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Abstract. This paper explores the problem of automatic and semi-automatic coding of 
on-line test items with a skill coding that allows the assessment to occur at a level that 
is both indicative of overall test performance and useful for providing teachers with 
information about specific knowledge gaps that students are struggling with.  In 
service of this goal, we evaluate a novel text classification approach for improving 
performance on skewed data sets that exploits the hierarchical nature of the coding 
scheme used.  We also address methodological concerns related to semi-automatic 
coding. 

1. Introduction 
The goal of the TagHelper project [5] is to develop text classification technology to address 
concerns specific to classifying sentences using coding schemes developed in support of 
educational research an other behavioral research fileds.  A wide range of behavioral 
researchers including social scientists, psychologists, learning scientists, and education 
researchers collect, code, and analyze large quantities of natural language corpus data as an 
important part of their research.  Currently there are a wide range of corpus analysis tools 
used to support corpus analysis work either at a very low level (e.g., word frequency 
statistics, collocational analyses, etc.) or at a high level (e.g., exploratory sequential data 
analysis once a corpus has been coded with a categorical coding scheme), but no widely 
available tools to partly or fully automate the time consuming process of doing the 
categorical behavioral coding or content analysis.  In this paper, we address both technical 
and methodological concerns in developing technology for streamlining the categorical 
type of protocol analysis.

As an additional focus, in this paper we explore the potential of supporting on-line 
assessment with technology for automatic and semi-automatic skill coding of assessment 
items based on predictions from the text of the problem statements.  On this level, the work 
reported in this paper is part of a larger effor towards addressing the “Assessment Dilema”, 
which is a fundamental dilemma teachers face in trying to use assessment to guide 
instruction.  Specifically, assessment takes time away from instruction and teachers cannot 
be sure the time spent assessing will improve instruction enough to justify the cost of lost 
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instructional time.  We are addressing this dilemma by building and experimentally 
evaluating the effectiveness of a web-based "Assistment" system for middle school math in 
Massachusetts.  On-line testing systems that grade students and provide reports reduce the 
demands on the teacher.  However, they do not fundamentally address the assessment 
dilemma.  In contrast to previous approaches, the Assistment system aims to 1) quickly 
predict student scores on standards-based tests, 2) provide feedback to teachers about how 
they can specifically adapt their instruction to address student knowledge gaps, and 3) 
provide an opportunity for students to get intelligent tutoring assistance as assessment data 
is being collected. Assistments provide more focused instruction than the feedback that is 
typically given by on-line multiple-choice systems.  A skill coding of assessment items is 
meant to facilitate assessment of student knowledge on individual skills.  The resulting 
model of student mastery can then be used for predicting total scores on standards based 
tests as well as mastery on individual standards.  A detailed assessment of student 
knowledge is meant to keep teachers informed about the individual needs of their students 
in order to support them in their task of preparing their students for the tests. 

In the remainder of the paper we discuss in greater depth how a skill coding of assessment 
items can be used to facilitate on-line assessment.  We then discuss alternative coding 
schemes we have been exploring.  Next we discuss recent success in fully automatic skill 
coding using the 39 Massachussetts state standards for math at the 8th grade level 
(MCAS39).  We also present results from an empirical evaluation of a coding interface that 
demonstrates the impact of automatic predictions on coding speed, reliability, and validity 
for semi-automatic skill coding.  We conclude with discussion of current directions. 

2. Motivation for Skill Coding for Assessment 
The purpose of coding math problems with required skills is to eventually allow us to 
compute predictions about performance on state exams based on a limited number of 
interactions with the Assistments system (e.g., approx. 20 minutes per week).  This is still 
work in progress.  One of our planned approachs is to track each student’s progress on the 
multiple skills and other cognitive components needed to do well on state tests, through a 
fully multidimensional IRT model or Bayesian inference network (e.g., 13) based on 
Assistment data.  From this, one can predict the student’s performance on a set of test 
questions tapping a distribution of skills similar to that seen in past state assessments.  
However, state tests are largely still developed using unidimensional IRT as a scaling tool 
[e.g. 10,8], which tends to force most individual differences to be driven by total test score. 
While there have been some successes developing multidimensional diagnostic reports for 
national tests such as the PSAT/NMSQT [4], our preliminary work with MCAS historical 
data suggests that fine-grained individual differences are swamped by gross number-correct 
groupings of students on high-stakes state tests, making multidimensional prediction 
problematic.  

We are developing a cognitively-based, state-independent representation for encoding 
mathematical competency.  This representation will be used to code state learning 
objectives, state test items, whole Assistment items and individual Assistment scaffolds. 
This coding then serves multiple functions within the proposed infrastructure.  First, it 
allows us to draw correspondences between state standards and those of other states as well 
as the NCTM standards from which they are derived.  As a byproduct, it allows us to match 
individual Assistment items to the corresponding NCTM standards as well as individual 
state standards. The proposed representation is finer grained than typical state standards.  
Thus, we argue that it is more suited to the task of predicting item difficulty because it 
explicitly represents the factors that make an item either difficult or easy for students. 
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Figure 1 – Sample Assistment Item

Overlap Unique Non-Overlap

"Use symbolic algebra to 
represent situations and 
to solve problems,
especially those that 
involve linear 
relationships."

“Set up and solve linear 
equations and inequalities 
with one or two variables, 
using algebraic methods,
models, and/or graphs."

- specifies number of 
variables

- models and graphs in 
addition to algebraic 
expressions

"Select and use a strategy 
to solve an equation or 
inequality, explain the 
solution and check the 
solution for accuracy."

- explaining the solution 

- checking the answer 
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standards, a more basic and fine grained representation is needed to demonstrate the precise 
connection between these different but very strongly related systems of standards. 

A key characteristic of our cognitively-based knowledge representation is that it is 
composed of a vector of learning factors that distinguish problems from one another and 
predict item difficulty based on scientific findings from prior research and available state 
test results.  An example of a learning factor is that students are known to have more 
trouble with scatter plots than line graphs partly because they are less common [1].  
However, even important distinctions do not apply to all types of problems.  For example, 
the graph type factor only applies to problem types that include graphs.  In order to limit 
the number of judgments required to assign values to the representation vector for a 
specific item by human coders, we have designed a two-level representation in which first 
order learning factors identify the problem type (e.g., graph interpretation problems, simple 
algebraic simplification problems, or linear equality problems), and second-order learning 
factors make more fine grained distinctions (e.g., which type of graph, complexity of 
symbolic representation, or number of variables involved).  Once the first-order factors 
have been specified, only a subset of second-order factors are relevant, and the others can 
be assigned a default value automatically.   

3. Explorations of Fully Automatic Skill Coding 
As we have been developing our cognitively based coding scheme, we have been exploring 
automatic coding with existing skill codings such as the MCAS39 as a proof-of-concept.  
The data we have consists of multi-class labels. There are 154 instances and 39 codes 
where each instance can be assigned a subset of these 39 codes. These codes are formed by 
5 general categories; G, N, M, P, and D. Each of these categories has sub-level categories; 
for instance D-category is regarded as D.1, D.2, D.3, and D.4.

Applying a categorical coding scheme can be thought of as a text classification problem 
where a computer decides which code to assign to a text based on a model that it has built 
from examining “training examples” that were coded by hand and provided to it.  A number 
of such statistical classification and machine learning techniques have been applied to text 
categorization, including regression models [12], nearest neighbor classifiers [12], decision 
trees [9], Bayesian classifiers [6], Support Vector Machines [7], or rule learning algorithms 
[2].  While these approaches are different in many technical respects that are beyond the 
scope of this paper to describe, they are all applied the same way.  A wide range of such 
machine learning algorithms are available in the Minorthird text-learning toolkit [3], which 
we use as a resource for the work reported here.

One challenge in applying text classification technology to word problems is that the text of 
word problems contain many superficial features that make texts appear similar when they 
are very different at a deep level, or conversely, different when they are very similar at a 
deep level.  These features include numbers, fractions, monetary values, percentages, dates, 
and so on. Thus, we replaced all the occurrences of features mentioned above with some 
pre-defined meta-labels, such as number, fraction, date, etc.  A wide range of simple 
replacements can be made easily using search-and-replace facilities provided by the 
MinorThird toolkit.  Other more complicated features must be tagged by hand and then 
trained using text classification technology. 

As a baseline for our evaluation we explored training a binary classifier for each code using 
4 standard text classification algorithms; namely SVM, DecisionTree, NaiveBayes, and 
VotedPerceptronLearner. In particular, SVM and VotedPerceptron classifiers are known to 
perform well on skewed data sets such as ours.  We compared their performance using a 
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10-fold cross-validation methodology.  SVM was the best performing approach.  
Nevertheless, although the performance was high in terms of percent correct, agreement 
with the gold stadard measured in terms of Kappa was very low, frequently 0, and in some 
cases negative. 

The novel text classification approach we explore in this paper, which is our primary 
technological contribution, exploits the hierarchical nature of the MCAS coding scheme.  
The basic idea involves dividing the whole corpus into clusters according to the general 
categories, and then training and testing a binary classifier within each cluster separately. 
The hypothesis behind this approach is that if we can obtain relatively homogeneous 
clusters by exploiting each general category, then it will be simpler to train classifiers to 
operate within clusters because there will be fewer distinctions to make. Furthermore, since 
the texts within a cluster will be similar to each other, the trained classifiers can hone in on 
the fine distinctions that separate the lowest level classes.   

We used a 10-fold cross-validation methodology to train classifiers for splitting the data 
into clusters.  For example, on each itteration, we train a classifier for each of the 5 general 
categories over 9/10 of the data.  We then use the trained classifier to split the 10th segment 
into 5 separate clusters, one for each general category.  We do this 10 times and then 
combine all of the separate clusters that belong to the same general category.Separation 
into clusters using the trained classifiers was not perfect.  Nevertheless, the similarity 
between texts within clusters was still higher than over the whole corpus, and fewer 
separate low level classes were in each cluster than were in the whole set.  We then used 
10-fold cross-validation within clusters to obtain an accuracy for binary classifiers within 
clusters.  We combined the results from individual clusters in order to obtain an agreement 
score for each of the MCAS39 labels across clusters using cluster specific classifiers. 

On average the new classifiers performed significantly better than the baseline classifiers 
both in terms of percent agreement and Kappa (p < .05).  Out of 29 classes that we had at 
least 2 instances of in our data, we were able to train classifiers to detect 13 of them at the 
.7 Kappa level or better.  An additional 5 were between the .65 and .7 Kappa level, just 
missing an acceptable performance.  An additional 5 showed significant improvement but 
did not reach the .7 level.  For 4 out of the 29 classes, we were not able to achieve a 
substantial improvement over the baseline.  In order to achieve an acceptable level of 
agreement while saving time over coding by hand, it is possible to allow the classifiers that 
have an acceptable performance be applied to the data and simply check the data over for 
places where additional codes from the remaining classifiers must be added.  The first level 
classification of the data into rough clusters effectively narrows down the number of 
categories that must be considered for any single problem.  Thus, we have determined that 
on average, using the information provided by the automatic predictions, a human coder 
would only need to consider 8 potential codes on average rather than 39 in order to achieve 
a complete coding of the data with human level agreement. 

4. Issues Related to Semi-Automatic Skill Coding 

While these explorations of automatic coding technology are promising, they leave open 
the question of what is the best course of action for dimensions of coding schemes where an 
acceptable level of agreement with a reliable gold standard cannot be achieved with a fully 
automatic approach.  This is typically the case where there is a shortage of hand coded 
examples to use for training, or there are many categories that are very subtly 
differentiated, or there are many infrequently occurring categories.  For example, the 
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amount of hand coded data we had access to for the MCAS coding experiment described 
above was relatively small (only 150 instances).  And several categories only occurred one 
or two times in the whole set.  The question is whether it is better in cases where automatic
coding cannot be done with an acceptable level of reliability to make automatic predictions, 
which will then be checked and corrected, or simply to code a portion of the data with no 
support of automatic predictions.  To this end, we conducted a small formal study to 
measure the impact of automatic predictions on speed, validity, and reliability of human
judgment when applying a categorical coding scheme.

Materials.  For this study we use a coding scheme developed in connection with a net based 
communication project focusing on usage of technical terms in expert-layperson 
communication described in [11].  Materials for the experiment include (1) a 6 page coding 
manual that describes the definitions of a coding scheme with 14 separate codes and gives 
several examples of each; (2) a training exercise consisting of 28 example sentences; and 
finally, (3) 76 sentences for the experimental manipulation. Two expert analysts worked 
together to develop a “Gold Standard” of coding for the explanations used in the training 
exercises as well as the examples for the experimental manipulation that indicates the 
assigned correct code for each sentence.

Figure 3  Prototype TagHelper interface used in study 

Coding interface.  Participants coded the example sentences for the experimental
manipulation using a menu-based coding interface displayed in Figure 3.  For the standard 
coding interface used in the control condition, the example sentences were arranged in a 
vertical list on a web page.  Next to each sentence was a menu containing the complete list 
of 14 codes, from which the analyst could select the desired code.  No code was selected as 
a default.  In contrast, a minimally adaptive version was used in the experimental condition. 
The only difference between the adaptive version and the standard version was that in the 
adaptive version a predicted code was selected by default for each sentence.  That predicted 
code appeared as the initial element of the menu list and was always visible to the analyst. 
The other elements of the list in each menu were identical to that used in the standard 
version, so correcting incorrect predictions was simple.
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Participants. The participants in our study were Carnegie Mellon University and University 
of Pittsburgh students and staff.  20 participants were randomly assigned to two conditions. 
In the control condition, participants worked with the standard coding interface described 
above.  In the experimental condition, participants worked with the minimally adaptive 
coding interface described above that displays predicted codes for each sentence in the 
corpus set up in such a way that 50% of the sentences were randomly selected to agree with 
the Gold Standard codes, and the other 50% were randomly assigned.  We randomly 
selected which sentences to make incorrect predictions about so that the distribution of 
correct versus incorrect predictions would not be biased by the difficulty of the judgment 
based on the nature of the sentence.

Experimental procedure.  Participants first spent 20 minutes reading the coding manual.  
They then spent 20 minutes working through the training exercise using the coding manual. 
As they worked through the 28 example sentences, they were instructed to think aloud 
about their decision making process.  They received coaching from an experimenter to help 
them understand the intent behind the codes.  After working though the training exercise, 
participants were given a Gold Standard set of codes for the training sentence to compare 
with their own.  Altogether training took 45 minutes. After the training phase, participants 
were given a five minute break.  They then spent up to 90 minutes working through 76 
sentences, coding each sentence.

First we evaluated the reliability of coding between conditions.  Average pairwise Kappa 
measures were significantly higher in the experimental condition (p < .05).  Mean pairwise 
Kappa in the control condition was .39, whereas it was .48 in the experimental condition.  
As a measure of the best we could do with novice analysts and 50% correct predicted 
codes, we also analyzed the pairwise Kappa measures of the 3 participants in each 
condition who’s judgments were the most similar to each other.  With this carefully chosen 
subset of each population, we achieved an average pairwise Kappa of .54 in the control 
condition and .71 in the experimental condition.  This difference was significant (p < .01).  
The average agreement between these analysts’ codes from the experimental condition and 
the Gold Standard was also high, an average Kappa of .70.  Thus, the analysts who agreed 
most with each other also produced valid codes in the sense that they agreed with the Gold 
Standard.  Next we evaluated more stringently the validity of coding.  We found that 
analysts in the experimental condition were significantly more likely to agree with the 
prediction when it was correct (74% of the time) than when it was incorrect (16% of the 
time).  This difference was significant using a binary logistic regression with 760 data 
points, one for each sentence coded in the experimental condition (p<.001).  Average 
percent agreement with the gold standard across the entire population was significantly 
higher (p < .05), and average Kappa agreement was marginally higher in the experimental 
condition than in the control condition (p=.1).  Average agreement in the unsupported 
condition was a Kappa measure of .48.  In the experimental condition, average agreement 
with the gold standard was a Kappa measure of .56.  Thus, we conclude that analysts were 
not harmfully biased by incorrect codes.  Coding time did not differ significantly between 
conditions, thus providing some confirmation of the estimate that 50% correct predictions 
is a reasonable break even point for coding speed.  Average coding time in the control 
condition was 67 minutes and 36 seconds.  In the experimental condition average coding 
time was 66 minutes and 10 seconds.  On average, time saved by checking rather than 
selecting a code was roughly equivalent to time lost by correcting a prediction after 
checking and disagreeing with a prediction. 

5. Current Directions
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In this paper we have discussed the problem of automatic and semi-automatic coding of on-
line test items both from the language technology and human-computer interaction angles.  
The specific application area we discussed was a skill coding of math assessment items, the 
purpose of which is to allow the assessment to occur at a level that is both indicative of 
overall test performance on state exams and useful for providing teachers with information 
about specific knowledge gaps that students are struggling with. We presented results from an 
evaluation that demonstrates that skill coding of math assessment items can be partially 
automated and a separate formal study that argues that even in cases where the predictions 
cannot be made with an adequate level of reliability, there are advantages to starting with 
automatic predictions and making corrections, in terms of reliability, validity, and speed of 
coding.  One focus of our continued research is developing new text classification techniques 
that work well with heavily skewed data sets, such as our MCAS coded set of math problems.  
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