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Abstract 

We have been refining a cognitive model, written in ACT-R, 
of student performance in early algebra problem solving.  
"Early algebra" refers to a class of problems and 
competencies at the boundary between arithmetic and 
algebra.  Our empirical studies in this domain establish a 
striking contrast between students' difficulties with symbolic 
algebra and their relative success with certain kinds of 
"intuitive" algebraic reasoning.  To better understand this 
contrast, we analyzed student solutions to identify the 
strategies and errors exhibited and then set out to account for 
this detailed process data with the utility-based choice 
mechanism of ACT-R.  Our first model contained production 
rules for explicitly selecting strategies and for making certain 
systematic errors or bugs.   It provided a good quantitative fit 
to student performance data (R2=.90), however, it had two 
qualitative shortcomings: 1) the productions for strategy 
selection appeared to serve no computational purpose and 2) 
the model systematically underpredicted the frequency of 
non-trivial errors on more complex problems.  We created a 
new model in which explicit strategy selection was 
eliminated (strategic behavior is emergent) and in which 
failure to fire a production (an implicit, non-buggy error) is 
an option at every model choice point.  Compared to the first 
model, this model achieved an equivalent quantitative fit with 
fewer productions and without the systematic deviations from 
the error data.  We consider the implications of implicit 
strategies and errors for instruction. 

Introduction 
As part of a broader research effort to provide a scientific 

basis for improved mathematics instruction (e.g., Koedinger 
& Anderson, 1993; Koedinger, Anderson, Hadley, & Mark, 
1995), we have been performing detailed empirical and 
theoretical investigations of students' developing 
quantitative problem solving skills.  We have been 
performing studies, called "difficulty factors assessments" 
(Koedinger & Tabachneck, 1995), and are using the ACT-R 
theory and software (Anderson, 1993) to create detailed 
models of algebraic competence and its development.  The 
focus of the work described here is on early algebra 
problem solving.  "Early algebra" refers to a class of 

problems and competencies at the boundary between 
arithmetic and algebra.     

Our empirical studies of early algebra have established a 
striking contrast between students' difficulties with 
symbolic algebra and their relative success with certain 
kinds of "intuitive" algebraic reasoning.  Much to the 
surprise of most math teachers and educators (Nathan, 
Koedinger, & Tabachneck, 1996), high school students at 
the end of an algebra course  are better able to solve certain 
algebra word problems (e.g., "A waiter gets $4.50/hr and 
$20 in tips one night.  If he took home $38, how many 
hours did he work?") than the corresponding algebra 
equation (e.g., "4.5x + 20 = 38").   

Difficulty Factor Assessments of Problem Solving 
A "Difficulty Factor Assessment" (DFA) involves the use of 
a large set of test forms to systematically investigate what 
problem factors affect student difficulties in problem 
solving.  DFAs aid in the "knowledge acquisition" process 
of decomposing and codifying student problem solving 
knowledge.   

The two ACT-R models we report on here attempt to 
account for the affects of three factors in data from two 
DFA studies.  Two of these factors are illustrated in Figure 
1, unknown position and presentation type.  The pair of 
problems in each row of Figure 1 differ in where the 
problem unknown is positioned.  The problems in column 1 
are called Result Unknown Problems because the unknown 
is the result of the process described.  The problems in 
column 2 are Start Unknown Problems because the 
unknown is the start of the process described.  Problems in 
the columns illustrate a second factor.  They require the 
same underlying arithmetic, but differ in the representation 
in which they are presented.  The "Story Problems" in the 
first row are presented verbally and include reference to a 
real world situation (e.g., wages).  The "Word Equations" in 
the second row are also presented verbally but do not 
include a situation.  The "Equations" in the third row are 
presented symbolically and have no situational information.  
Other factors we have looked at that are not illustrated in 
Figure 1 include number difficulty (integers versus non-
integers) and the cover story used in different story 



problems (e.g., the "waiter story" below, or purchasing a basketball). 
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 Result Unknown Problems Start Unknown Problems 
 
Story Problems 

When Ted got home from his waiter job, he 
multiplied his hourly wage, $2.65, by the 6 hours 
he worked that day and added the $66 he received 
in tips.  How much money did Ted make that 
day? 

When Ted got home from his waiter job, he took 
the amount he made that day and subtracted the 
$66 he made in tips.  He divided the resulting 
amount by the six hours he worked and got $2.65, 
his hourly wage.  How much did Ted make that 
day? 

Word 
Equations 

If I multiply 2.65 by 6 and then add 66, I get a 
number.  What number do I get? 

Starting with some number, if I subtract 66 and 
then divide by 6, I get 2.65.  What number did I 
start with? 

Equations 2.65 * 6 + 66 = X (X – 66) / 6 = 2.65 

Figure 1:  Examples Combinations of Difficulty Factors 

Two DFA studies of early algebra problem solving 
(DFA1 and DFA2) were performed with students near the 
end of a year-long high school algebra class.  The studies 
revealed large effects for unknown position, problem 
presentation and number difficulty (integers vs. decimals).  
Not surprisingly students are significantly better at result-
unknown (arithmetic) problems than start-unknown 
(algebra) problems and are significantly better at problems 
with integer quantity values than problems with decimal 
quantity values.  However, it comes as a surprise to many, 
that these algebra students had the greatest difficulty with 
the equations which were significantly harder than the word 
equations (p<.001 in both studies)which in turn were only 
slightly harder than the story problems (p=.23 in DFA1 and 
p<.01 in DFA2).  The effects of these three factors are for 
the most part independent and additive.  This fact is a good 
indicator of the decomposability and modularity of 
knowledge.   

There was one interaction amongst the three factors and it 
accounts for the small difference between word equations 
and story problems.  Only on the decimal number problems 
(and not on the integer number problems) were story 
problems easier than word equations.  As our modeling 
work and further data analysis revealed, the difference was 
accounted for by the fact that students were less likely to 
make a decimal alignment error in doing arithmetic (e.g., 
15.90 + 66 = 16.56) in the context of a story than without a 
story context.  The story contexts involved money and thus 
students better knew to add dollars to dollars instead of 
dollars to cents.  This example nicely illustrates the need for 
if parts in ACT-R productions to represent how the same 
operation may be performed differently in different 
contexts. 

Two Cognitive Models of Early Algebra 
Problem Solving 

Prior models of algebra story problem solving (e.g., Bobrow 
1968; Mayer 1982; Lewis 1981) have assumed a two-step 
process.  Story problems are converted into equations and 
the equations are then solved using symbolic algebra.  Such 
a model predicts that performance on story problems must 
be worse than performance on equations since equation 
solving is a subgoal of story problem solving.  Most 

teachers and math educators appear to share this same 
prediction (Nathan, Koedinger, Tabachneck, 1997).  
Students' greater success on word problems in DFA1 and 
DFA2 indicates they must not be following this two step 
process.  They are often using alternative informal methods 
for finding answers.   

Students translated verbal problems to algebra equations 
on only 13% of problems and 53% of these attempts led to 
success.  More often students attempted to solve verbal 
start-unknowns using one of two informal strategies, 
"guess-and-test" and "unwind."  In guess-and-test, a value 
for the unknown is guessed at and that value is propagated 
through the known constraints.  The guess is then adjusted 
and the process repeated until the correct answer is arrived 
at.  Guess and test was used about 20% of the time on the 
verbal start unknown problems.  By far the most common 
strategy, the informal "unwind" strategy, was used almost 
40% of the time.  Unwind is a verbally mediated strategy, 
where students work backwards from the given result value, 
inverting operators along the way, to produce the unknown 
start value. 

Our modeling work has the following goals: 
1) to characterize students' early algebra problem solving 

strategies and common errors,  
2) to provide an explanation for students' surprising 

success on word problems over equations, and  
3) to capture the essential knowledge differences between 

good and poor early algebra problem solvers, 
4) to create a developmental model of the learning 

trajectory and strategies that account for students’ transition 
to competence in early algebra problem solving 

A Comparison of  EAPS1 and EAPS2  
In MacLaren & Koedinger (1996), we reported on our 

initial ACT-R model of this data.  We will refer to that 
model as EAPS1 for "Early Algebra Problem Solver 1."  
After exploring the limitations in that model (discussed 
below), we created EAPS2.  In both models the general 
sequence of events is 1) comprehend the problem 
presentation (whether story, word, or equation) to extract 
relevant arithmetic operators and their arguments, 2) 
manipulate the operators as necessary (e.g., invert them), 
and 3) solve any arithmetic subgoals that are produced. 

 



Both models are also capable of two types of translations 
between representations.  A given verbal problem may be 
translated into an equation and then the equation is solved 
algebraically (the traditional two step process).  
Alternatively, a given equation problem may be interpreted 
verbally and thus solved using an informal strategy like 
guess-and-test or unwind. 

EAPS1 made an initial decision about what strategy to 
employ, using explicit strategy selection productions, which 
constrained future matching.  In contrast, EAPS2 has no 
explicit notion of strategy:  it simply recognizes and 
executes operations it can perform on a given 
representation.   

At the initial strategy selection choice point, EAPS1 
could choose the give-up “strategy”, a strategy students use 
that has low benefit, but also low cost.  EAPS2 does not 
have an explicit give-up strategy, but more generally at any 
choice point if no production has a high enough utility then 
the model gives up on the problem. 

We model two types of errors:  arithmetic and conceptual.  
Conceptual errors include things like forgetting to change 
the sign when removing an operator in the verbal 
representation or confusing the order of operations in the 
symbolic representation.  For arithmetic errors, we model 
bugs (miss-alignment of decimal places in doing arithmetic) 
and slips (e.g., 2 * 3 = 5).  Bugs and slips are each modeled 
by a single production (abstracting over detailed arithmetic 
errors, such as carry errors and borrowing from zero).  In 
the new model, the give-up production results in different 
errors, depending on when it fires.  Giving up at the 
beginning of a problem or before "writing" the results of an 
arithmetic operation results in No-Answer.  Giving up an 
arithmetic operation produces an arithmetic error.  Giving 
up at any other choice point produces a conceptual error. 

Coding Student Solutions for Errors and Strategies.  
Student solutions for result-unknown problems were coded 
into 4 categories:  correct, arithmetic error, conceptual error 
and no-answer.  For each of the six types of result-unknown 

(arithmetic) problems (rows in Table 1) we computed the 
frequency of these codings in students' solutions.  These 
frequencies are shown as percentages in bold in the sub-
columns labeled "data" in Table 1 (the sub-columns labeled 
"d1" and "d2" are model prediction deviations for EAPS1 
and EAPS2 which will be described later).  Note that the 
sum of the data frequencies in each row of Table 1 add to 
100% since every solution gets coded into one of these 
categories.  Also note that the coding of all but the 
conceptual error category is fairly straight-forward, thus this 
category also includes all solutions which were otherwise 
categorized. 

For each of the six types of the more algebra-like start-
unknown problems, we not only coded correctness and the 
three broad error categories, but also did a broad strategy 
coding identifying when solutions involved the use of the 
formal algebraic equation solving strategy versus an 
informal strategy, either guess-and-test or unwind.  The 
columns of Table 2 show the combined strategy-error 
categories for the two strategy codes and four error codes 
(correct, arithmetic error, and conceptual error codes are 
separated into those occurring within an informal vs. formal 
strategy).  Again, the data frequencies in the rows of Table 
2 sum to 100%. 
Fitting the Models to the Data.  After developing a 
knowledge-level model that could be guided through the 
space of decisions, we set ACT-R's conflict resolution 
parameters to stochastically select productions consistent 
with the "average student" from DFA data. ACT-R includes 
a rational control mechanism based on decision theory, 
which uses parameters such as the likelihood that executing 
a production will eventually satisfy the current goal and the 
cost of executing a  production.  Also,  ACT-R predicts that 
Gaussian noise will sometimes cause a production to be 
selected other than the one with the highest estimated 
utility.  These features enabled us to model the student data 
by setting the noise and production parameters so that the 
model would make choices that  

Table 1: Data & model differences for result-unknown (arithmetic) problems.  

 
Representation 

Correct 
data      dif1      dif2 

Arithmetic Errors
data     dif1      

dif2 

Conceptual Errors 
data      dif1      dif2

No Answer 
data     dif1     dif2 

Easy Story 77 3 -2 1 3 -1 17 -5 -6 5 0 9 

Easy Word 84 -5 -6 5 2 -5 5 5 5 7 -3 6 

Easy Equation 65 -1 -8 7 -5 -7 12 -6 8 16 11 7 

Hard Story 63 6 -1 17 -5 -3 11 1 1 9 -2 3 

Hard Word 42 7 5 36 -3 -4 21 -9 -11 0 7 11 

Hard Equation 33 2 3 24 4 1 9 -1 6 33 -4 -8 

Table 2:  Data & model differences for start-unknown (algebra) problems. 

 Informal Strategy Formal Strategy No Answer 
 Correct Arith Error Conc. Error Correct Arith Error Conc. Error (Giveup) 
Rep. data   d1    d2 data   d1    d2 data   d1    d2 data  d1    d2 data  d1    d2 data   d1    d2 data  d1    d2 

Easy St 64 -4 -3 2 3 -2 14 -2 6 6 0 -3 0 1 0 2 1 1 14 1 -2

 



EsyWd 70 -8 -11 0 5 0 19 -7 3 0 6 6 0 1 0 2 2 2 9 3 1
EasyEq 35 2 -9 0 2 0 19 -10 8 19 0 -3 0 3 0 9 -5 1 19 10 2
HardSt 45 7 4 10 4 2 24 -10 -2 4 -4 -1 0 9 2 1 2 4 15 -5 -7
HrdWd 27 0 7 9 14 19 30 -15 -5 6 -3 -5 0 2 2 9 -8 -7 18 -6 -9
HardE
q 

12 14 4 6 9 3 18 -12 8 6 6 3 0 7 8 15 -12 -8 42 -13 -15

correspond with the frequency of strategy and error codes in 
the DFA data.   

In fitting the model and data, we categorized the 
problems from DFA1 and DFA2 into 12 categories by 
crossing the levels of the three difficulty factors:  unknown 
position (result-unknown vs. start-unknown), representation 
(story vs. word vs. equation), and number difficulty (integer 
vs. decimal arithmetic).  The 12 problem categories are 
shown in the column labels of Table 3 and the row labels of 
Tables 1 (just the six result-unknown problem categories) 
and 2 (just the six start-unknown categories). 

Parameter setting in mathematical models is typically 
done using an iterative gradient-descent algorithm and 
depends on fast computations of model predictions given 
any vector of parameter values.  Parameter setting with an 
ACT-R model is made more challenging because 1) 
computations of ACT-R model predictions are not as simple 
as evaluating mathematical expressions.  Rather, they 
involve interpretation of production rules and, more 
importantly, 2) the stochastic nature of ACT-R means the 
model has to be run multiple times (e.g., 200) on each 
problem category.  Thus an iterative approach may not be 
practically feasible in many cases. 

In fitting parameters for EAPS1 we developed an 
alternative "incremental complexity" strategy.  We started 
by setting the parameters for the simplest group (result-
unknown integer verbal arithmetic) that contains core 
productions common to every group.  Then, we fit 
parameters for the new productions needed in each slightly 
more complex group of problems as determined by 
changing one difficulty factor at a time.   

To set the parameters for the EAPS2, we created a 
mathematical model in an Excel spreadsheet that 
corresponds with the behavior of the EAPS2 ACT-R model.  
Equations in the mathematical model corresponded to 

percentages for broad error categories (no error, arithmetic 
errors, conceptual errors and no answer).   

Each equation for a broad error category consisted of 
sums of products, where each product corresponded to a 
path through the model that resulted in that broad error 
category.  For example, one of the terms in the equation for 
arithmetic errors for easy verbal arithmetic would be 
VE*AR*VE*SL representing the path to perform the first 
verbal extraction (VE) and arithmetic operation (AR) 
correctly but after the second correct verbal extraction (VE), 
the model performs an arithmetic slip (AR).  We then used 
Excel's solver tool to find best fitting utility parameters to fit 
the DFA data, constraining the conceptual errors already 
accounted for in EAPS1 to remain the same, and inserted 
the resulting parameters into ACT-R. 

Table 3 shows the central productions in EAPS2 that we 
tuned (in the left-most column) and for each problem type 
(along the top), what productions apply for that type.  For 
example, for easy story arithmetic (Arth Easy Stry) there is 
one argument extraction production, Verbal-Extract-Args.  
Since no operator inversion is required for arithmetic, only 
the arithmetic productions apply, and because the arithmetic 
is easy, only the correct production Arith-Procedure and the 
simple Arith-Proc*Slip applies.  In contrast to the simplest 
problem type, hard algebra equations on the far right have 
several more productions that apply. 

EAPS2 has 11 parameters:  two for argument extraction, 
one for translating a verbal representation into an equation, 
two for manipulating an equation, (one correct, one 
incorrect), and four for arithmetic.  EAPS1 had 13 
parameters:  six for strategy selection, two for argument 
extraction, one for give-ups resulting in incomplete, one for 
operator inversion, and three for arithmetic (correct, correct 
arithmetic on story problems, and arithmetic bugs). 

 

Table 3: Summary of parameters and problems they apply to for EAPS2 

 
Productions 

Expected
Gain 

Arth 
Easy
Stry 

Arth 
Easy
Wrd 

Arth 
Easy
Eq 

Arth 
Hrd 
Stry 

Arth   
Hrd
Wrd 

Arth 
Hrd 
Eq 

Alg 
Easy
Stry 

Alg 
Easy
Wrd 

Alg 
Easy
Eq 

Alg 
Hrd 
Stry 

Alg 
Hrd
Wrd 

Alg
Hrd 
Eq 

Argument Extraction              
  Vrb*Extrct-Args 6.2 X X - X X - X X - X X - 
  Sym*Extract-Args    5.6 - - X - - X X X X X X X 
  Translate-Vrb-to-Sym 4.9 - - - - - - X X - X X - 
  Translate-Sym-to-Sym 4.8 - - - - - - X X X X X X 
  Sym*Order-of-ops-bug 0.0 - - X - - X X X X X X X 

Operator Interp/Inv              

  Vrb*Unwind-Correct  6.4 - - - - - - X X X X X X 
  Vrb*Unwind-Error  4.0 - - - - - - X X X X X X 

Arithmetic              

 



  Arith-Procedure        18.6 X X X X X X X X X X X X 
  Arith-Proc*Sit-Assist 18.8 -  - X - - - - - X - - 
  Arith-Proc*Slip   4.0 X X X X X X X X X X X X 
  Arith-Proc*Bug 17.9 - - - X X X - - - X X X 

 

Model-Data Fit 
The results of our parameter tuning can be seen in Tables 

1 and 2.  The comparison is presented as sets of triples:  first 
the DFA data, then the EAPS1–DFA difference, and then 
the EAPS2–DFA difference.  Table 1 shows the results for 
arithmetic (result unknown) problems.  Table 2 shows the 
results for algebra (start unknown) problems broken down 
into formal and informal strategies.   

Both models do a good job of capturing the effects of the 
three difficulty factors on student error and strategy 
selection behavior.  This is illustrated with the two model 
predictions (shown as deviations from the data) for 66 data 
points in Tables 1 and 2. 90% of the data points for EAPS1 
and 93% of the data points for EAPS2 deviate from the 
DFA data by less than ten percentage points.  The R2 value 
for EAPS1 was 0.90 using 13 parameters; and for EAPS2 
0.92 using 11 parameters.   

The major weakness of EAPS1 was qualitative.  It 
underpredicted the frequency of conceptual errors on 
algebra problems.  Notice that for informal strategies in 
Table 2, the conceptual errors for EAPS1 were consistently 
underpredicted (most were -10 or worse).  The conceptual 
errors on formal strategies also tended to be too low.  The 
problem is that EAPS1 only makes conceptual errors 
through buggy productions, but many of students’ 
conceptual errors may result from lack of knowledge rather 
than inappropriate knowledge.  To model this in EAPS2 we 
modified the simulation so that it might give up at any 
choice point in the solution.  The results was that unlike 
EAPS1, the predictions of EAPS2 are not systematically 
different from the data (see informal conceptual error 
column in Table 2). 

One limitation of both models is that students appear 
much more likely to give up on hard algebra equations 
(42% of the time) than the model predicts (29%).  Neither 
model considers number difficulty in the productions that 
begin the processing of a problem, that is, strategy selection 
productions in EAPS1 and comprehension productions for 
argument extraction in EAPS2.  In contrast to both models, 
students may be considering downstream arithmetic 
difficulties up front and this anticipated difficulty combined 
with a weak (low estimated utility) production for equation 
comprehension leads to a greater frequency of providing no 
answer.  In principle, EAPS2 could model this effect by 
giving up at the first arithmetic subgoal, before performing 
any written arithmetic.  However, in practice we found that 
focusing the parameter fitting process on this data point 
lowered the overall fit of EAPS2.  

In summary, EAPS2 achieved an equivalent quantitative 
fit as EAPS1 with fewer productions and without the 
systematic deviations from the error data.  

Conclusion 
In EAPS1 we modeled student's informal solutions to 

start-unknown algebra problems as strategies that were 
explicitly selected and globally applied.  Inspecting the 
resulting model, we noticed the productions doing strategy 
selection were not achieving any significant computational 
purpose.  We found we could eliminate them without 
substantially changing the model's behavior or  reducing it's 
fit to the data.  Rather than global strategy selection and 
application, in EAPS2 any production that applies to the 
current task demand may fire – there is no global strategy 
selection.  What appears as strategic behavior on the surface 
is emergent from individual local choices. 

A second weakness of EAPS1 was a qualitative deviation 
from the data whereby it systematically underpredicted the 
frequency of conceptual errors on start-unknown problems.  
This deviation was the consequence of EAPS1 having 
explicit bugs (e.g., order of operations confusion) as its only 
way of producing conceptual errors.  In EAPS2, we added 
the possibility that the model might fail to find anything to 
do at any particular choice point.  In this way, it produced 
conceptual errors not through explicit buggy knowledge but 
implicitly through the failure to have any productions with a 
sufficient estimated utility. 

The notions of implicit strategies and errors emphasize 
that much of what we learn is tacit knowledge.  Such 
knowledge is acquired in context and by doing.  Trying to 
directly communicate strategies may not be an effective 
instructional method for such tacit procedural knowledge.  
Similarly, trying to diagnose deep bugs to account for 
student's errors is not always an effective approach.  Rather, 
what may be more critical is creating activities that 
challenge students on just the knowledge they are in reach 
of learning, in other words, activities that are within a 
student's zone of proximal development (Vygotsky, 1978). 

The EAPS model provides a principled way for 
identifying students' developmental capabilities.  We have 
begun to fit EAPS2 to different subsets of the students that 
participated in DFA1 and DFA2 that showed different 
levels of competence.  The utility parameters on the 
productions within various competence levels illustrate the 
underlying continuities in the learning process.  Inspecting 
the parameter fits for lower competence levels (e.g., 
students who can only solve verbal result-unknown 
problems) reveals that despite generally failing on more 
difficult problems (e.g., verbal start-unknown problems) 
these students have some level of competence, that is, non-
zero utility estimates, on productions relevant to those more 
difficult problems (e.g., the Vrb*Unwind*Correct 
production). 

 



The difference between students at the same competence 
level but with different zones of proximal development (i.e., 
the level that be achieved with assistance) can be 
characterized in terms of differences in production utilities 
on relevant but not yet mastered skills.  While both students 
are below some threshold on this skill, one student may 
have a utility value that is much closer to the threshold than 
the other. 

Our current research involves simulating the learning 
process using ACT-R utility estimation algorithms.  We are 
beginning to perform experiments to test how different 
activity selections and other forms of assistance may effect 
the rate or trajectory of skill development. 
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