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Abstract There is evidence suggesting that providing adaptive assistance to
collaborative interactions might be a good way of improving the effectiveness of col-
laborative activities. In this paper, we introduce the Collaborative Tutoring Research
Lab (CTRL), a research-oriented framework for adaptive collaborative learning sup-
port that enables researchers to combine different types of adaptive support, particu-
larly by using domain-specific models as input to domain-general components in order
to create more complex tutoring functionality. Additionally, the framework allows
researchers to implement comparison conditions by making it easier to vary single
factors of the adaptive intervention. We evaluated CTRL by designing adaptive and
fixed support for a peer tutoring setting, and instantiating the framework using those
two collaborative scenarios and an individual tutoring scenario. As part of the imple-
mentation, we integrated pre-existing components from the Cognitive Tutor Algebra
(CTA) with custom-built components. The three conditions were then compared in a
controlled classroom study, and the results helped us to contribute to learning sciences
research in peer tutoring. CTRL can be generalized to other collaborative scenarios,
but the ease of implementation relates to the complexity of the existing components
used. CTRL as a framework has yielded a full implementation of an adaptive support
system and a controlled evaluation in the classroom.
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1 Introduction

Over the past 30 years there has been an evolution in research on how students learn
by collaborating, depicted in Fig. 1 (Dillenbourg et al. 1995). In the conditions stage,
early work compared the effects of collaborative and individual activities, or looked at
how the conditions of collaboration related to learning and attitudinal outcomes (see
Slavin 1996, for a review). However, to better understand the effects of collaboration,
it is important to model collaborative interactions and relate them to outcomes (the
interactions stage). As it grew apparent that students often do not exhibit beneficial
collaborative behaviors spontaneously, it further became relevant to determine how to
support collaboration in order to produce the desired interactions, which would then
hopefully lead to the desired learning outcomes (Strijbos et al. 2004). Much current
collaborative learning research is situated in this fixed support stage, which focuses
on the effects of giving students fixed assistance, including declarative instruction
on how to collaborate (e.g., Saab et al. 2007), examples of good collaboration (e.g.,
Rummel and Spada 2005), and collaboration scripts that provide students with desig-
nated roles and activities as they work together (e.g., Fischer et al. 2007). However,
fixed scripts may provide students with too much structure and extraneous collabora-
tive load, particularly for students who are capable of regulating their own learning
(Dillenbourg 2002). On the other hand, pre-collaboration training may provide too
little support for students during the actual collaboration, where students may not
follow the activity as designed (e.g., Ritter et al. 2002). Adaptive support might be a
better way of targeting the individual needs of students (Soller et al. 2005; Kumar et al.
2007). Therefore, there has been a movement toward developing adaptive assistance
for collaboration, where collaborative interactions are modeled as they occur, and the
results of the analysis determine the content of the assistance given (adaptive support
stage).

Although there are many potential learning sciences research questions surround-
ing the adaptive support of collaboration, this support has proven to be challeng-
ing to implement, and evaluations of adaptive support compared to fixed support
have been promising but rare. The problem of delivering adaptive assistance to col-
laboration can be considered an instantiation of a more general assistance dilemma
(Koedinger and Aleven 2007), where in order to discover how best to deliver assis-
tance to optimize student learning, one must manipulate the amount, type, and timing
of help provided to students. In the case of collaborative learning, there are several
levels on which assistance can be delivered, ranging from assistance on domain skills
to assistance on elaborated verbal interactions. In cases where assistance on multiple
levels might be appropriate at a single time, how best to integrate the different lev-
els is an open question. Non-technological implementations of adaptive support for
collaboration require an experimenter or a teacher to interact with each collaborat-
ing group (e.g., Tsovaltzi et al. 2008; Hmelo-Silver 2004; Gweon et al. 2006). This
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Fig. 1 Four stages of research on collaborative learning. Researchers began by examining how the col-
laborative setting and positive collaborative behaviors lead to learning. They then explored how to support
collaboration to encourage productive interactions. More recently, the effects of adaptive support have been
investigated

wizard of oz methodology is impractical for large-scale research, let alone classroom
deployment, and creates uncertainty as to whether different facilitators have different
effects. Instead, it may be advantageous to examine the effects of computer-delivered
adaptive support at different and possibly interacting levels. In these settings, task and
language interactions can be automatically collected, guided, and used as input to a
system that delivers adaptive feedback. Unfortunately, such systems take a long time
to develop because of the difficulty of constructing accurate collaborative models and
the challenges of having the system provide non-disruptive feedback to collaborating
students. Further, the effects of adaptive feedback provided by these systems on col-
laborative interactions and learning outcomes have rarely been evaluated in large-scale
controlled studies, despite the fact that the evaluations that have been conducted have
had promising results. For example, Kumar et al. (2007) found that adaptive support
to collaborating pairs was better than no support to collaborating pairs and adaptive
support to individual learning. In general the adaptive collaborative learning systems
that have been developed have been research prototypes, which mainly demonstrate
how to construct such systems. This agenda for development makes it difficult to adapt
them to create relevant control conditions, deploy them in classroom environments,
or iterate upon them in future studies. Removing some of the technical obstacles to
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implementing adaptive assistance and relevant comparison conditions may encourage
the use of such systems to address educational psychology research questions.

In this paper, we introduce the Collaborative Tutoring Research Lab (CTRL), a
research-oriented framework for adaptive collaborative learning support that facili-
tates the collection of multiple streams of process data, the development and integra-
tion of assistance based on the data, and the implementation of relevant comparison
conditions for experimental control. In the construction of CTRL, we have adopted
ideas from an individual learning perspective on delivering adaptive instruction: cog-
nitive tutors. Cognitive tutors are computer-based instructional systems that compare
student actions to a model of correct and incorrect problem-solving and provide tar-
geted feedback to students when needed. They have been successful at increasing
learning in individual settings (Koedinger et al. 1997) and have evolved from act-
ing as isolated interventions to serving as research platforms. For example, Project
LISTEN’s Reading Tutor supports the incremental addition and evaluation of fea-
tures, and the collection of rich log data that can later be mined to provide insight into
student learning processes (Beck et al. 2004). CTRL extends the individual tutoring
scenario (one student, one tutor) to a collaborative multi-tutor setting (multiple stu-
dents and multiple tutors, with different roles or for different purposes). One of the
strengths of our framework is that it focuses on reusability: it facilitates the addition,
removal, and integration of components. In CTRL, adaptive collaborative conditions
can be developed more rapidly by using existing computational models, and com-
parison conditions can be created by removing particular components of the adaptive
system. We have used CTRL to create an adaptive support condition for a peer tutoring
activity that integrates domain and collaboration assistance, and evaluated the adaptive
collaboration support condition in a controlled classroom study by comparing it to a
fixed collaboration support condition and an individual learning condition. All three
study conditions were implemented following the framework, and the results of the
study increase understanding of the effects of adaptive support on peer tutoring. In this
paper, we review other adaptive collaborative learning systems in Sect. 2. In Sect. 3,
we describe CTRL, and in Sect. 4, we describe the implementation and evaluation of a
specific adaptive collaborative learning system using CTRL. To conclude in Sect. 5, we
outline the scope of CTRL, demonstrating how it can be used to implement other adap-
tive collaboration scripts that involve more participants, more balanced collaborative
roles, and more complex adaptive tutoring.

2 Background

In this section, we survey related work on adaptive collaborative learning support
(ACLS). The types of systems of primary interest to us are coaching systems, as defined
by Soller et al. (2005) in their review of collaboration support systems. Coaching sys-
tems help students who are engaged in computer-mediated collaboration by assessing
the current state of student interaction, comparing the current state to a desired state,
and then offering assistance to the students. Coaching systems have a lot in common
with intelligent tutoring systems, which also support students using the three phases of
assessment, comparison, and assistance, but focus on individual learning. Moreover,
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intelligent tutoring systems, and cognitive tutors in particular, have moved away from
merely being interventions and toward serving as research platforms to answer learn-
ing sciences questions about the effects of adaptive assistance. Our goal is to develop a
similar research platform for ACLS. To this end, we focus our review in this section on
ACLS systems that have been implemented and evaluated. Further, we examine how
cognitive tutor principles and architectures for individual learning might contribute to
our goal.

2.1 Student interactions in adaptive collaborative learning support systems

ACLS systems support both collaborative task actions and computer-mediated conver-
sation (see Table 1 for a summary of interactions enabled by ACLS systems). Often,
student interactions are structured either using micro-scripts, which operate on an
action-by-action basis, or macro-scripts, which operate on the level of phases of activ-
ity (see Dillenbourg and Hong 2008, for further discussion). In our work, we are
interested in micro-scripts, or structuring interactions within a phase of collaborative
activity. ACLS systems tend to include a shared workspace where students can work
together toward a domain goal. Micro-scripts are often applied to these shared work-
spaces by giving students different roles in the workspace or by allowing them only
to act at particular times. For example, as summarized in Table 1, COLER contains
a shared workspace where students can collaboratively construct entity-relationship
diagrams by interacting with coupled nodes and edges (Constantino-González et al.
2003). Students have to indicate their intention to draw in the workspace, and when
one student is drawing the other students cannot. Learning systems that have a shared
workspace also often include a private workspace that contains no coupled objects, so
that students can do individual work. The other primary component of many imple-
mented ACLS systems is a text-based tool that allows students to communicate with
each other in natural language. Within these tools, micro-scripts are often applied
through the use of sentence-starters that students select to begin their utterance (e.g.,
“I would like to explain that…”) or classifiers that student select after typing their utter-
ance (e.g., “Give an Explanation”). As described in Table 1, Group Leader currently
has 46 sentence openers that represent 10 subskills students should be exhibiting while
collaborating, such as “Task Leadership” (Israel and Aiken 2007). Finally, interfaces
may contain widgets such as buttons through which the students can get information
from the intelligent system. For instance, students can request four different types of
help from HabiPro: clues to the solution, a worked example of the current problem,
a worked example to a different problem, and the solution to the problem (Vizcaíno
et al. 2000). Assuming that most current ACLS systems are logging all the actions
that they enable, the systems capture collaborative task actions, verbal interactions,
and meta-interactions that arise as a result of following micro- and macro-interaction
scripts.

The interactions in an ACLS system can be viewed through the lens of “mak-
ing thinking visible”, which is a principle employed in cognitive tutor development
(Koedinger and Corbett 2006). In cognitive tutors, students are asked to perform sev-
eral steps to complete each problem-solving task. These steps can be considered as
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subgoals in the problem-solving process. When the steps are explicitly represented in
the interface, the subgoals become more salient to students, increasing their learning.
In turn, when students take action in order to meet the subgoals, an adaptive system
gains more insight into students’ cognitive processes than it would if students were
simply providing the answer to the problem. For example, in the PACT geometry tutor
students are asked to solve geometry problems and explain their steps using a menu-
based interface (Aleven and Koedinger 2002). Self-explanation is both beneficial for
students and helpful for the cognitive tutor in identifying the source of student error.
Scripts imposed on collaborative learning activities can function similarly: in addi-
tion to informing students about the communication acts expected, adding sentence
starters to an interface can make a student’s communication intention visible (e.g.,
Israel and Aiken 2007). Private and shared workspaces can make the discrepancy
between an individual’s private reasoning and their group contributions visible (e.g.,
Constantino-González et al. 2003), and thus provide input to an adaptive system.

2.2 Modeling and feedback in adaptive collaborative learning support systems

Current ACLS systems assess collaboration based on targeted aspects of student inter-
actions, compare the assessment to ideal collaborative qualities, and then provide
feedback based on the comparison (see Table 1 for an overview). In many ways, these
ACLS systems are very different from each other. Feedback policies with respect to
both collaboration and domain feedback varies; some feedback is triggered by user
actions (Tedesco 2003), some is triggered by user inaction (Constantino-González
et al. 2003), some is provided on demand (Vizcaíno et al. 2000), and some is only
provided when a user submits a solution (Baghaei et al. 2007). The representation
of ideal student performance also varies between systems, ranging from finite state
machines (Israel and Aiken 2007) to decision trees (Constantino-González et al. 2003)
to constraints (Baghaei et al. 2007). Despite these differences, ACLS systems have
broad commonalities with respect to collaborative skills targeted and how the skills are
assessed in the context of the system. In fact, the types of support provided by ACLS
can be described using a collaboration analysis scheme developed by Meier and col-
leagues (Meier et al. 2007), where student interaction is rated on 9 dimensions. Some
systems attempt to improve student interaction on Meier and colleagues’ dimension
of information pooling (IP), i.e. how much students share their knowledge with their
groupmates (Constantino-González et al. 2003; Baghaei et al. 2007). As represented
in Table 1, assessment on this dimension is drawn from workspace actions: Student
actions in a public workspace are compared to their actions in a private workspace in
order to evaluate how much of their individual actions they are sharing with the group.
Some systems instead support Meier and colleagues’ dimension of dialogue manage-
ment (DM), or how students execute conversational acts. Assessment in this area is
based on chat actions; sentence classifiers are used to count utterances of particular
types or even create a model of student dialogue acts and compare it to a sequence
of ideal dialogue acts. Then, drawing from earlier analysis systems such as EPSILON
(Soller 2004), the ACLS system can give feedback to students based on their contri-
butions (e.g., Israel and Aiken 2007). Some of the systems described in Table 1 help
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students in reaching consensus (RC; encouraging students to engage in productive
conflict) by detecting and responding to loops of disagreement. There is also a grow-
ing trend toward using machine learning to classify student utterances instead of (or
in addition to) sentence starters, with some success (e.g., Kumar et al. 2007). These
efforts have mostly focuses on task orientation (TO), making sure students stay on
topic. Up until now, we have discussed supporting either workspace actions or chat
actions. Even systems that use metrics of assessment that might apply to both types of
interactions often focus their analysis on either one. For example, a common dimen-
sion targeted for assistance is reciprocal interaction (RI), or whether everyone in a
collaborative group is participating. Systems track actions in the shared workspace
(e.g., Constantino-González et al. 2003), chat contributions (e.g., Vieira et al. 2004),
or the length of time since students have contributed last (Rosatelli and Self 2004) in
order to assess this dimension. However, systems do not generally use all three metrics
at once. In addition to providing collaboration feedback on aspects of student inter-
action, some systems also provide task-related feedback that targets domain learning
(DL). This feedback is generally provided in a manner similar to individual learning
systems. For example, Cycle-Talk (Kumar et al. 2007) engages collaborating students
in tutorial dialogues that are identical to those used for individual learners.

The different models and feedback in a given ACLS system are not often integrated,
pointing toward an opportunity for the advancement of the systems. In particular, dif-
ferent types of collaborative and domain feedback are often kept separate by design,
with each type of feedback appearing to students at different times during the collabo-
ration. For example, GroupLeader (Israel and Aiken 2007) has three types of feedback:
get back on topic, incorporate a single idea per post, or re-evaluate a conflict. In the
system, there is never a case where it is appropriate for the two types of feedback to
be given at the same time, avoiding the issue of how to decide between multiple feed-
back options. Although this configuration is a good initial policy, as systems begin
to provide more comprehensive support to student collaboration, keeping the feed-
back separate in this way will not scale. Furthermore, the models and assessment
mechanisms underlying the feedback are often kept separate within ACLS systems.
COLER (Constantino-González et al. 2003), for example, counts workspace actions to
assess individual contributions but ignores chat actions. This separation might make
it difficult to get the full picture of when feedback should be provided. More notably,
task-related models are rarely used to augment collaboration models, even when it
would make sense to do so. COLLECT-UML (Baghaei et al. 2007) provides students
with both task-related feedback on the quality of their group solution and prompts to
contribute elements from their individual solutions to their group solution. However,
the system does not provide information on whether the elements students have not
shared with the group are correct or incorrect. This knowledge would augment the
system’s capabilities to provide relevant feedback: The system could suggest that stu-
dents only share the correct elements with their group, or even suggest that students
ask their group why an element in their individual solution is incorrect. One system
that does integrate domain and collaboration information is COMET (Suebnukarn and
Haddawy 2004), where the next participant in a collaborative dialogue is selected
based in part on which student has the domain expertise to make a contribution. The
effect of this assistance on users has not been explored. One next step in ACLS design
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is to provide more complex assistance by integrating different types of models of
interaction and different types of feedback. In particular, integrating domain and col-
laboration models might have large benefits in providing interaction support that is
sensitive to the problem-solving context.

Research on cognitive tutors (and intelligent tutoring systems more generally) has
recently begun to explore the integration of different forms of assistance, in particular
augmenting task-related feedback with metacognitive feedback. There has been grow-
ing recognition that the limitations of intelligent tutoring systems might be addressed
by providing students with metacognitive instruction, with the goal to enable them to
regulate their own learning (Azevedo 2005). One example of an existing metacognitive
tutor is iSTART, a tutor for helping students to acquire reading comprehension strat-
egies (McNamara et al. 2007). iSTART asks students to explain a text to themselves
as they read it, and then provides them with feedback on the type and quality of their
explanations. In some tutoring systems, not only is metacognitive support provided,
but cognitive and metacognitive tutoring are integrated. Output from a domain-specific
cognitive model serves as input to a domain-general metacognitive model, resulting
in more effective metacognitive model and better integrated feedback. One example
of a tutor which uses this technique is the Help Tutor, which is a meta-cognitive tutor
for help-seeking that is designed as a domain-independent addition to any cognitive
tutor (Aleven et al. 2006). The Help Tutor uses both student actions and information
from the cognitive tutor to evaluate student help-seeking while problem-solving. For
example, a student that attempts a problem-solving step (student action) with too low
of a skill assessment for that step (cognitive tutor assessment) has committed a help-
seeking error. Only one type of feedback is given at a time; if both the Help Tutor and
the regular cognitive tutor have feedback to give to the student, the feedback source is
chosen based on the type and correctness of the student action. Other researchers have
explored similar methods of augmenting an intelligent tutoring system with agents
that improve student motivation (Del Solato and du Boulay 1995), discourage stu-
dents from gaming the system (Baker et al. 2006), or facilitate learning by teaching
(Biswas et al. 2005). As collaboration can be thought of as a collection of metacogni-
tive skills, the techniques for integrating metacognitive and cognitive tutoring could
potentially be leveraged to combine collaborative with cognitive tutoring.

2.3 Implementation of adaptive collaborative learning support systems

Many coaching systems (Soller et al. 2005) use a component-based architecture, which
can enable the easy modification of an existing system and the reuse of system mod-
ules in novel configurations. In component-based architectures, software is divided
into abstract components that can be specified to suit the developer’s needs and that
can be flexibly integrated with other components using a standard framework (Krue-
ger 1992). At a minimum, the way a system is divided into components has an impact
on reuse, because each component can be enhanced or replaced without having to
modify the other components. As ACLS systems are distributed applications with
multiple users, one common implementation of these systems follows a client-server
architecture, with an interface client provided for each student and a central server
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containing multiple components responsible for managing the collaborative sessions
(e.g., Baghaei et al. 2007; Tedesco 2003; Vizcaíno et al. 2000). Collaboration between
interface clients is often facilitated using a “what you see is what I see” policy, where
objects are coupled in shared workspaces so that an action taken on a coupled object
in one user’s client is broadcasted to the parallel objects in collaborators’ interfaces
(Suthers 2001). Similarly, text-based interaction tends to follow a traditional instant
messaging format, where everything a user submits as an utterance is seen by their
partners (e.g., Vieira et al. 2004). The tutoring functionality of these systems is then
generally located on the server. Many systems subdivide the tutoring module into dif-
ferent components, and although the components are named differently across systems,
the underlying purpose is parallel across systems. ACLS systems generally include
an expert model, which compares student actions to an ideal model of collaboration,
and a feedback model, which contains the logic for how feedback should be delivered
to students (e.g., Kumar et al. 2007; Israel and Aiken 2007; Tedesco 2003). The two
components handle all types of support the system offers. For instance, in the case
of COMET, they would support both information pooling and reciprocal interaction
(Suebnukarn and Haddawy 2004). One or more translator components are sometimes
also included to convert the low-level user actions into high-level representations of
their collaboration that can be input to the expert model (e.g., Kumar et al. 2007;
Israel and Aiken 2007; Vieira et al. 2004). A variation of this approach to developing a
tutoring module is to include both individual expert models and a group expert model
on the server, with the group model being either a parameterization of the individ-
ual models (Hoppe 1995) or containing its own specifications for good collaboration
(Baghaei et al. 2007).

Based on this description of components, the reuse facilitated primarily involves
the ability to modify one aspect of tutor functionality without altering other aspects
of tutoring functionality. For example, Kumar et al. (2007) discuss how their expert
model, translator, and feedback model are separate from each other, such that each
component then can be iteratively improved without altering any others. However,
another way to facilitate reuse is by adding new components directly to existing con-
figurations: In COLLECT-UML (Baghaei et al. 2007), group modeling components
are added to augment the individual modeling components already present. Once an
integration framework has been developed for the components, they can be more eas-
ily substituted for one another or combined in novel ways. For instance, Mühlenbrock
and colleagues have created an integration framework where individual user interfaces
register with the DALIS server, which then invokes a pre-specified set of support agents
(Mühlenbrock et al. 1998). Essentially, the DALIS server acts as the facilitator in a
federated system (Genesereth 1997). Similarly, LeCS treats tutors as clients, with a
central facilitator managing the interaction between tutor clients and interface clients,
although with no explicit integration framework (Rosatelli and Self 2004). Although
the described designs for reuse can make it easier to increase the sophistication of
a single type of adaptive support, they do not necessarily facilitate the integration
of multiple types of adaptive support and the efficient implementation of compari-
son conditions. Few ACLS systems specifically include multiple tutor components
which each provide a different level of tutoring. One exception is COLER, which
includes three expert model components: a “Participation Monitor”, a “Difference
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Recognizer”, and a “Diagram Analyzer” (Constantino-González et al. 2003). This
division of tutoring components by functionality can make it easier to incrementally
add tutoring complexity by integrating multiple tutoring components, particularly if
there is a framework in place so that new tutoring models can be integrated with
existing tutoring models.

Cognitive tutor architectures are structured so that custom-built interface and tutor
components can be integrated with existing components. This type of reusability can
be found in Ritter and Koedinger (1996) component-based framework for facilitating
the development of intelligent tutoring systems. Framework components are divided
into tools and tutors, and a standard protocol for interchanging messages is defined
to make it easier to swap different components in and out. So that off-the-shelf com-
ponents can be used, the framework also includes a translator component to convert
messages sent from the off-the-shelf components into the standard format, and con-
vert messages sent to the component into a format that it understands. Although Ritter
and Koedinger (1996) demonstrated how the framework could be used with two sep-
arate tutoring applications, their emphasis was on the use of off-the-shelf applications
for individual tutoring, rather than on the addition of metacognitive or collaborative
components. However, further iterations of the cognitive tutor (e.g., the Help Tutor)
have experimented with using a similar framework to add metacognitive tutoring; the
Help Tutor module was added to the traditional cognitive tutor, and feedback from
the two tutor modules were integrated as necessary (Aleven et al. 2006). Allowing
multiple tutors, and providing an integration framework for the tutors, might allow us
to provide more complex tutoring to collaborating students.

2.4 Evaluation of adaptive collaborative learning support systems

Much of the evaluation of ACLS systems has been conducted on the technological
aspects rather than on the effects of the assistance on student interactions and learning
outcomes. See Table 2 for a summary of the evaluations that have been conducted
on ACLS systems. In some cases, a technological evaluation meant evaluating the
effectiveness of the collaborative assessment. For example, Mühlenbrock (2004) in
evaluating CARDDALIS described how well the model represented the student inter-
actions. In other cases, it meant evaluating the predictive power of the models used.
COMET used kappa to demonstrate the relationship between expert-constructed group
solutions and system-predicted group solutions, with positive results (Suebnukarn and
Haddawy 2004). Finally, sometimes feedback itself was evaluated. For an evaluation
of COLER, 73% of the advice the system provided to collaborative students was rated
as “worth saying” by an expert. Research that has not focused directly on validating
the system technology has tended to fall under the category of design-related and
usability studies rather than controlled experiments. To inform the development of
the adaptive component of LeCS, data from dyads interacting using the LeCS inter-
face were collected and analyzed (Rosatelli and Self 2004), and after OXenTCHÊ had
been implemented, the usability and the benefits of the assistance were rated by student
users (Vieira et al. 2004). The few full studies that have been conducted using adaptive
systems have been promising. As described in Table 2, to evaluate COLLECT-UML,

123



398 E. Walker et al.

Table 2 Evaluations of ACLS support

System Evaluation purpose Evaluation specifics

COLER
(Constantino-González
et al. 2003)

Feedback validation Expert ratings of system support, comparison
of expert & system support

COLLECT-UML
(Baghaei et al.
2007)

Controlled experiment 2 conditions (adaptive collaboration support vs.
no collaboration support), classroom study,
effects on learning and interactions

COMET
(Suebnukarn
and Haddawy
2004)

Model validation Predict individual & group solution paths

CycleTalk (Kumar
et al. 2007)

Controlled experiment 2 (collaborative, individual) × 3(adaptive,
static, no support) design, classroom study,
effects on learning & interactions

GroupLeader (Israel and
Aiken 2007; McManus
and Aiken 1996)

Model validation,
usability study

Assess student dialogue acts, single-condition
evaluation of the effects of the system on
learning

HabiPro (Vizcaíno
et al. 2000)

Model validation Assess need for assistance, off-topic behaviors,
& passivity

LeCS (Rosatelli
and Self 2004)

Design-related study Students use a non-adaptive system to inform
design

MArCO (Tedesco
2003)

Usability study Students use adaptive and non-adaptive
versions of the system to explore its effects

OXEnTCHÊ
(Vieira et al.
2004)

Usability study Usability, student ratings of system assistance

Evaluations range from technical validations of the models behind the systems, usability studies of inter-
actions within the system, and controlled experiments to evaluate student learning

Baghaei et al. (2007) compared an adaptive collaboration support condition to a no
support condition and found that while there were no differences in domain learning
gains, the experimental condition gained more collaborative knowledge. Even more
encouraging was the study conducted by Kumar et al. (2007), which manipulated two
variables: adaptive versus fixed support, and collaborative versus individual learning.
They found that the adaptivity and collaboration interacted to produce a significantly
higher learning result compared to the other conditions. As the technical merits of the
reviewed systems have been established, a logical next step will be to investigate their
potential learning benefits.

In addition to taking principles from intelligent tutor design, building components
on top of an existing tutoring system might accelerate the evaluation process. There
are several obstacles to conducting controlled experiments with adaptive collaborative
learning systems. Large amounts of data are often required to develop the assessment
components of the systems, but the data can be difficult to collect. After expending the
effort it takes to build an adaptive collaborative system, it can be too time-consuming
to build appropriate control conditions for evaluation. Finally, once appropriately cali-
brated conditions exist, it can be difficult to find enough participants for the study, and
even more difficult to conduct the study in an ecologically valid setting. As intelligent
tutoring systems are older than ACLS, there exists more infrastructure surrounding
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these systems that can facilitate evaluation studies. The Cognitive Tutor Algebra, for
example, can be found in thousands of schools across the US, and therefore vast
amounts of data are logged every day (Carnegie Learning 2009). Tutor data is often
mined in service of investigating learning science hypotheses and ultimately informing
the improvement of intelligent tutoring systems (Beck et al. 2004). Similarly, it has
become common practice to perform embedded experiments, making small modifica-
tions to already deployed tutoring systems (Mostow and Aist 2001). Finally, because
the tutors are so widespread, there are well-established relationships with schools that
can be leveraged to gain access to classrooms and ecologically valid participants.
Taking advantage of these relationships is a main goal of the Pittsburgh Science of
Learning Center, which connects researchers and classrooms, and instruments class-
rooms so that it is easier to collect data and evaluate learning interventions (PSLC
2009). Developing ACLS systems on top of existing intelligent tutoring systems holds
great promise both in making such systems more available and in using them as a
platform for research on users’ interactions, collaborative learning, and methods of
adaptive support.

2.5 Outlook

Our goal is to build a framework for ACLS that facilitates the representation of rich
interactions, the integration of different tutoring types, and the efficient creation of
valid comparison conditions for controlled studies. Up to this point, ACLS systems
have done a very good job at focusing their support at separate types of interaction,
but have generally not integrated support based on different streams of input. The
architectures that have been developed to make ACLS systems easier to implement
have not emphasized the use of pre-existing tutoring modules as input to custom-
built models, which would increase the potential ability of the tutoring system to
provide assistance. Further, facilitating this integration would make it easier to com-
bine domain-specific task models with domain-general models of good collaboration,
enabling context-sensitive collaborative tutoring across multiple tasks. These architec-
tures have also not explicitly facilitated the creation of comparison conditions, which
would increase the effectiveness of the empirical evaluation of the system in order to
investigate learning sciences research questions. We see an opportunity here to develop
a framework for ACLS that facilitates controlled research of different types of adap-
tive support, and for this purpose we introduce the Collaborative Tutoring Research
Lab (CTRL). CTRL focuses directly on the interaction between collaborating students
and intelligent support, and would therefore ideally be used in combination with other
approaches. For example, the tool-level integration provided by Freestyler (Hoppe
and Gaßner 2002) or CoolModes (Pinkwart 2003) would be a good complement for
the tutor-level integration we facilitate. Additionally, CTRL would be a good fit as part
of a higher-level integration platform such as SAIL (Berge and Slotta 2007), which
facilitates the authoring, deployment, and assessment of learning activities. The dis-
tinct contribution of CTRL is the establishment of an integration framework for pre-
existing and custom-built components to provide adaptive tutoring to collaborating
students.
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Fig. 2 High level overview of CTRL. CTRL consists of tool, tutor, and translator agents, learner and
research management data stores, and a central control module

3 The Collaborative Tutoring Research Lab (CTRL)

The Collaborative Tutoring Research Lab (CTRL) provides a flexible integration
mechanism for independent components to form an adaptive collaborative learning
support (ACLS) environment. Using the framework, the feedback from different tutors
can be combined, meaning that students can receive complex tutoring based on mul-
tiple streams of process data. New tutor components can capitalize on existing tutor
models, increasing the meta-cognitive tutoring possible. For example, a meta-tutor
for sharing information with a teammate would be able to use results provided by a
domain tutor about whether the facts shared were correct. CTRL facilitates the addition
and removal of components in order to create appropriate comparison conditions for
adaptive support. In this section, we outline the basic components involved, the way
they interact with each other, and the way they can be integrated. The actual design,
implementation, and evaluation of a peer tutoring scenario using CTRL is described
in Sect. 4.

A high-level overview of our framework is depicted in Fig. 2. CTRL consists of six
different types of components, based in part on Ritter and Koedinger (1996) descrip-
tion of plug-in tool and tutor components:
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1. Tools: Used by the student to take problem-solving actions
2. Tutors: Provide students with assistance
3. Translators: Facilitate inter-component communication and the implementation

of collaboration scripts
4. Learner Management: Stores curriculum information and student model data
5. Research Management: Stores protocol logs and information about how the com-

ponents involved can be integrated with each other (session types)
6. Control Module: Constructs and manages collaborative sessions, both on a prob-

lem-to-problem level (session manager) and on an action-to-action level (media-
tor)

The focus of CTRL is on facilitating interactions between tool, tutor, and translator
components, and we define and discuss each of those components in more detail in
Sect. 3.1. In Sect. 3.2, we describe how the various components communicate with each
other. Sect. 3.3 outlines how the control module interacts with the research manage-
ment store to allow the flexible integration of components and construction of multiple
collaborative conditions. Learner management is not further described because it is
outside the current scope of our architecture.

3.1 Component functionality

A tool is a piece of software that a student interacts with in order to solve problems
in a particular domain. A tool could be as simple as a text-editor that allows students
to write essays or as complex as a simulation environment for chemistry experiments.
CTRL allows any number of tools to be involved in the learning scenario. Multiple
users can collaborate remotely while each one uses different tool components. There
is not necessarily a one-to-one mapping between students and tools; a single student
could have access to multiple tools (e.g., an instant messaging tool in addition to the
text-editor), and two students could conceivably be using the same tool at the same
computer. However, we assume for the purposes of this discussion that in a condi-
tion with multiple users, a tool represents a single user’s interaction with the system
as a whole. Tool components contain the user interface, a domain model, and meta-
knowledge of tutoring. The interface is the point of interaction between the user and
the system. The domain model is present so that the tool can update its state with-
out input from an additional component. A user can then interact with a tool without
input from any tutoring component, and therefore a tool is not bound to a given tutor.
For example, in a chemistry simulation environment, the interface might allow stu-
dents to mix different chemicals, and the domain model might calculate and display
the result of mixing the chemicals. Although tools should be able to share domain
models, this behavior is currently not explicitly supported by CTRL, in part because
of our focus on using pre-existing components that already have a domain model.
Tools also contain meta-knowledge so that they can convert feedback from a tutor
agent into a format appropriate for display. Thus, tutors can be used with any tool
because they do not need to send tool-specific messages. When the chemistry simu-
lation tool mentioned above receives a hint message from the tutor, it might display it
in a pop-up dialogue in the interface, while if a collaborative discussion tool receives
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the same message, it might display it as part of the chat interaction. The function-
ality that we have described is ideal, but it is likely that many pre-developed tools
we may want to use will not incorporate all functionality, and may be difficult to
modify. In these cases, we use translator components to compensate for the missing
functionality.

Translator components are all-purpose facilitators that bridge communication
between other components. They have two general functions. First, they make it
possible to integrate components that do not conform exactly to the framework spec-
ification by providing missing functionality (e.g., an implementation of tutoring
meta-knowledge) or by converting individual component messages into the standard
message format. For example, if a particular collaborative discussion tool does not
know how to handle a hint message, a translator would need to be built to con-
vert the abstract message (e.g., giveHint[hint]) into a format the tool understands
(e.g., displayInChat[hint]). This aspect of translator functionality is very much in
line with the translators discussed in Ritter and Koedinger (1996) and Kumar et al.
(2007). Second, translators can impose a structure on the collaborative interaction

by communicating certain actions across tool components (such that a user action
on one component is displayed on all other relevant components) and by triggering
changes related to collaboration scripts to the tool components. For example, a trans-
lator could be used to allow some actions made by one student to appear on the other
student’s screen, but not others. This approach, where translators facilitate collabora-
tion, is different from the more traditional object coupling approach in CSCL systems
(Suthers 2001), where students can automatically see all actions made in a shared
workspace. There may be cases during a student interaction where actions that would
generally be collaborative should not be shared (e.g., when one collaborating stu-
dent makes an error, it may not always be desirable to broadcast the error to group
members). We chose this implementation so that a designer of a learning environ-
ment has more control over structuring the interaction between students. Like tools
and tutors, there can be any number of translator components incorporated in a learn-
ing scenario. The specific implementation of a given translator would depend on its
function.

Tutor components are any components that provide adaptive support to students,
generally by comparing their actions to a model, providing assistance based on the
model, and assessing skills based on the model. Tutors might range from a domain
tutor for writing grammatical sentences based on a constraint-based model to a meta-
cognitive tutor for proofreading a paper based on a cognitive model. Any number of
tutors can be involved in a learning scenario, and any type of tutor can be used in our
framework. Tutor components should contain an expert model, a feedback model, and
a student model. Like in regular intelligent tutoring system functionality (as described
in VanLehn 2006), the expert model evaluates the student action, the feedback model
determines the sort of feedback that is given, and the student model assesses the
student performance (or in some cases, the group performance). As with tools, any
preexisting tutor components used that do not have the desired functionality can be
augmented with a translator component.
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3.2 Message protocol

All components communicate with each other using a standardized set of messages,
providing guidelines for the development of new components that can be incorpo-
rated into the framework (see Table 3). As components may be running on different
machines, messages are sent remotely. In these messages, details specific to the imple-
mentation of individual components are hidden as much as possible and only abstract
semantic content is communicated. In this paragraph, we will enumerate the high-level
representations that form the parameters and return values of the messages sent, and
in the following paragraph we will discuss the types of messages themselves. First, a
Student Interaction, or a step that can be taken by a user in the interface, is represented
using four parameters:

1. Student—the student taking the action
2. Selection—the widget being acted upon
3. Action—the action performed upon the widget
4. Input—any additional information necessary for the action

For example, a student with an id of jmiller entering 25 in a table might be represented
as (student = jmiller, selection = cell A1, action = enterValue, input = 25). The
concept of a selection-action-input triple can be traced back to Anderson and Pelletier
(1991). A Tutor Response to a student interaction is represented by four parameters:

1. Tutor—the tutor sending the message
2. Action Evaluation—the type of message (e.g., correct, incorrect, highlight)
3. Feedback Message—any message the tutor wants to send
4. Skill Assessment—the change in student skill values

For example, a domain tutor might approve the student action in cell A1 (indicating
it was correct), send a feedback message for encouragement (e.g., “Keep it up! What
goes in cell A2?”), and increase the value of the relevant skill (e.g., set the skill “enter-
ing values in a table” to 60%). As described in Table 3, information that is not a Student
Interaction or Tutor Response (such as current problem details) is communicated as
a set of Properties, which is a conventional data structure containing any number of
attribute-value pairs.

These data structures are then used as parameters and return values for the message
types exchanged between components (see Table 3). For example, when a session is
started a getData message would be used to retrieve relevant curriculum and student
information, and launchComponent messages would be used to start and configure
all the relevant components. While elements of this message protocol are taken from
Ritter and Koedinger (1996), the protocol is more abstract than the protocol that they
defined, in order to facilitate a variety of potential learning environment interactions.
Because the problem-solving interactions are the core messages of CTRL, here we
present an in-depth example of how those messages might be used by the different
components (see Fig. 3). The example includes two tools (representing two collab-
orating students, Bo and Jan), two tutors (representing a domain and collaborative
tutor), one translator to implement the shared collaborative workspace, one research
management component, and the mediator subsection of the control model. In the
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Table 3 Messages passed between components

Message name Input Output Sending components Receiving
components

launchComponent Component
properties

Success or failure Session Manager Tool, Tutor, Translator

quitComponent None Success or failure Session Manager Tool, Tutor, Translator

getNextProblem Problem-
selection
properties

Problem
properties

Session Manager Tool, Tutor, Translator

changeProblem Problem
properties

Success or failure Session Manager Tool, Tutor, Translator

processInteraction Interaction None Tool, Translator Tutor

scriptInteraction Interaction None Translator, Tutor Tool

processFeedback Interaction,
Response

None Tutor, Translator Tool

setProperty Component
property

None Translator, Tutor Tool, Translator, Tutor

getValue Attribute Value Translator, Tutor Tool, Translator, Tutor

putData Data properties None Mediator Learner
Management,
Research
Management

getData None Data properties Session Manager Learner
Management,
Research
Management

Messages are used to for session management tasks like moving to the next problem, but also for tutor-tool
interactions within the problem

example, the tool receives input from the user and sends information about the user
action to the control model, using a processInteraction message. Once the control
module receives the message, it logs it, and then redirects it to all components that
should receive it (in this case, the translator and the two tutors). The translator takes
the message and transforms it into a scriptInteraction message in order to reproduce
a student action on another interface, which is sent back to the control module. Mean-
while, the domain (math) tutor evaluates the user action, and sends its feedback to the
control module, which passes it along to the collaboration (chat) tutor using a process-
Feedback message. The collaboration tutor, using the user action and the feedback as
input, evaluates the action and sends its feedback back to the control module using a
processFeedback message. The control module has now received messages from the
translator, the collaboration tutor and the domain tutor. The control module integrates
the messages, passes the scriptInteraction message along to both tools, and then sends
the feedback message to Jan’s tool, as specified by the integration logic in the control
module. Although not all collaborative scenarios will operate in exactly this way, these
messages form the building blocks for handling interactions between tool, tutor, and
translator components.

We have explicitly chosen to leave some elements necessary for implementing
a computer-supported collaborative learning system unspecified, because they are
outside of our main focus. As the system is distributed, some components of the
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Fig. 3 Message-passing between two tools, two tutors, and a translator. Each tool represents a collaborating
student. One tutor supports student interaction and one supports problem-solving

system (e.g. the control module) will run on a central server, and some components
(e.g. the tool components) will run on various clients. However, the way components
are distributed may depend on the deployment environment, so we leave it purpose-
fully ambiguous. Also, because components are distributed, all messages need to be
sent remotely, and we leave the implementation of the specific protocols up to the
developer. Finally, to be deployed in a classroom, multiple sessions handling multiple
student pairs need to be run at once, meaning that a server needs to handle client
logins and launching the collaborative sessions. Although we do not outline general
guidelines for accomplishing these goals, we do discuss our implementation of these
features in Sect. 4.

3.3 Component integration

In addition to illustrating how messages are passed between components, there are
several notable elements of the above example that highlight the centrality of the con-
trol module during a session. All messages sent go through the control module, which
logs the messages prior to sending them to the relevant components. In this manner,
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the logging of different streams of interaction is combined within a single framework.
Further, the control module is in control of which components are involved, where
messages get sent, and how messages are integrated. Using the control module, a trans-
lator component can be built to echo messages from one tool to another, facilitating
collaboration. Additionally, the output of one tutor module can be used as input to a
second tutor module, facilitating the integration of different tutor components. While
CTRL is not the only architectural framework to use a federated system (see Rosatelli
and Self 2004; Mühlenbrock et al. 1998), its contribution is that it focuses specifi-
cally on integrating different tutor components and on the efficient implementation of
comparison conditions.

The control module facilitates the integration of different components, helping to
meet our goals of providing complex adaptive functionality and making it easier to
create control conditions. In standard use of the intelligent tutoring system, each indi-
vidual component has knowledge of where it is sending and receiving messages, and
this configuration works because the system is so simple (the tutor sends messages to
the tool, the tool sends messages to the tutor). With multiple components, a central
body is needed to manage all the communication. The control module uses a represen-
tation of the session characteristics in order to determine how to route the messages.
Each condition facilitated by CTRL is represented as a session type stored in research
management. Each session type contains three arrays corresponding to three different
types of components (tool, translator, tutor). Session types also contain a set of logical
rules for how messages are passed between components. These rules can be as simple
as:

IF a message m was sent by any tool
THEN send m to every tutor

However, some rules will need to be more complex, as they should also represent
how to integrate feedback messages from different tutors. For example, if there is a
participation tutor and a domain tutor involved in a session, a rule represented in the
session type might be:

IF step s is incorrect
AND m is a domain feedback message
AND student a has not participated sufficiently
AND n is a participation feedback message
THEN aggregate m and n and send m + n to a.

Rules can involve any information available to the mediator, including the components
involved in the message, the parameters of a particular message, curriculum or student
parameters, and a pre-set priority of the message.

Once a session type has been created, the session manager and mediator can use it as
a guideline for how different components should be interacting. When a collaborative
session is started, the session is associated with a given session type. How this associ-
ation is made is left open: it can be based on user login, or a particular curriculum, or
even be selected by the user. The details of the particular session type discussed in the
above paragraph are then retrieved from research management and stored locally in
the control module. The session manager iterates through the components involved to
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send a high-level message (e.g., launching each component). The mediator’s function
is to control the low-level message passing between components by intercepting all
messages sent by a component and directing them to the appropriate targets, following
the rules outlined in the session type. Therefore, based on the session type activated,
the same components can be used in different ways. Adding or removing a compo-
nent can be as simple as creating a new session type, without the need to modify the
other components involved in the interaction. Of course, depending on the complex-
ity of the rules, authoring session types might be a challenge (particularly for non-
programmers). In the discussion of an instantiation of CTRL in Sect. 4, we discuss the
potential utility of rule templates for accelerating the authoring of session types.

The central control module also facilitates the creation of an integrated log of collab-
orative interactions. In CTRL, each semantically meaningful action occurring within
a component is sent to the control module, which transforms the action into xml, and
sends it to a data store in the research management component. In this manner, logs
from each component are automatically integrated and can be reviewed together after
a study without any further processing. The logging protocol of the architecture is
based on the Pittsburgh Science of Learning Center protocol (PSLC 2009), which
records semantic-level messages sent from tool and tutor components. These tool and
tutor logs follow the concept of a transaction described by VanLehn et al. (2007),
where a user action and the tutor response to the action are linked. In our framework,
a processInteraction message is logged as “tool message” to the learner management
module, with the student interaction parameters, a unique id, and a timestamp being
represented in the log (see Fig. 4). A responding processFeedback message is logged
as a “tutor message” to the learner management module, with the student interaction
parameters, tutor response parameters, and a timestamp being captured. The relation-
ship between the tool and tutor messages is also represented, as the tutor message
contains the ID of the tool message that triggered it. Logs include context messages,
which are initiated by the control module, and record information about the problem
being solved, the settings of the learning environment, or the experimental design.
Once a relevant context message has been logged, both tool and tutor messages will
be linked to it, containing the context message id.

Because CTRL is designed for adaptive collaborative learning systems rather than
individual intelligent tutoring systems, the logging supported needs to be broader than
the protocol discussed by VanLehn et al. (2007). Thus, an additional type of message
is supported: a scripting message, logged whenever a module changes the problem
state of a tool. In this case, the student interaction parameters, the timestamp, the rele-
vant context message id, and the relevant tool message id are logged. Second, because
CTRL supports multiple users on multiple tools, it is important not only to record the
user of the message (part of the student interaction parameter), but the collaborative
session of the user, and the role of the user within that session. We incorporate this
information into the context message, which logs the learning environment settings.
Third, because CTRL supports multiple tool responses, the relevant metaphor for ana-
lyzing the data is not a single tool-tutor transaction but a chorus of responses to a tool
action. Not only does each tutor response need to be logged, but also the final message
constructed by the mediator to be sent to each tool.
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Fig. 4 Logging format for student-tutor interaction. Logs consist of context messages, tutor messages, tool
messages, and scripting messages

3.4 Outlook

Ideally, CTRL captures rich process data, integrates feedback from multiple tutor
components, and makes it easier to implement comparison conditions. All seman-
tic messages from components are sent to the control module, which creates a log
of all student interactions including verbal interaction, collaborative problem-solving
actions, and the intelligent tutor responses. Multiple pre-existing and custom-built
intelligent tutors can be incorporated into the system by changing the definition of
a session type in the mediator. Domain-general intelligent tutors can use the output
of domain-specific tutors as input into their models. Finally, because components are
designed to be independent, it becomes possible to remove components from collab-
orative sessions in order to create multiple comparison conditions. In the following
section, we discuss an instantiation of CTRL that demonstrates these features.

4 Instantiation of CTRL

We demonstrated the suitability of CTRL as a research platform by using it as the
foundation for conducting a controlled study on the effects of adaptive support in
the context of a collaborative learning activity. In this section, we first describe how
we designed an ACLS intervention called APTA (Adaptive Peer Tutoring Assistant)
in which we augmented a successful intelligent tutoring system, the Cognitive Tutor
Algebra (CTA), with a peer tutoring activity. Our design drew on previous successful
peer tutoring interventions and included both fixed and adaptive assistance. Second,
we describe how we implemented the adaptive support condition, and two comparison
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Fig. 5 Individual version of the CTA. Students solve problems in the equation solver, and receive hints
and feedback from the cognitive tutor. © 2009 Carnegie Learning. Used with permission

conditions, using an instantiation of CTRL. Finally, we describe a controlled classroom
study in which we evaluated the adaptive peer tutoring condition. Our results benefit-
ted from having access to process data, having an adaptive intervention that relies on
both domain and collaboration models, and having strong comparison conditions.

4.1 Intervention design: peer tutoring in the context of the Cognitive Tutor Algebra

APTA is designed as an addition to the Cognitive Tutor Algebra (CTA). Figure 5 shows
the literal equation solving unit of the CTA. Students use menus in an equation solver
tool to manipulate the equation, selecting operations like “add x” or “combine like
terms”. The semantic label for the operation then appears on the right side of the
screen. For certain problems, students have to type the result of the operation in addi-
tion to selecting it. As the students solve the problem, the CTA compares their actions
to a model of correct and incorrect problem-solving behavior. If they make a mistake,
they receive visual feedback in the interface, and often a message describing their
misconception. At any point, students can request a hint on the next step of the prob-
lem. The CTA monitors student skills, reflects them in a skill display, or skillometer,
and selects problems based on student skill mastery. As students may acquire shallow
conceptual knowledge while using tutoring systems, recent efforts have augmented
cognitive tutors with activities that encourage elaboration. There are promising early
results on adding supported collaborative activities to the CTA (Diziol et al. 2008).

We augmented the CTA with a reciprocal tutoring script. When students act as peer
tutors they benefit because they are reflecting on the current state of their knowledge
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and using it to construct new knowledge (Roscoe and Chi 2007b). As these positive
effects are present even if peer tutors have low domain knowledge, researchers imple-
ment reciprocal peer tutoring programs, where students of similar abilities take turns
tutoring each other. This type of peer tutoring has been shown to increase academic
achievement in long-term interventions integrated into classroom practice (Fantuzzo
et al. 1989). Unfortunately, such gains are not always seen, possibly because students
do not often exhibit positive peer tutoring behaviors spontaneously (Roscoe and Chi
2007a). Successful interventions have provided peer tutors with assistance in order to
achieve better learning outcomes for both tutors and tutees. For one, this assistance
can target tutoring behaviors. For example, training students to deliver conceptual
mathematical explanations and elaborated help had a significantly positive effect on
tutor learning (Fuchs et al. 1997). However, it is just as critical for assistance to target
the domain expertise of the peer tutors, in order to ensure that students have sufficient
knowledge about the correct solution to a problem. If not, there may be cognitive con-
sequences (tutees cannot correctly solve problems; Walker et al. 2007) and affective
consequences (when students feel that they are poor tutors they become discouraged;
Medway and Baron 1997).

In APTA, we script the interaction to create conditions conducive to the display of
positive tutoring behaviors. The script includes two phases: a preparation phase and a
collaboration phase. In the preparation phase, students solve the problems that they
will be tutoring, using the individual version of the Cognitive Tutor Algebra. After
each problem, they answer a reflection question that prepares them to tutor on the
problem, such as “What is a good explanation to give to your partner about a problem
step?” Including a preparation phase helps to give students the domain knowledge
necessary to later tutor their partner. Also, it may be beneficial for learning in itself,
because the anticipation of tutoring may lead students to feel more accountable for
their knowledge and therefore attend more to the domain content during preparation.
Pair members are each given different sets of problems to solve in the preparation
phase. In the collaboration phase, students then take turns tutoring each other on the
problems that they solved in the preparation phase. For example, if Bob and Sara are
partners, and Sara was the tutor on the first problem, Bob would be the tutor on the
second problem. Sara would solve the second problem just as though she was using
the individual cognitive tutor, by manipulating the menus in the Equation Solver and
typing in the results of a step when necessary. Bob in the role of the tutor cannot take
actions in the problem himself, but he can see every step Sara takes on the problem and
the results of every type-in entry. He can mark her answers right or wrong and monitor
her knowledge by raising or lowering the values of her skillometer bars. These mon-
itoring demands might lead Bob to reflect more on the knowledge required to solve
the problem, and on his own knowledge, by extension. Sara sees every action Bob
takes to correct her or give her feedback on her knowledge. Bob and Sara can interact
with each other in natural language using an instant messaging tool, and we expected
that providing this functionality would facilitate elaborated discussion between the
students. Furthermore, Bob has access to the problem solution in an interface tab, in
order to provide him with fixed domain assistance during tutoring (see Fig. 6).

We used the CTA models to further provide adaptive collaboration assistance to
the peer tutor, using a meta-tutor. In a pilot study with unsupported students using
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Fig. 6 Peer tutor’s interface. As the tutee solves problems in the equation solver window, the peer tutor
can mark steps right or wrong. The peer tutor can also give tutees feedback by increasing and degreasing
their skill bars. Students can talk in the chat window

the peer tutoring script, we found that peer tutors had difficulty giving correct help to
their tutees, and tutees solved few problems correctly (Walker et al. 2007). Therefore,
we focused our first attempt at adaptive assistance for the peer tutor’s corrections of
the peer tutee’s problem-solving actions. There are three main ways a peer tutor can
provide this type of feedback to the peer tutee:

Path 1. Responding “agree” or “disagree” whenever the tutee clicks the done button
(indicating that the tutee believes that the problem has been solved)

Path 2. Marking a problem step “right” or “wrong” after the tutee has taken that step
Path 3. Providing a hint in the chat window

For Path 1, the ideal model of performance is that whenever the tutee indicates he or
she is done with the problem, the peer tutor clicks “agree”, and whenever the tutee is
not actually done with the problem, the peer tutor clicks “disagree”. Similarly, for Path
2, the ideal model of performance is that the peer tutor marks a step right when it is in
fact correct, and marks a step wrong when it is incorrect. Path 3 is more complicated,
but for the purposes of this discussion the ideal model would simply be that the tutor
provides a correct hint in the chat window. In the context of Path 1 and Path 2, the
meta-tutor provides feedback whenever the peer tutor deviates from the model (e.g.,
whenever a step that is actually correct is marked wrong). All feedback is given to
the peer tutor, with the hope that peer tutors will reflect on their misconceptions and
then deeply process the feedback as they attempt to communicate it to the tutee. In
order to support Path 3, we also make help-on-demand available to the peer tutor. The
peer tutor can ask for a hint at any time, and use it as a basis for assisting the peer
tutee. Both hints and feedback always include a prompt for students to collaborate, and
the domain help peer tutees would have received had they been solving the problem
individually (see Fig. 7). The goal of providing the hints and feedback is not simply to
force the peer tutor to reproduce all help the CTA would have provided. The meta-tutor
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Fig. 7 Feedback delivered to the peer tutor. Once the peer tutor marks a step incorrectly, the step is
highlighted in the interface. The peer tutor then receives feedback containing a prompt to collaborate and
domain help originally designed for individual learners

provides feedback to peer tutors based on their actions, not their inaction; so if the
peer tutee does something wrong and the peer tutor does not respond, no action on the
part of the meta-tutor will be taken.

Our educational psychology research goal was to evaluate the effects of the adaptive
assistance on student collaboration in APTA by comparing it to two comparison con-
ditions. We introduced a close comparison condition where students received fixed
assistance, and therefore only whether students received adaptive support from an
intelligent tutor compared to simply the problem answers was manipulated. We also
used a far comparison condition representing current classroom practice, where stu-
dents used the cognitive tutor individually as they would during their regular curricu-
lum. We hypothesized that the adaptive support condition would be more effective at
increasing learning than the fixed support condition because the support is provided
to peer tutors only when needed. Further, collaborative learning should be better than
individual learning because students have the opportunity to interact about the domain
material in depth. In the following section we describe how we implemented our three
study conditions using the architecture described in Sect. 3. Then we present the empir-
ical study and its results.

4.2 Implementation of study conditions with CTRL

In this subsection, we first discuss the high-level structure of our implementation of the
three conditions, and then describe in detail how each component was implemented.
All conditions were implemented as instantiations of the CTRL framework, with a
mixture of custom-implemented components and components that were originally
part of the CTA. The adaptive peer tutoring condition included two tool components
(the peer tutor’s interface and the peer tutee’s interface), a translator component (to
echo actions from one tool to the other tool), and two tutor components (a domain
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tutor component to evaluate the peer tutee’s problem-solving actions, and a meta-tutor
component to evaluate the peer tutor’s collaborative actions). The fixed peer tutor-
ing condition included the same two tools as the adaptive condition, and the translator
component. The individual use condition included the original CTA tool and tutor com-
ponents, using a tool similar to the peer tutee’s tool and the domain tutor. All conditions
included a learner management component, a research management component, and
a control module to integrate all the components. Conditions were implemented in
Java.

The tool components were implemented based on the equation solver tool already
found in the CTA. Although the CTA was intended to be implemented in line with
Ritter and Koedinger’s (1996) clean separation between tools and tutors, development
constraints led its current state to evolve from this ideal. Therefore, our first step to
being able to use the CTA tool components was refactoring them so that the tool
functionality was separate from the tutor functionality. Because this process entailed
working with existing code, it is important to note that it was time-consuming, and the
refactored product is not as cleanly implemented as it may have been had we started
from scratch. The tool components were then further modified to create the peer tutor’s
and peer tutee’s interfaces.

The translator component was a custom-made component designed to facilitate
collaboration between two users. This component functions by receiving all proces-
sInteraction messages and converting them into corresponding scriptInteraction mes-
sages before sending them back to the tool components through the control module.
The translator only deals with semantic events, so the shared solver workspace is not a
“what you see is what I see” interface. This decision was made to allow the peer tutee
space to work without interference from the peer tutor. In the CTA, the tool needs
permission from a tutor to effect certain actions (e.g., to create a point on a graph).
Because we want the peer tutee’s interaction to be less restricted than in typical use of
the cognitive tutor, the translator automatically grants that permission. The translator
is constructed based on the CTA tools, and is therefore not a general component for
facilitating collaboration (which, given the goal of working with existing components,
would likely not be possible).

As mentioned above, we implemented two tutor components in the adaptive peer
tutoring condition, one existing CTA component (domain tutor) and one custom-
made component (meta-tutor). The domain tutor component was taken directly from
the refactored CTA, without any further modifications. The meta-tutor was built fully
from scratch. It consisted of an expert model based on a simple bug rule:

IF a student has taken step x
AND the cognitive tutor response to x is a
AND the cognitive tutor feedback message is m
AND the peer tutor response to x is b
AND a is not equal to b
THEN send feedback to the peer tutor using x, a, b, m

When this bug rule fires, the tutoring model considers the type of problem step (e.g.,
a solver action) and peer tutor response (e.g., the peer tutor marked it incorrectly
wrong) in choosing from a fixed set of collaboration-oriented meta-feedback (e.g.,
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Fig. 8 Message passing logic for adaptive peer tutoring, fixed peer tutoring, and individual use conditions

“Your partner is actually right. Why don’t you talk to them about why they took this
step”). Then, if the domain tutor has appropriate feedback, the meta-tutor appends
the cognitive tutor message to the meta-feedback message. The tutoring model sends
a processFeedback message to highlight the problem step on the peer tutor’s screen
and to present the feedback to the peer tutor. Both the domain tutor and the peer tutor
must respond to the step before the rule can fire, and thus the model is not forcing
the peer tutor to respond to every single tutee step. Hint requests from the peer tutor
work in a similar manner, combining the cognitive tutor hint on the step with a prompt
to collaborate. The meta-tutor is domain-independent, and thus could be effective in
combination with any intelligent tutor, as long as a translator exists to translate the
intelligent tutor messages into an appropriate message format.

In general, components communicate using the CTRL message protocol, and the
way components interact in a given session is defined in the control module. All peer
tutee solver actions, peer tutor correction actions, peer tutor skill ranking actions, and
student chat actions are logged as tool messages by the control module. All cognitive
and meta tutor feedback and hints are logged as tutor messages. See the left hand side
of Fig. 8 for a diagrammatic representation of the message-passing logic in the adap-
tive support condition (all interactions occur via the mediator). In this configuration,
when the peer tutee takes an action, the echoing translator sends the action to the peer
tutor’s screen. In addition, the cognitive tutor evaluates the action, and sends the eval-
uation to the meta-tutor. All these interactions occur via the mediator. When the peer
tutor takes an action, it is sent to the echo translator, which echoes the action onto the
peer tutee’s screen, and to the meta-tutor, which compares the peer tutor evaluation to
the cognitive tutor evaluation. If a bug rule fires, the meta-tutor sends feedback to the
peer tutor. The peer tutor can also request a hint from the meta-tutor, which has stored
the cognitive tutor hint for that step. The right hand side of Fig. 8 shows the message
passing logic for the other two conditions: fixed peer tutoring and individual use.

As the logic of which components are involved in the session and how they com-
municate exists in the control module, it is simple to use the module to implement
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the relevant conditions. The components involved were defined in the same manner
as in the CTRL framework, where all the components involved in a session and their
component types are enumerated. However, instead of the message passing logic being
defined in a rule-based manner, it was initially defined in the form of several message
groups, each comprising an originating component, a target component, and a priority
(represented pictorially in Fig. 8). Message groups can be considered a template for
automatically authoring simple rules. Upon receiving a message from a component,
the mediator would match the component to all message groups that have that com-
ponent as an origin, and then send the message to the targets in each relevant message
group. In the case of messages sent to non-tool components, the control module then
waits for a response from all the components that have received messages, before
sending the messages out in the order of the specified priority. We intended to imple-
ment more complexity into the message groups, but we soon realized the limitations of
the format for anything more complex than adding action specifications to the group
statements, and consequently decided to transition to a rule-based format in the future.
Three session types were created that corresponded to the three conditions, so it was
simple to switch from one condition to another.

In CTRL, we purposefully did not specify how to pass messages remotely or how
to implement a client-server framework so that multiple people could collaborate at
once. Specifying such a framework is outside the scope of the architecture and might
depend in part on the conditions of the classrooms in which the collaboration is being
implemented (some classrooms do not allow web-based delivery, for example). Within
a single collaborative session, the session manager handles launching, quitting, and
navigating between problems, while the mediator handles the within-problem compo-
nent exchanges. In the CTA, components had already been designed to send networked
messages using TCP/IP sockets, so this is the protocol we used within the mediator to
send the low-level remote messages. High-level responsibility for managing sessions
was not fully factored, so we used Java RMI to make the remote message calls for
accomplishing these functions. We also used RMI to implement a client-server setup
for running multiple tutoring sessions at once. Once two clients that were part of the
same session had connected to the server, both the session manager and the mediator
were started on the server, and the session type related to the user login was retrieved.
All other components (tools, tutors, and translators) were run on client machines.

4.3 Empirical study

After implementing the adaptive support condition (adaptive peer tutoring), the close
comparison condition (fixed peer tutoring), and the far comparison condition (indi-
vidual use), we compared the three conditions in a controlled study in a classroom.
A description of the study can be found in Walker etal. (2008). Participants were
62 high-school students from five second-year algebra classes, taught by the same
teacher. The high-school used the individual version of the CTA as part of regular
classroom practice. Students in the collaborative conditions were assigned to pairs
by the classroom teacher, who was advised to group students of similar abilities who
would work well together. Students from each class were randomly assigned to one
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Table 4 Student pretest scores, delayed test scores, and gain score

Pretest score Delayed test score Pre-delayed gain

M SD M SD M SD

Adaptive peer tutoring 0.82 1.08 2.82 1.78 0.29 0.19

Fixed peer tutoring 0.90 0.88 3.60 2.17 0.30 0.51

Individual learning 1.28 1.60 3.67 1.78 0.26 0.50

of the three conditions. The total number of participants included in the analysis was
39 (11 in the adaptive peer tutoring condition, 10 fixed peer tutoring condition, and 18
in the individual use condition). There were an odd number of students in the adap-
tive condition because we retained students in the analysis who had an absent partner
during an intervention day but were placed with a new partner in the same condition.
The study took place over three weeks. Early in the first week, students were given
a pretest. The intervention then occurred over two 70 minute class periods, each a
week apart. On both intervention days, students in the peer tutoring conditions spent
the first half of the period in the preparation phase, and the second half taking turns
tutoring each other in the collaboration phase. Students switched roles between tutor
and tutee after every problem. Students in the individual use condition simply used the
CTA as during regular classroom practice. The week after the intervention, students
were given a posttest. Two weeks after the posttest, students were given a delayed
posttest to assess their long-term retention. We logged all tutor actions, tutee actions,
and intelligent tutor responses. The log data allowed us to extract process variables
such as incorrect attempts made by students, help accessed by the peer tutor, help
communicated by the peer tutor, and problems completed.

In the remainder of this section, we look at how the implementation of the three
experimental conditions, facilitated by CTRL, helped us to gain insight into the learn-
ing effects of adaptive support for peer tutoring. First, we describe how multiple
streams of interaction data, in connection with outcome measures, provided us with
insight into the peer tutoring process. Next, we examine how the integration of the
domain and meta support may have affected the peer tutor’s behavior. Finally, we
discuss how our comparison conditions provide us with more insight than the experi-
mental condition would have alone. Because this analysis is exploratory and intended
as a demonstration of the goals of CTRL, our discussion includes trends in addition to
significant results. For reference, Table 4 provides the pretest and delayed test scores
of the three conditions. Gain scores were computed using the following formula:
(delayed score − pretest score) / (total points possible − pretest score). For negative
gain scores, the formula we used was: (delayed score − pretest score) / (pretest score).

4.3.1 Benefits of collecting rich log data

To demonstrate the benefits of collecting rich log data, we focus on one particular
result in the adaptive peer tutoring condition: relating student impasses to the learn-
ing gains between pretest and delayed test. One might expect that the more mistakes
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a tutee makes, the less they would gain between the pretest and delayed posttest,
because if they made many mistakes throughout the intervention they probably have
not mastered the material. This hypothesis can be evaluated through the integrated
stream of data collected using the CTRL logging protocols. In the adaptive condition,
the number of incorrect problem solving attempts per problem on the part of the tutee
were negatively correlated with tutee learning (r(9) = −0.561, P = 0.072), as were
the percentage of incorrect attempts to move to the next problem out of total attempts
(r(9) = −0.667, P = 0.025). One might also expect that the more mistakes a tutee
makes, the worse their tutor will do on the delayed posttest, as large numbers of tutee
mistakes may indicate that the tutor lacks the understanding to successfully help their
tutee. However, surprisingly, tutor learning was positively correlated with tutee incor-
rect problem solving attempts (r(9) = 0.523, P = 0.099) and tutee percent incorrect
done attempts (r(9) = 0.652, P < 0.030). These results, while correlational, suggest
that peer tutors benefit from actively processing tutee errors, which was similarly dem-
onstrated by studies on learning from erroneous worked examples (Große and Renkl
2007). Reaching this insight required integrating problem-solving data, information
about student correctness (using cognitive tutor models), and outcome data.

The relationship between the chat logs, problem-solving logs, and correctness infor-
mation also provides us with insight that would not have been available had we only
had one source of interaction data. Table 5 displays a student interaction immediately
after the peer tutee has taken an incorrect done action and the peer tutor has incor-
rectly agreed. The equation the students are working on is “t = f/(1 − .75)”, with
the goal of solving for t . The students must realize here that they need to get rid of
the decimal in the denominator to achieve the answer “t = 4 f ”. The entire exchange
in Table 5 took 10 min. If we were to look only at the left hand column of Table 5,
depicting the student talk, it might appear that productive behaviors are not occurring
at all: the tutor is simply giving the tutee didactic instructions for how to proceed.
Looking at the problem-solving actions does appear to confirm a lack of effort on the
part of the tutee. We see that the tutee is essentially taking a trial and error approach
to completing the problem, executing both tutor suggestions and other viable options,
and then attempting to finish the problem by clicking done. However, throughout this
interaction the tutor consults the problem answers after every tutee action, suggesting
that the tutor is engaged in comparing the student answer to the ideal worked example.
We also notice that this tutor does not make use of the adaptive feedback provided,
which may have helped him in making the comparison. Further, we can see at a glance
which actions are correct or incorrect, and when feedback was given. Using these
multiple streams of data, we can better understand that tutors may be benefiting from
student errors by being encouraged to compare the errors to a correct problem solu-
tion. In fact, this tutor had a gain score on the delayed test of 0.33, suggesting that
some of this active processing was beneficial, but also that there was more room for
improvement.

4.3.2 Benefits of integrating domain and collaboration support

The addition of adaptive feedback that incorporates both domain support and collab-
oration support (via the meta-tutor) can provide us with insight into how providing
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Table 5 Student interaction immediately following an impasse

Chat actions Problem-solving actions Computer response

Tutor: checks answers

Tutee: yeah i donno what to do after that step

Tutor: simplify fractions i think

Tutee: simplify fractions Incorrect (cognitive)

Tutee: undoes simplify fractions

Tutor: checks answers

Tutee: I did that

Tutee: combine like terms Correct (cognitive)

Tutee: clicks done Incorrect (cognitive)

Tutor: agrees done Incorrect (meta)

Tutor: checks answers

Tutee: clicks done Incorrect (cognitive)

Tutor: agrees done Incorrect (meta)

Tutor: multiply by 4

Tutor: checks answers

Tutee: both sides

Tutor: no

Tutee: performs multiplication Incorrect (cognitive)

Tutee: undoes perform multiplication

Tutor: checks answers

Tutor: I mean yes

Tutee: multiplies both sides by 4 Incorrect (cognitive)

adaptive feedback affects the peer tutor’s behavior and tutee learning, especially in
comparison to domain support implemented in a fixed manner. In this section, we use
the rich log and outcome data to make a direct comparison between student use of fixed
assistance and adaptive assistance, and as a result, gain insight into the relative merits
of each assistance type in this context. This comparison would not have been possible
had we not been able to leverage the existing CTA models in order to implement the
adaptive domain support.

In the adaptive condition, peer tutors were given domain feedback about the peer
tutee’s actions and then instructions to communicate the feedback to the tutee. They
also had access to the problem answers as they were tutoring. To make a fair com-
parison, we looked only at the 9 students who chose to use all forms of assistance
when in the role of the peer tutor. As evident from Table 6, students accessed more
fixed assistance than adaptive assistance. However, there were differences in the rela-
tionship between the two types of assistance received by the tutor on the gains of the
student in the peer tutee role. Communicating adaptive assistance was positively cor-
related with tutee learning (r(7) = 0.786, P = 0.115), while failing to communicate
adaptive assistance was negatively correlated with tutee learning (r(7) = −0.803,
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Table 6 Amounts of adaptive and fixed assistance communicated and not communicated

Adaptive assistance Fixed assistance

M SD M SD

Assistance communicated 1.44 1.81 3.56 3.84

Assistance not communicated 1.44 2.01 5.67 6.22

P = 0.102). Surprisingly, communicating domain feedback to the tutee after access-
ing fixed support (i.e. checking problem answers) was negatively correlated with tutee
learning (r(7) = −0.925, P = 0.024).

We can retrieve from our log data examples from each of the three different relevant
assistance cases (adaptive assistance communicated, adaptive assistance not commu-
nicated, and fixed assistance communicated) to illustrate what may be occurring. The
following is an example of the peer tutor receiving feedback on a step, and not com-
municating it. After marking a step right, the peer tutor received a feedback message
telling him that the step was actually wrong and giving him a hint on the step. At this
point, the peer tutee said: “that doesn’t look right, im sorry I suck at math lol”, and then
“k, nevermind.” The peer tutor did not respond. Next, the peer tutee clicked done, the
peer tutor agreed, and the peer tutor was given another feedback message saying the
problem is not done. This message was also not communicated to the tutee. Thus, not
only were tutees not getting the assistance needed, but they were getting misleading
feedback. To the tutee, it appeared as if the steps were correct, even if they were not.
This example can be compared to the following example where the feedback received
was communicated:

Tutor: undo it
Tutee: why? U marked it right….?
Tutor: The step is right but it said you made a typing error when you factored
Tutee: in which step?
Tutor: the first
Tutee: so u want me to undo it or is it right?
Tutee: k
Tutor: undo it

Not only did the tutor communicate what was incorrect about the current problem
solution, the two students together cleared up a misunderstanding about which aspect
was incorrect. In the final example, fixed assistance was communicated to the tutee:
After the tutee took an incorrect step dividing both sides by q+r , the peer tutor checked
the answers and said, “divide both sides by q + s.” The tutee then promptly undid his
last step and performed the correct step. Here, it is likely that the tutor instruction was
not beneficial, because no explanation was provided for why the first step was wrong
and the second step was right, and the tutee did not have to identify or reflect on his
or her error.

123



420 E. Walker et al.

4.3.3 Use of comparison conditions

Because CTRL enabled us to develop two comparison conditions in addition to the
adaptive support condition, we were able to compare adaptive support for peer tutoring
to fixed support and individual learning. If we had looked at the adaptive peer tutoring
condition independently of the comparison conditions (as many ACLS evaluations
have done so far), we would have found that the learning gains in the adaptive condi-
tion appear satisfactorily high, with a mean gain score of 0.29 (SD = 0.19) between
the pretest and the delayed posttest. However, comparing the learning improvement
across all three conditions, we see that the adaptive condition score is not different
from the fixed condition score (M = 0.30, SD = 0.51) or the individual use condition
(M = 0.26, SD = 0.50). In fact, an ANOVA reveals that the gain scores are not sig-
nificantly different (F(2, 36) = 0.033, P = 0.967). Then, even though the learning
gains across the three conditions are similar, we can examine the different paths stu-
dents took to learning across the three conditions. For example, the number of problems
completed per hour in the individual condition (M = 47.0, SD = 30.2) was much
higher than the number of problems completed per hour in the fixed support condition
(M = 13.3, SD = 7.71) and the adaptive support condition (M = 17.7, SD = 6.69).
A logical hypothesis may be that students in the individual condition learned by solv-
ing many problems quickly but shallowly, whereas in the collaborative conditions,
students learned by solving fewer problems slowly but deeply. In general, it would not
be possible to place the effects of the adaptive support in context without the results
of the comparison conditions.

4.4 Summary

We designed a collaborative peer tutoring script and adaptive domain support for the
peer tutoring, implemented the adaptive support condition and two comparison con-
ditions using CTRL, and conducted a controlled classroom study comparing the three
conditions. As a result, we gained valuable insights on the effects of providing adap-
tive support to peer tutoring. We were able to use the combination of process data and
outcome data to learn that the more impasses faced by tutees, the more their tutors
showed delayed posttest gains. We used multiple streams of the process data to analyze
why that might be the case. We looked at how the adaptivity of the support related to
whether the assistance was communicated or not, and investigated how those two fac-
tors related to the tutee’s learning gains. Finally, we were able to put the results on the
adaptive condition in context by comparing it to the other two conditions. We realized
that even if the learning gains were similar in all conditions the paths to learning might
be different. In conclusion, implementing the experimental conditions of the learning
system with CTRL facilitated the learning sciences research that we conducted.

5 Implications of CTRL

We could have much more sophisticated systems to provide adaptive collaborative
learning support if we had an architecture for plugging together the many excellent
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and complementary systems that already exist. The main claim made by CTRL is that
several different tool and tutor models can be combined to form a variety of differ-
ent collaborative scenarios, and then components can be systematically removed to
create experimental control conditions. We have already presented the Adaptive Peer
Tutoring Assistant (APTA), one extended example of a collaboration activity that can
be supported under CTRL. In this section, we present two other hypothetical exam-
ples in order to further illustrate the potential use of CTRL. The first example also
involves a collaborative extension of the CTA, but in a different setting: here, students
engage in collaborative problem-solving rather than peer tutoring. We demonstrate
that even if we were to use the same core code elements that we used in the peer
tutoring extension, we could create a remarkably different collaborative experience
for students. In the second example, we take a different approach, demonstrating how
an existing collaboration script could be used as the jumping off point for adaptive
collaborative learning support, rather than an existing intelligent tutoring system. We
describe how the script could be implemented using CTRL and how tutors from other
systems might augment the script. Then, we map out the space of control conditions
made possible by the augmented script. To conclude, we discuss the limitations of
CTRL as a framework.

5.1 Implementing the collaborative problem-solving script in CTRL

In our first example we use a collaboration script developed by Diziol et al. (2008),
called the collaborative problem-solving script. In this script, two students are put in
pairs to work together on a “systems of equations” problem on a single computer.
While collaborating, students receive two types of feedback: domain-specific task-
related feedback on their problem-solving, and domain-general collaborative feed-
back encouraging them to engage in effective learning strategies. This script was
shown to improve deep conceptual learning, but was implemented in a face-to-face
computer-supported setting rather than using computer-mediated collaboration, lim-
iting the ability of the provided adaptive support to assess and provide feedback on
the collaboration.

This script could be implemented within CTRL by primarily using existing CTA
components. Each collaborating student would need a tool component, which con-
sists of a graphing widget (already present in the CTA), a spreadsheet widget (already
present in the CTA), and an instant messaging client (already incorporated in APTA).
The tool components would broadcast processInteraction messages using selection-
action-input triples (as described above in Table 3). The collaborative problem-solving
script could also use APTA’s translator to allow graphing and worksheet actions made
by one student to appear on the other student’s screen, by sending scriptInteraction
messages. Finally, there are also two tutor components involved in this scenario: a
cognitive tutor that provides task-related support, and a collaborative tutor that pro-
vides support for the student interaction. Like in APTA, the cognitive tutor would be
taken from the existing CTA; unlike APTA, this tutor communicates directly with the
students, by broadcasting problem-solving feedback to both students’ screens using
a processFeedback message. The collaborative tutor would be a simple custom-built
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component that uses input from the CTA models to detect ineffective learning strat-
egies on the part of the student, and respond appropriately. For example, if students
make several errors in a small amount of time, the tutor would classify their strategy
as a “trial-and-error” strategy, and send feedback using a processFeedback message.
All the components could be combined to form the collaborative scenario by adding
a new session type in the mediator, which specifies that each tool component sends
messages to all tutor and translator components, each translator component sends
messages to all the tool components, and each tutor component sends messages to all
tool components.

Reimplementing the collaborative problem-solving script within CTRL would have
several advantages for the expansion and evaluation of the script. First, the collabo-
rative version of the script could be enhanced using components already developed
for the individual version of the CTA. To illustrate we use the example of the Help
Tutor: an addition to the CTA developed by Aleven et al. (2006). The Help Tutor
accepts student process data and knowledge assessments as input (e.g., time between
steps, hint requests, probability that students know a skill). It then provides as output
a classification of their help-seeking behavior, and direct feedback related to negative
help-seeking behavior. The Help Tutor is a natural fit with the collaborative problem-
solving script, in that it is a more sophisticated and potentially more effective way
of diagnosing a variety of hint abuse and trial and error strategies that could then be
used as input to the collaborative tutor module. The collaborative tutor module could
then respond to these individual problem-solving errors with feedback prompting the
students to collaborate more effectively in order to overcome their impasses. Improv-
ing the collaboration script in this manner would simply require the integration of
the Help Tutor within the CTRL framework; the tutor would need to receive pro-
cessInteraction messages, send processFeedback messages, and be added to a session
type in the mediator. Second, reimplementing the collaborative problem-solving script
within CTRL makes it easier to generate experimental control conditions to investigate
educational psychology research questions. For example, by adding different session
types to the mediator, the tool component of one partner could be removed to create an
individual learning scenario, feedback from the collaborative tutor could be removed
such that only cognitive assistance is provided, and feedback from the cognitive tutor
could be removed such that only collaborative assistance is provided. Using differ-
ent combinations of components, researchers can investigate questions such as: What
are the effects of cognitive and collaborative assistance to collaboration compared to
only cognitive assistance to collaboration? What are the effects of adaptive assistance
to collaboration compared to adaptive assistance to individual learning? As a whole,
APTA and the collaborative problem-solving script overlap regarding the CTA tools
and domain models used, but create very different collaborative scenarios.

5.2 Augmenting the learning protocol approach in CTRL

Our next example is intended to show the versatility of CTRL, and uses an existing
collaboration script as its basis rather than an existing intelligent tutoring system.
We base the example on a simple computer-supported collaboration script outlined by
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Pfister and Mühlpfordt (2002), called the learning protocol approach. In this approach,
three to five students attempt to comprehend and remember the content of a section
of text by discussing it in a chat window. In order to support the cognitive aspects
of reading comprehension, students are required to classify their contributions and
indicate the previous utterance to which their contribution refers, prior to making a
contribution. Further, to support student coordination, the system enforces a strict
turn-taking structure to the conversation, selecting which student should speak next
based on a predefined order. The learning protocol approach is limited in the ways
that many other collaboration scripts are limited, both in that it is not guaranteed that
improved collaboration will result from use of the script and in that aspects of the script
may in fact overstructure collaboration. There is no guarantee that students will take
the referencing or classification activities seriously, and even if they do, they may not
generate contributions of sufficient quality to trigger the desired cognitive elaborative
processes in themselves or others. Further, forcing students to take turns speaking so
rigidly may improve the participation of all students, but it may also decrease student
motivation: some students may not be able to participate when they have something
they to contribute, and others may become discouraged to be forced to comment when
they do not know what to say. Thus, adding adaptive support elements to the script
using the CTRL framework has the potential to greatly improve the learning activity.

In order to add components to the learning protocol script within CTRL, the original
version of the script would have to be refactored into several identical tool components
(one for each collaborating student) and two translator components. Each tool com-
ponent would be composed of the text to be analyzed and a chat window, including
interface scaffolding (e.g., sentence classifiers and a widget to indicate the reference
of the contribution). Tools would broadcast processInteraction messages for each user
action. One translator would promote cognitive elaboration by sending a processFeed-
back message whenever students do not classify their utterance and mark the reference
of their utterance before submitting it. A second translator component would handle
the coordination elements of the script, disabling the chat interfaces of the collabora-
tors who do not have the turn to speak, and transferring the turn from one person to
another using setProperty messages. Once these components have been developed, it
is simple to combine them under our conceptual framework by defining a message
group between each tool and each translator (e.g., establish two rules: IF a message m
was sent by any tool THEN send m to every translator, AND IF message m was sent
by any translator THEN send m to every tool).

One key area where adaptive support could augment the script is in evaluating, in real
time, whether student contributions to the discussion are of a good quality; essentially,
are the script scaffolds having the desired effect? Here, we can turn to an individual
intelligent tutoring system for reading comprehension called iSTART (McNamara
et al. 2007) to help adaptively support students while using the collaborative reading
comprehension script. As part of iSTART, students generate self-explanations based
on a particular segment of text, and then the system compares their self-explanation
to the segment and surrounding text to assess its quality. The iSTART tutor model
could also be used to assess student collaborative utterances, by comparing the stu-
dent contribution to the reference in the discussion that the students themselves have
made. If the contribution is determined to be insufficiently relevant, the student could
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be given feedback, to help them improve their utterance. If iSTART can be refactored
so that the tutor component is isolated, and then the tutor component can be extended
to accept userInteraction messages and then to send processFeedback messages, it
could be integrated with the learning protocol components using CTRL.

Second, adding adaptive components could help mitigate the aspects of the script
that overstructure student interaction. For example, rather than forcing students to
speak in turns, the system could meet the same interaction goals by making sure that
everyone participates relatively equally. To assist this aspect of interaction, we can
turn to another ACLS system, LeCS (Rosatelli and Self 2004). LeCS has a model for
enforcing participation where if a student is silent for greater than 50% of the time esti-
mated to complete discussing the section, the tutor sends a randomly chosen feedback
message encouraging the student to participate. If this model accepted processInter-
action messages and broadcasted processFeedback messages, it could be plugged into
CTRL by adding a message group between each tool and this tutor. More interestingly,
instead of sending feedback directly to collaborating students, both the participation
tutor and relevance tutor could be used as input to a custom-built tutor that tracks the
relevance of student statements to particular concepts over time, and then, whenever
possible, prompts students who likely have something to contribute to speak next.
This concept is similar to the adaptive feedback found in COMET (Suebnukarn and
Haddawy 2004). However, because of the framework provided by CTRL, it is easy
to make this addition to the system after the custom-built tutor has been constructed,
for example by changing the logic in the mediator that sends messages from the par-
ticipation tutor to the students, and instead send those messages to the custom-built
tutor.

Further, once this extended adaptive scenario has been implemented, relevant con-
trol conditions could then be generated using CTRL in order to investigate a variety
of research questions surrounding the effects of feedback on collaboration. Simply
by changing the logic in the mediator for components included in a session type and
messages passed between components, the researcher could vary the type of support
provided (cognitive elaboration support, coordination support, or both), and the adap-
tivity of support for each type (fixed or adaptive). The researcher could also examine
more specific questions, such as whether using domain information to augment sup-
port for social coordination is better than providing social coordination support alone.
These comparison conditions would contribute to a systematic investigation of the
current research questions surrounding adaptive collaboration support.

5.3 The scope of CTRL

These two additional examples should contribute to an overall sense of the scope of the
CTRL framework and the types of activities for which it is most appropriate. Earlier in
the paper, we stated that CTRL focuses directly on the interaction between collaborat-
ing students and intelligent support. It is appropriate for use in scenarios where a small
number of students have been placed in a group and are collaborating on a particular
task. CTRL is not designed to adaptively assign students to particular groups or tasks;
that is, it is not a tool for manipulating the preconditions of the interaction. However,
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CTRL can be applied in conjunction with a wide variety of different sets of precon-
ditions, once they have been specified, and there is nothing inherent in CTRL that
restricts the domains for which it is used. CTRL is also not specifically designed for
macro-scripting the interaction (e.g., by specifying a sequence of phases for students
to follow, such as alternation between individual and collaboration phases). Although
it is possible to implement a macro-script using a translator, the challenges of manag-
ing a macro-script are not addressed by the design of CTRL, and there may be simpler
ways for doing so within a given adaptive system. Despite this limitation, CTRL can
be applied to manage interactions within the phases of macro-scripts. Finally, although
CTRL could be applied to asynchronous interaction, it was designed with synchronous
interaction in mind, and it is likely there are other frameworks more appropriate for
managing asynchronous communication. Within these parameters (adaptive or fixed
micro-scripting of synchronous interaction between a small number of students given
a particular task), CTRL actively facilitates the implementation of different types of
interactions.

In determining what is necessary for other researchers to use CTRL, it is impor-
tant to make the distinction between the conceptual framework itself and our specific
implementation using existing CTA components. The mediator component of CTRL is
simple to implement, and one could imagine other researchers adopting this concept in
order to develop their systems (and we would encourage this!). However, the difficult
part of applying CTRL is refactoring the components of existing systems to separate
the tool, translator, and tutor functionality; for example, integrating iSTART with the
learning protocol approach would depend on what would be required to isolate the
tutor component of iSTART. For large and complicated systems whose code has been
developed iteratively and by multiple people, this process can be a challenge. Ideally,
once the code has been refactored, it would not be necessary to make modifications
to the existing components. However, practically, this is not the case; it still can be
difficult to interpret and modify the code relating to the existing tutor components,
as became clear when a colleague of ours encountered difficulties in his attempt to
integrate our code with a simulated student tool. In cases where existing components
are used, we need to do more work towards reducing the need for them to be modified.
However, as more systems are developed with a component-based approach, CTRL
will become more and more effective.

6 Conclusions

We have outlined a conceptual framework called CTRL that supports educational
technologists in developing adaptive support for collaboration and educational psy-
chologists in investigating its effects. The framework enables researchers to integrate
different types of adaptive support and, in particular, allows domain-specific models to
be used as input to domain-general components in order to create more complex tutor-
ing functionality. Additionally, the framework helps researchers to implement compar-
ison conditions by making it easier to vary single aspects of the adaptive intervention
through removing tool or tutor components from a system. We demonstrated the use of
CTRL by first designing adaptive support for a peer tutoring script, then instantiating
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the framework using the adaptive scenario, a fixed support scenario, and an individ-
ual tutoring scenario. Implementation was accomplished by combining pre-existing
components from the Cognitive Tutor Algebra (CTA) with custom-built components.
The three conditions were compared in an experimental study, and the results illumi-
nated the relationship between tutee impasses and tutor learning, the different effects
of communicating adaptive and fixed assistance, and the different paths students take
to learning in individual and collaborative conditions. Then, we described how CTRL
could be used as a basis for two different examples of adaptive collaborative learn-
ing support. We outlined the limitations of CTRL with respect to defining conditions
of interaction, and discussed how while CTRL as a concept is simple to adopt, the
complexity lies in refactoring existing systems to create the necessary components.

We see one of the main contributions of our work as the development of a frame-
work that supports the integration of pre-existing and custom-built components, with
a particular focus on tutoring components. Using CTRL, we combined a pre-existing
domain model of a tutee’s problem-solving performance with a collaborative model of
a peer tutor’s correction actions, and delivered feedback that included both a prompt
to collaborate and a domain hint. There are difficulties to relying heavily on existing
tutoring systems for components, because it may be necessary to refactor the com-
ponents or deal with legacy code that is difficult to appropriate for new purposes.
However, in implementing our three experimental conditions, we leveraged CTA log-
ging protocols, interface components, and cognitive models, which would have been
time-consuming to reconstruct from scratch. These components made it possible to
develop a classroom-functional adaptive collaborative learning system, which is cur-
rently a rarity. Another concern with relying too much on existing components is that
it might overly constrain the design of adaptive support interventions. It is true that
considering the full design space of adaptive collaborative learning support, our sys-
tem did not depart very much from the current functionality of the CTA. It substituted
peer tutoring for cognitive tutoring and collaborative domain support for individual
domain support, but we did not explore collaborative scenarios that would involve
tutoring or forms of collaborative support other than collaborative domain support.
In our view, remaining close to the CTA was the first natural step. We plan to tackle
further extensions in future work; particularly since there is much more to be done
within the confines of existing CTA components (e.g., leveraging the student mod-
eling to help the peer tutor understand what the student knows and does not know).
As we develop more components, they will form a basis for the construction of more
general collaborative scenarios. Further, using CTRL, it will eventually be possible to
apply our domain-general collaborative components to provide collaborative tutoring
for other tasks with pre-existing domain models. The other main contribution of our
framework is that it makes it easier to implement comparison conditions, by placing
the integration logic in a control module. In our evaluation, we compared three very
different scenarios: a computer-student intelligent tutoring condition, a student-stu-
dent peer tutoring condition, and a computer-student-student adaptive peer tutoring
condition. Traditionally, these scenarios would have been implemented in very differ-
ent manners, rather than using the same architectural framework. Furthermore, adding
a new scenario to function as a comparison condition took very little effort once the
scenario components had been implemented. One limitation of CTRL is that currently
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only simple integration scenarios are accommodated; it has not yet been tested with
more complex configurations. As the conditions that we attempt to implement evolve
and become more complex, so will the framework.

CTRL, the collaborative tutoring research lab, is an initial step toward support-
ing research into complex forms of adaptive assistance for collaborative learning.
There have generally between two types of work in this area: Research that attempts
to understand from an educational psychology perspective whether and how adap-
tive assistance can be effective to promote collaborative learning, and research that
attempts to understand from a technological perspective how to construct models of
collaboration and provide automated adaptive assistance. In the first case, educational
psychologists often lack the technological tools required to implement adaptive sys-
tems, and thus conduct wizard-of-oz studies or work with programmers to implement
technologically less than optimal interventions. On the other hand, technologists focus
their energies on determining how to create complex systems, but the output is often
a research prototype that is not generally evaluated to determine its effect on student
collaboration and learning. What we offer in this paper is a way to bridge the gap
between the two approaches, making it easier to move from implementing adaptive
systems to evaluating them, and iterate upon existing adaptive systems to improve the
quality of the support that they can provide. We believe that such a bridge is neces-
sary in order to create adaptive systems that can have a real impact on classrooms;
it does not matter if impressive adaptive systems are being developed if they do not
have a positive effect on collaboration and learning, and psychology experiments may
develop a restricted theory of adaptive assistance if they only experiment with subop-
timal, low-tech solutions. It is our hope that the structure of CTRL, and in particular
its integration framework, facilitates more complex forms of support by leveraging
domain-specific models, a more controlled evaluation by allowing the construction of
comparison conditions using pre-existing components, and iteration on the develop-
ment of adaptive support.
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