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Abstract Intelligent Tutoring Systems have been shown to be effective in a
number of domains, but they remain hard to build, with estimates of 200-300
hours of development per hour of instruction. Two goals of the Cognitive Tutor
Authoring Tools (CTAT) project are to (a) make tutor development more
efficient for both programmers and non-programmers and (b) produce scientific
evidence indicating which tool features lead to improved efficiency. CTAT
supports development of two types of tutors, Cognitive Tutors and Example-
Tracing Tutors, which represent different trade-offs in terms of ease of
authoring and generality.  In preliminary small-scale controlled experiments
involving basic Cognitive Tutor development tasks, we found efficiency gains
due to CTAT of 1.4 to 2 times faster.  We expect that continued development of
CTAT, informed by repeated evaluations involving increasingly complex
authoring tasks, will lead to further efficiency gains.

Introduction

Intelligent Tutoring Systems can be very effective in improving student learning
(e.g., [8, 18]). However, few ITSs are used regularly in real educational settings. E-
Learning courses are created by the hundreds, but ITSs are seldom, if ever, seen as
embedded components. A prime reason is that ITSs are typically hard to author.
Estimates of development time have varied from 200-300 hours of authoring for one
hour of instruction [4, 13, 19]. One way to make ITSs more widespread is to create
authoring tools that speed up tutor development. A wide range of authoring tools have
been built [1, 6, 13, 14, 17], and some of these have been used to build successful
real-world systems [16]. Others have seen extensive evaluations focused on better
understanding the authoring process and desired tool properties [1].

We report on an on-going project to create a set of authoring tools that supports the
development of two types of tutors: Cognitive Tutors, which rely on a rule-based
cognitive model and have been successful in improving students’ math proficiency in
American high schools [8], and Example-Tracing Tutors, a relatively novel type of
tutors that provide the same core tutoring functionality as Cognitive Tutors but do not
require any programming [6]. (Previously, these tutors were called Pseudo Tutors.)
CTAT aims to increase the efficiency of authoring by means of an example-based
approach to authoring. In this approach, an author demonstrates both correct and
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incorrect problem-solving behavior, which is recorded by the tool. The author then
either generalizes and annotates the recorded examples, so they can serve as the basis
for Example-Tracing Tutors, or uses them to guide the development and testing of a
cognitive model for use in a Cognitive Tutor. CTAT aims to support a broad range of
users: ITS/Ed Tech researchers, researchers in the field of the learning sciences
interested in using ITSs as a vehicle for learning science experiments, on-line course
developers, and computer-savvy college professors.

In evaluating the efficiency gains afforded by new tools, development time
estimates derived from real-world tutor projects, such as those mentioned above, are
helpful but are potentially subject to wide variability in terms of the experience of the
developers, the subject matter for which tutors were built, and the scale of the project.
Therefore, it is important that such estimates are supplemented with results from
rigorous experiments that provide insight into the tool features most conducive to
efficient authoring. We conducted such an experiment: a preliminary, small-scale
ablation study in which we compared the authoring efficiency with the full CTAT
tool suite to a version that had CTAT’s novel tools taken out. To the best of our
knowledge, this kind of evaluation focused on authoring efficiency has not been
reported before in the ITS literature.

In this paper, which is meant to be a companion paper to an earlier paper focused
on Example-Tracing Tutors [6], we present an overview of the CTAT tools used for
developing Cognitive Tutors, illustrate hypothesized advantages of these tools in
terms of authoring efficiency, and present the results from the small scale experiment.

Overview of CTAT

Cognitive Tutors and Example-Tracing Tutors, the two types of tutors supported
by CTAT, represent different trade-offs between ease of authoring on the one hand
and generality and flexibility of the resulting tutors on the other. Cognitive Tutors are
rooted in the ACT-R theory of cognition and learning [4]. They interpret student
problem-solving behavior using a cognitive model that captures, in the form of
production rules, the skills that the student is expected to learn [8]. The tutor applies
an algorithm called “model tracing” to monitor a student involved in a problem: it
compares the students’ actions against those that are appropriate according to the
model. Developing a cognitive model for a Cognitive Tutor is a time-consuming task
that requires AI programming. The upside is that the model works across a range of
problems, and has flexibility, since it allows the tutor to recognize multiple student
solution strategies and deal with subtle dependencies among solution steps.

Example-Tracing Tutors provide key elements of Cognitive Tutor behavior but are
created “by demonstration” rather than by programming [6]. That is, an author
demonstrates to the system how students are expected to solve each assigned problem
and what errors they are expected to make. Compared to Cognitive Tutors, more per-
problem-authoring is needed as solutions need to be demonstrated and annotated for
each problem separately. However, a key advantage is that no AI programming is
needed. We have seen repeatedly during workshops that people new to CTAT learn to
build their first Example-Tracing Tutor in less than an afternoon.
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The Cognitive Tutor Authoring Tools, depicted in Figure 1, comprise three
separate applications: an external GUI Builder (typically, NetBeans or Macromedia’s
Flash), a set of core tools for demonstration-based task analysis and for testing and
debugging cognitive models, and an external editor for cognitive models (typically
Eclipse). The following tools are used prominently when authoring Cognitive Tutors:

GUI Builder – used to create a Student Interface, a problem-solving environment
in which the student interacts with the tutor. The GUI Builder supports interface
building without programming: the author arranges interface widgets on a canvas by
drag and drop techniques (see Figure 1, bottom left). The GUI Builder is an external,
off-the-shelf tool enriched with “tutorable” widgets developed for CTAT. We have
used both Macromedia’s Flash and Java development environments such as NetBeans
and IntelliJ. In projects focused on providing tutoring within an existing simulator or
problem-solving environment, the Student Interface is replaced with the external
environment, which typically can be done without extensive effort [3, 12]. The use of
a GUI Builder in an ITS authoring tool is not novel, but to the best of our knowledge,
it is novel to have plug-and-play compatibility with standard GUI Builders.

Behavior Recorder – a central tool with three key functions. First, it records
examples of correct and incorrect behavior demonstrated by the author, in the Student
Interface, in the form of a Behavior Graph. Second, it implements the example-tracing
function. Third, it provides support for planning and testing of cognitive models.

Working Memory Editor – used for cognitive model development; allows an
author to inspect and modify the contents of the cognitive model’s “working
memory,” which is frequently needed during model development. The Jess rule
engine we use does not itself come with such an editor.

Figure 1: The Cognitive Tutor Authoring Tools
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Conflict Tree and Why Not Window – tools for debugging the cognitive model,
which provide information about rule activations and partial activations explored by
the model-tracing algorithm. The Conflict Tree is specific to model tracing, but the
Why Not Window is useful for general production rule programming. However, we
know of no existing production rule system that offers a tool like this.

Jess console – enables an author to interact directly with the Jess interpreter via the
command line, which is helpful to carry out debugging strategies not directly
supported by CTAT. It is similar to simple Jess tools such as JessWin.

External editor–used to edit the Jess rules for the cognitive model. The Jess plug-
in for Eclipse (shown on the right in Figure 1) provides syntax checking and auto-
completion features. Other editors can be used, since no tight link exists with CTAT.

Hypothesized advantages of authoring with CTAT

Using fraction addition as an example domain, we illustrate four hypotheses about
how CTAT facilitates cognitive model creation:

1. the Behavior Recorder supports the planning of a cognitive model;
2. CTAT auto-generates working memory content to facilitate modeling;
3. the Behavior Recorder facilitates testing, by providing automatic snap shots of

all problem states and a facility for regression testing;
4. the Conflict Tree and Why Not Window facilitate error localization.
Prior to developing a cognitive model, the author creates a Student Interface

suitable for solving fraction addition problems, using the GUI Builder shown at the
bottom left of Figure 1. She also creates worked-out example problems with the
Behavior Recorder. The examples will guide the model development efforts and serve
as test cases. For example, our author may demonstrate two ways of solving the
fraction addition problem 1/4 + 1/6: by converting the fractions to denominator 12, or
by converting them to 24. Both are acceptable strategies that students are likely to
employ. As the author demonstrates the steps, the Behavior Recorder records them in
a  “Behavior Graph,” shown at the top left in Figure 1, with separate paths
corresponding to each strategy. The author then labels each step in the recorded
problem solutions with names for relevant skills. This activity is a form of cognitive
task analysis, because the author determines how the overall problem-solving skill
breaks down into smaller components. At the same time, it is a way of planning the
cognitive model, since the author will later create production rules corresponding to
each identified skill. This planning step could be done on paper, but doing it with
CTAT has the advantage that the demonstrated examples are more likely to be
complete and can later serve as semi-automated test cases for the cognitive model.

Having created a Student Interface and annotated examples, the next step for the
author is to create a working memory representation for the cognitive model. In Jess,
working memory is a collection of “facts” whose attributes (or “slots” in Jess
terminology) must first be declared by means of “templates.” CTAT helps by creating
initial working memory content for the author. The structure generated by CTAT
mirrors the Student Interface – it contains a fact for each element (i.e., widget) in the
interface. This organization is useful in particular when the external representation of
a problem (as captured in the interface) reflects its internal structure. Even if the
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interface elements do not fully reflect the internal problem structure, facts
corresponding to interface elements are still useful for model tracing. In the fraction
addition example, the representation generated by CTAT contains one working
memory fact per text field in the interface. This representation is a start, but the author
must add the information that each text field represents a particular part of a particular
fraction (numerator, denominator) and must also represent the role in the problem that
each fraction plays (e.g., given fractions, converted fractions, sum fractions). In the
process, she might create a new template to represent fractions, with slots for the
numerator and denominator, using CTAT’s Working Memory Editor (see Figure 2).

Next, the author needs to write the production rules for each skill in the problem.
The actual editing of the production rules is done with a standard editor such as
Eclipse. We plan to make the writing of production rules easier by means of
structured editing techniques and automated rule stub generation – we implemented
some of these facilities for the TDK production rule language [7] but not yet for Jess.
We are also working on a machine learning approach to rule creation [9].

When it comes time to test the production rules, the Behavior Recorder is helpful
in two ways. First, the Behavior Recorder essentially provides automated snapshots
for all recorded problem states. That is, it can be used to move working memory and
the Student Interface to any state recorded in the Behavior Graph, just by clicking on
the state. This capability makes it easier to test rules involved in a particular step in
the problem, since it saves the author from having to provide input in the Student
Interface for all previous steps. This kind of manual input would be time-consuming,
especially for more complex problems with many steps, and especially considering
that it needs to be done for every edit-test-debug cycle. In addition, the Behavior
Recorder supports semi-automated regression testing in which the cognitive model is
tested against a full Behavior Graph as test case (i.e., as a specification of how the
model should behave on the steps of the given problem). CTAT indicates by means of
color coding whether the tutor (applying its model-tracing algorithm) produces the

Figure 2: Augmenting Working Memory using CTAT’s Working Memory Editor



6

expected result for each link in the graph. If not, then typically the cognitive model is
to blame; one or more rules are not yet working as intended. This kind of testing is
especially useful when rules that have been authored for an earlier tutor problem need
to be modified for a later problem; such modifications sometimes introduce errors in
problems on which previously the rule worked correctly.

To help localize errors in a cognitive model, the Conflict Tree window shows the
space of rule activations explored in the process of model tracing (shown on the left in
Figure 3). When a student submits a problem-solving step to the tutor, the model-
tracing algorithm searches for a sequence of rule activations that produce the same
action as the student. Showing the search space graphically, as a tree of rule
activations, helps an author fully understand the model’s behavior, which is often
useful for debugging or for getting to know models built by others. The Why Not
window (shown on the right in Figure 3) provides further detail about each search
node depicted in the Conflict Tree. It shows both full and partial rule activations that
were generated at any given node. This information is useful particularly when a rule
that was expected to fire did not – hence the name “Why Not”. Experienced modelers
typically like these tools. Without them, an author would have to use the Jess
command-line interface to extract the information in the Conflict Tree in piecemeal
fashion. It is not possible to extract the information that is presented in the Why Not
window using the Jess command-line. An author would have to resort to inserting
print statements in rule conditions or other cleverness to infer this information.

Preliminary evaluation of efficiency gains

We conducted a small-scale experiment to test if the novel tools in CTAT lead to
more efficient tutor development. The experiment was an ablation study, in which we
compared the full CTAT suite (“Full Tool Set”) to a version in which the novel tools

Figure 3: The Conflict Tree and Why Not Window: debugging tools
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were removed, namely, the Behavior Recorder, the Conflict Tree, the Why Not
window, and the Working Memory Editor. This “Reduced Tool Set” is essentially a
standard Jess environment, akin for example to JessWin, but augmented with the
model-tracing algorithm and a fully-integrated Student Interface. Thus, the control
condition in this experiment begins at a point far ahead of an author implementing a
model-tracing tutor from scratch. The goal of the experiment was to get an indication
of CTAT’s efficiency and to identify areas for improvement. In particular, we wanted
to see whether the last three of the hypothesized advantages of CTAT would
materialize. Due to the small number of subjects, the experiment does not allow for
statistically significant results. Nonetheless, it is valuable as a formative evaluation.

The experiment focused on a simple, semi-realistic modeling activity, in which the
participants were asked to create a cognitive model consisting of 6 rules, given
detailed statements of the form of “If … then … “ that mapped quite directly onto the
rule conditions and actions to be implemented. Four subjects participated, all of
whom were students at CMU who had used CTAT for a class project. The subjects
thus had some experience but were not expert cognitive modelers. All subjects did the
modeling task twice, two of them first with the Full Tool Set and then again,
approximately a week later, with the Reduced Tool Set, the other two with the order
reversed. Each task lasted 3.5 hours at most – less if the subject finished before that
amount of time had elapsed. We measured the number of rules completed.

As shown in Figure 4, the decrease in time per rule was greater when the subjects
switched from the Reduced Tool Set to the Full Tool Set than when they used the tool
sets in the opposite order. Thus, the increase in efficiency between the first and
second time the task was performed is not likely to be due solely to the subjects’
greater familiarity with the task. There is an effect of the tools that suggests that the
Full Tool Set improves the efficiency of modeling. Overall, the time per rule with the
Full Tool Set was a factor of 1.4 faster than with the Reduced Tools. That effect is
less than the 2x improvement that we reported previously for an experiment with a
single participant [7].  That earlier experiment involved a similar ablation design as
the current but involved CTAT tools that support modeling not in Jess, but in TDK,
the modeling language used to develop the Algebra and Geometry Cognitive Tutors.
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Figure 4: Comparison of the time to author production rules with CTAT versus an ablated
version of CTAT from which its novel tools were removed
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In the earlier experiment, the difference between the Full and Reduced Tool Sets was
greater, since the CTAT tools to support TDK had features that have not yet been
implemented in the CTAT/Jess tools, which may explain the higher efficiency gain.

In addition to evaluating the overall efficiency of rule creation, we undertook a
detailed quantitative analysis of subjects’ actions with the tools, recorded with
Camtasia, to evaluate CTAT’s hypothesized efficiency advantages. The experiment
seemed to confirm that the auto-generation of working memory saves time, as
measured by the amount of time spent editing the working memory content (7 mins
on average with the Full Set, 14 mins with the Reduced Set). The time savings were
very modest, but it is worth pointing out that the measure used does not include any
savings in development time that may have resulted from starting with a solid
working memory representation. In other words, the auto-generation may provide
useful scaffolding for inexperienced tool users that is hard to quantify – and this may
indeed be its main advantage. The results were more surprising with respect to the
hypothesized time savings due to the Behavior Recorder’s automated snap shot
facility. Even though all subjects knew about this facility, three of the four hardly
used it, with one subject accounting for almost 60% of its use. The limited use may
reflect the simplicity of the modeling task that the subjects were given (a six-step
problem), or it may be that when testing a cognitive model, it is more natural to work
in the Student Interface than in the Behavior Graph. In the Student Interface the
details of the current problem state are always clearly visible, whereas in the Behavior
Graph only non-descriptive names for the states are shown, without details, which
may hamper the intended nimble navigation among problem states. If the author’s
attention is naturally anchored in the Student Interface, then it makes sense that the
commands for navigating the Behavior Graph should be issued from this window, for
example, by means of arrow keys or “bookmarks”.  This solution would, we expect,
retain any efficiency advantages due to the snapshots. Finally, there was evidence that
the debugging tools (the Conflict Tree and the Why Not Window) were useful. The
subjects used the Why Not window regularly (31.25 times on average).  We do not
know how often they used the Conflict Tree, since the tool is usually visible without
requiring interaction by the author. Importantly, there was evidence of a higher
number of edit-test-debug cycles with the Reduced Tool Set. While the time spent
editing rules was about the same in each condition, the number of editing episodes
was higher (81 v. 59 on average) with the Reduced Tool Set. Further, the subjects
using the Reduced Tool Set spent more time testing, as distinct from debugging (26
mins v. 16 mins), and had many more testing actions (164 v. 93). While we cannot
attribute these numbers solely to any greater diagnostic power of the CTAT
debugging tools, they are certainly consistent with the notion that with better
debugging tools one needs fewer edit-test-debug cycles.

In spite of the modest scale of the experiment, analyses such as those presented
above are very useful in guiding future tool redesign and development efforts. They
underscore the importance of getting the HCI right in designing interactive tools and
lead to specific suggestions for improvement. Further qualitative analysis of the errors
in the subjects’ production rules will also help in that regard. In interpreting the
efficiency results, it is important to keep in mind that the modeling tasks in these
experiments were simple.  The task involved only 6 straightforward rules of which
detailed English versions were given, and thus was significantly less complex than a
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typical real-world modeling task. Viewed in that light, a 1.4-2x gain in efficiency is
encouraging, even if our eventual goal is to achieve higher gains.

Conclusion

In CTAT, the authoring of Example-Tracing Tutors and Cognitive Tutors is
organized around examples of demonstrated behavior. These examples include
alternative strategies for solving problems and errors students are expected to make,
and can be recorded conveniently with CTAT’s Behavior Recorder tool. They can be
used as the basis for Example-Tracing Tutors to provide guidance to students. The
examples can also be used as planning cases and semi-automatic test cases for
cognitive models, if an author is developing a Cognitive Tutor.

The preliminary experiment described in this paper suggests that authoring with
CTAT is becoming more rapid. Holding ourselves to a high scientific standard of
rigorous laboratory experimentation with a high-bar control condition (all but the
newest features), we have shown a modest efficiency improvement estimate of 1.4 to
2 times faster, compared to standard tools for model tracing. We are aiming for higher
overall efficiency gains, but it is nonetheless encouraging that a speed-up was attained
on a small and easy task. An interesting finding was that CTAT seems to lower the
number of edit-test-debug cycles needed to create a cognitive model. The preliminary
experiment led to a number of ideas for tool improvement, focused on improving the
HCI of the tools. To improve the efficiency of the tools, we are also developing semi-
automated techniques, such as machine learning [9] and bootstrapping [10]. We
expect that the advantages of CTAT will be more pronounced in a more complex
modeling task and as we continue to improve CTAT.

So far, CTAT has been used by over 220 users in a number of workshops, graduate
courses, summer schools, and tutorials. We estimate that 30-40% of these users were
non-CMU people. CTAT is being used to develop a set of tutors for introductory
college-level genetics (http://www.cs.cmu.edu/~genetics), which have been piloted in
various colleges across the country, and has been used in learning science
experiments in the domains of thermodynamics [3], stoichiometry [11], French
culture [15], and Chinese character recognition. Clearly, these numbers indicate that
there is a need for authoring tools and that CTAT is offering useful functionality that
can be applied in a range of domains. CTAT is available free of charge for research
and educational purposes (http://ctat.pact.cs.cmu.edu). It is our hope that through tool
development and other efforts by the ITS community, intelligent tutoring systems will
become more widespread and will one day be staples of on-line courses.
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