to all types of problems. For example,
the graph type factor only applies to problem types that include graphs. In order to limit
the number of judgments required to assign values to the representation vector for a
specific item by human coders, we have designed a two-level representation in which first
order learning factors identify the problem type (e.g., graph interpretation problems, simple
algebraic simplification problems, or linear equality problems), and second-order learning
factors make more fine grained distinctions (e.g., which type of graph, complexity of
symbolic representation, or number of variables involved). Once the first-order factors
have been specified, only a subset of second-order factors are relevant, and the others can
be assigned a default value automatically.

3. Explorations of Fully Automatic Skill Coding
As we have been developing our cognitively based coding scheme, we have been exploring
automatic coding with existing skill codings such as the MCAS39 as a proof-of-concept.
The data we have consists of multi-class labels. There are 154 instances and 39 codes
where each instance can be assigned a subset of these 39 codes. These codes are formed by
5 general categories; G, N, M, P, and D. Each of these categories has sub-level categories;
for instance D-category is regarded as D.1, D.2, D.3, and D.4.

Applying a categorical coding scheme can be thought of as a text classification problem
where a computer decides which code to assign to a text based on a model that it has built
from examining “training examples” that were coded by hand and provided to it. A number
of such statistical classification and machine learning techniques have been applied to text
categorization, including regression models [12], nearest neighbor classifiers [12], decision
trees [9], Bayesian classifiers [6], Support Vector Machines [7], or rule learning algorithms
[2]. While these approaches are different in many technical respects that are beyond the
scope of this paper to describe, they are all applied the same way. A wide range of such
machine learning algorithms are available in the Minorthird text-learning toolkit [3], which
we use as a resource for the work reported here.

One challenge in applying text classification technology to word problems is that the text of
word problems contain many superficial features that make texts appear similar when they
are very different at a deep level, or conversely, different when they are very similar at a
deep level. These features include numbers, fractions, monetary values, percentages, dates,
and so on. Thus, we replaced all the occurrences of features mentioned above with some
pre-defined meta-labels, such as number, fraction, date, etc. A wide range of simple
replacements can be made easily using search-and-replace facilities provided by the
MinorThird toolkit. Other more complicated features must be tagged by hand and then
trained using text classification technology.

As a baseline for our evaluation we explored training a binary classifier for each code using
4 standard text classification algorithms; namely SVM, DecisionTree, NaiveBayes, and
VotedPerceptronLearner. In particular, SVM and VotedPerceptron classifiers are known to
perform well on skewed data sets such as ours. We compared their performance using a

C. Rosé et al. / Automatic and Semi-Automatic Skill Coding574

10-fold cross-validation methodology. SVM was the best performing approach.
Nevertheless, although the performance was high in terms of percent correct, agreement
with the gold stadard measured in terms of Kappa was very low, frequently 0, and in some
cases negative.

The novel text classification approach we explore in this paper, which is our primary
technological contribution, exploits the hierarchical nature of the MCAS coding scheme.
The basic idea involves dividing the whole corpus into clusters according to the general
categories, and then training and testing a binary classifier within each cluster separately.
The hypothesis behind this approach is that if we can obtain relatively homogeneous
clusters by exploiting each general category, then it will be simpler to train classifiers to
operate within clusters because there will be fewer distinctions to make. Furthermore, since
the texts within a cluster will be similar to each other, the trained classifiers can hone in on
the fine distinctions that separate the lowest level classes.

We used a 10-fold cross-validation methodology to train classifiers for splitting the data
into clusters. For example, on each itteration, we train a classifier for each of the 5 general
categories over 9/10 of the data. We then use the trained classifier to split the 10th segment
into 5 separate clusters, one for each general category. We do this 10 times and then
combine all of the separate clusters that belong to the same general category.Separation
into clusters using the trained classifiers was not perfect. Nevertheless, the similarity
between texts within clusters was still higher than over the whole corpus, and fewer
separate low level classes were in each cluster than were in the whole set. We then used
10-fold cross-validation within clusters to obtain an accuracy for binary classifiers within
clusters. We combined the results from individual clusters in order to obtain an agreement
score for each of the MCAS39 labels across clusters using cluster specific classifiers.

On average the new classifiers performed significantly better than the baseline classifiers
both in terms of percent agreement and Kappa (p < .05). Out of 29 classes that we had at
least 2 instances of in our data, we were able to train classifiers to detect 13 of them at the
.7 Kappa level or better. An additional 5 were between the .65 and .7 Kappa level, just
missing an acceptable performance. An additional 5 showed significant improvement but
did not reach the .7 level. For 4 out of the 29 classes, we were not able to achieve a
substantial improvement over the baseline. In order to achieve an acceptable level of
agreement while saving time over coding by hand, it is possible to allow the classifiers that
have an acceptable performance be applied to the data and simply check the data over for
places where additional codes from the remaining classifiers must be added. The first level
classification of the data into rough clusters effectively narrows down the number of
categories that must be considered for any single problem. Thus, we have determined that
on average, using the information provided by the automatic predictions, a human coder
would only need to consider 8 potential codes on average rather than 39 in order to achieve
a complete coding of the data with human level agreement.

4. Issues Related to Semi-Automatic Skill Coding

While these explorations of automatic coding technology are promising, they leave open
the question of what is the best course of action for dimensions of coding schemes where an
acceptable level of agreement with a reliable gold standard cannot be achieved with a fully
automatic approach. This is typically the case where there is a shortage of hand coded
examples to use for training, or there are many categories that are very subtly
differentiated, or there are many infrequently occurring categories. For example, the

C. Rosé et al. / Automatic and Semi-Automatic Skill Coding 575

amount of hand coded data we had access to for the MCAS coding experiment described
above was relatively small (only 150 instances). And several categories only occurred one
or two times in the whole set. The question is whether it is better in cases where automatic
coding cannot be done with an acceptable level of reliability to make automatic predictions,
which will then be checked and corrected, or simply to code a portion of the data with no
support of automatic predictions. To this end, we conducted a small formal study to
measure the impact of automatic predictions on speed, validity, and reliability of human
judgment when applying a categorical coding scheme.

Materials. For this study we use a coding scheme developed in connection with a net based
communication project focusing on usage of technical terms in expert-layperson
communication described in [11]. Materials for the experiment include (1) a 6 page coding
manual that describes the definitions of a coding scheme with 14 separate codes and gives
several examples of each; (2) a training exercise consisting of 28 example sentences; and
finally, (3) 76 sentences for the experimental manipulation. Two expert analysts worked
together to develop a “Gold Standard” of coding for the explanations used in the training
exercises as well as the examples for the experimental manipulation that indicates the
assigned correct code for each sentence.

Figure 3 Prototype TagHelper interface used in study

Coding interface. Participants coded the example sentences for the experimental
manipulation using a menu-based coding interface displayed in Figure 3. For the standard
coding interface used in the control condition, the example sentences were arranged in a
vertical list on a web page. Next to each sentence was a menu containing the complete list
of 14 codes, from which the analyst could select the desired code. No code was selected as
a default. In contrast, a minimally adaptive version was used in the experimental condition.
The only difference between the adaptive version and the standard version was that in the
adaptive version a predicted code was selected by default for each sentence. That predicted
code appeared as the initial element of the menu list and was always visible to the analyst.
The other elements of the list in each menu were identical to that used in the standard
version, so correcting incorrect predictions was simple.

C. Rosé et al. / Automatic and Semi-Automatic Skill Coding576

Participants. The participants in our study were Carnegie Mellon University and University
of Pittsburgh students and staff. 20 participants were randomly assigned to two conditions.
In the control condition, participants worked with the standard coding interface described
above. In the experimental condition, participants worked with the minimally adaptive
coding interface described above that displays predicted codes for each sentence in the
corpus set up in such a way that 50% of the sentences were randomly selected to agree with
the Gold Standard codes, and the other 50% were randomly assigned. We randomly
selected which sentences to make incorrect predictions about so that the distribution of
correct versus incorrect predictions would not be biased by the difficulty of the judgment
based on the nature of the sentence.

Experimental procedure. Participants first spent 20 minutes reading the coding manual.
They then spent 20 minutes working through the training exercise using the coding manual.
As they worked through the 28 example sentences, they were instructed to think aloud
about their decision making process. They received coaching from an experimenter to help
them understand the intent behind the codes. After working though the training exercise,
participants were given a Gold Standard set of codes for the training sentence to compare
with their own. Altogether training took 45 minutes. After the training phase, participants
were given a five minute break. They then spent up to 90 minutes working through 76
sentences, coding each sentence.

First we evaluated the reliability of coding between conditions. Average pairwise Kappa
measures were significantly higher in the experimental condition (p < .05). Mean pairwise
Kappa in the control condition was .39, whereas it was .48 in the experimental condition.
As a measure of the best we could do with novice analysts and 50% correct predicted
codes, we also analyzed the pairwise Kappa measures of the 3 participants in each
condition who’s judgments were the most similar to each other. With this carefully chosen
subset of each population, we achieved an average pairwise Kappa of .54 in the control
condition and .71 in the experimental condition. This difference was significant (p < .01).
The average agreement between these analysts’ codes from the experimental condition and
the Gold Standard was also high, an average Kappa of .70. Thus, the analysts who agreed
most with each other also produced valid codes in the sense that they agreed with the Gold
Standard. Next we evaluated more stringently the validity of coding. We found that
analysts in the experimental condition were significantly more likely to agree with the
prediction when it was correct (74% of the time) than when it was incorrect (16% of the
time). This difference was significant using a binary logistic regression with 760 data
points, one for each sentence coded in the experimental condition (p<.001). Average
percent agreement with the gold standard across the entire population was significantly
higher (p < .05), and average Kappa agreement was marginally higher in the experimental
condition than in the control condition (p=.1). Average agreement in the unsupported
condition was a Kappa measure of .48. In the experimental condition, average agreement
with the gold standard was a Kappa measure of .56. Thus, we conclude that analysts were
not harmfully biased by incorrect codes. Coding time did not differ significantly between
conditions, thus providing some confirmation of the estimate that 50% correct predictions
is a reasonable break even point for coding speed. Average coding time in the control
condition was 67 minutes and 36 seconds. In the experimental condition average coding
time was 66 minutes and 10 seconds. On average, time saved by checking rather than
selecting a code was roughly equivalent to time lost by correcting a prediction after
checking and disagreeing with a prediction.

5. Current Directions

C. Rosé et al. / Automatic and Semi-Automatic Skill Coding 577

In this paper we have discussed the problem of automatic and semi-automatic coding of on-
line test items both from the language technology and human-computer interaction angles.
The specific application area we discussed was a skill coding of math assessment items, the
purpose of which is to allow the assessment to occur at a level that is both indicative of
overall test performance on state exams and useful for providing teachers with information
about specific knowledge gaps that students are struggling with. We presented results from an
evaluation that demonstrates that skill coding of math assessment items can be partially
automated and a separate formal study that argues that even in cases where the predictions
cannot be made with an adequate level of reliability, there are advantages to starting with
automatic predictions and making corrections, in terms of reliability, validity, and speed of
coding. One focus of our continued research is developing new text classification techniques
that work well with heavily skewed data sets, such as our MCAS coded set of math problems.

6. Acknowledgements
This work was supported by the National Science Foundation grant number SBE0354420
and a grant from the US Department of Education, Institute for Education Sciences,
Effective Mathematics Education Research grant number R305K030140.

References
[1] Baker R.S., Corbett A.T., Koedinger K.R., Schneider, M.P. (2003). A Formative Evaluation of a Tutor for
Scatterplot Generation: Evidence on Difficulty Factors. Proceedings of the Conference on Artificial
Intelligence in Education, 107-115.
[2] Cohen, W. and Singer, Y. (1996). Context-sentsitive learning methods for text categorization, In
SIGIR’96: Proc. 19th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval,
pp. 307-315.
[3] Cohen, W. (2004). Minorthird: Methods for Identifying Names and Ontological Relations in Text using
Heuristics for Inducing Regularities from Data, http://minorthird.sourceforge.net.
[4] DiBello, L. and Crone, C. (2001, July). Enhanced Score Reporting on A National Standardized Test.
Paper presented at the International meeting of the Psychometric Society, Osaka, Japan.
[5] Donmez, P., Rose, C. P., Stegmann, K., Weinberger, A., and Fischer, F. (to appear). Supporting CSCL
with Automatic Corpus Analysis Technology, to appear in the Proceedings of Computer Supported
Collaborative Learning.
[6] Dumais, S., Platt, J., Heckerman, D. and Sahami, M. (1998). Inductive Learning Algorithms and
Representations for Text Categorization, Technical Report, Microsoft Research.
[7] Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant
features, In Proc. 10th European Conference on Machine Learning (ECML), Springer Verlag, 1998.
[8] Massachusetts Department of Education (2003). 2002 MCAS Technical Report. Malden, MA: Author.
Obtained August 2004 from http://www.doe.mass.edu/mcas/2003/news/02techrpt.pdf
[9] Lewis, D. and Ringuette, R. (1994). A Comparison of teo learning algorithms for text classification, In
Third Annual Symposium on Document Analysis and Information Retrieval, pp. 81-93.
[10] Mead, R., Smith, R. M. and Swandlund, A. (2003). Technical analysis: Pennsylvania System of School
Assessment, Mathematics and Reading. Harrisburg, PA: Pennsylvania Department of Education. Obtained
August 2004 from http://www.pde.state.pa.us/a_and_t/lib/a_and_t/TechManualCover.pdf.
[11] Wittwer, J., Nückles, M., Renkl, A. Can experts benefit from information about a layperson’s knowledge
for giving adaptive explanations?. In K. Forbus, D. Gentner, T. Regier (Eds.), Proc. Twenty-Sixth Annual
Conference of the Cognitive Science Society, 2004. 1464-1469.
[12] Yang, Y. and Pedersen, J. (1997). Feature selection in statistical learning of text categorization, In the
14th Int. Conf. on Machine Learning, pp 412-420.
[13] Yan, D., Almond, R. and Mislevy, R. J. (2004). A comparison of two models for cognitive diagnosis.
Educational Testing Service research report #RR-04-02. Obtained August 2004 from
http://www.ets.org/research/dload/RIBRR-04-02.pdf

C. Rosé et al. / Automatic and Semi-Automatic Skill Coding578

