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Abstract”

This paper is part of an effort to extend research on
mathematical problem solving beyond the traditional focus
on formal procedures (both in the classroom and in problem
solving research). We are beginning to investigate students'
inductive discovery-oriented strategies and the interaction
between these and formal deductive strategies. In contrast
to typical classroom problems in math and science which
demend the application of a leammed formal procedure {e.g.,
prove X)), we gave students more open-ended problems (e.g.,
is X true?) for which the formal deductive procedure is
useful, but other, possibly informal or inductive, strategies
are also potentially useful. The normative approach for
solving these problems, in fact, requires the use of both a
deductive strategy, which is definitive only when X is true,
and an inductive search for examples, which is definitive
only when X is not universally true. When presented with
these problems we found that geometry students have some
limited facility to perform the deductive strategy (though,
less so in this context than when they are directly asked to
write a proof) and use a degenerate version of the inductive
strategy. Instead of considering multiple examples and
looking for a counter-example, students tend o read off the
conclusion from the single example (or model) we provided.

Introduction

This paper presents a preliminary investigation into the
nature of novice reasoning in geometry. This area is
interesting theoretically as it relates to both research on
human reasoning biases and research on novice problem
solving, particularly in physics. Both areas have identified
a number of situations in which humans behave in apparent
contrast to normative expectations. Nickerson, Perkins,
and Smith (1985) provide a good review of the empirically
established human reasoning biases. The research on naive
physics has shown that students’ prior conceptions of the
physical world are often at odds with the more detailed
conceptions of the science of physics. Both to add o these
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bodies of research and for pedagogical purposes, we have
begun to explore novice reasoning behavior in
mathematics. While the focus in naive physics research
has been on students’ conceptions, the focus here is on
reasoning strategies, both deductive and inductive. In
contrast to typical classroom problems in math and science
which demand the application of a learmed formal
procedure (e.g., prove X), we gave students more open-
ended problems {e.g., is X true?) for which the formal
deductive procedure is useful, but other, possibly informal
or inductive, strategies are also potentially useful. We
were interested in seeing to what extent students would
bring the deductive strategy to bear, to what extent they
would use informal strategies, and, in particular, if we
could identify biases in these strategies that lead to
systematic errors.

In previous research (Koedinger & Anderson, 1990), we
found that skilled geometers initially plan proofs using
informal knowledge (perceptually based) and deal with the
formal details of writing down the proof as a secondary
issue. To betler evaluate students’ proof abilities in terms
of this distinction, we wanted to design a task that tapped
only the informal planning abilities and did not require the
detailed proof execution skills. The geometry truth
judgment task poses questions of the form “If <givens>,
must <goal>?", Figure 1 shows an example item.

One approach to answering such questions is to try to
find a proof of the <goal> from the <givens>. Subjects
don’t need 10 write down this proof, but if they can come
up with an accurate one, however informal, they can
reliably answer YES,

Besides our initial intention of using this truth judgment
task 10 measure informal planning skills, we have found
this task interesting in its own right. From a pedagogical
standpoint, it gives students an idea of the role of proof in
mathematics, that is, to help determine what is true. From
a scientific standpoint, it is analogous to other reasoning
tasks and thus, may elicit similar strategics to those
observed in everyday reasoning or in other laboratory
reasoning tasks. And lastly, it allows us to further expiore
the complementary roles of informal and formal reasoning
stralegies.



1. If LTQU E ZRQU and £QTU £ ZQRU,

must Z£STU E 4SRU?

T A YES

NO

Figure 1. An example “truth judgment” problem. Subjects circled YES or NO.

A Study of Novice Reasoning in Geometry

Geometry truth judgment problems are much like the
logical syllogism problems which have received much
attention in the human reasoning literature. A logical
syllogism has two premises and a conclusion ~ these are
analogous to our <givens> and <goal>. A typical task is to
have subjects judge whether a given syllogism is VALID
(must be true} or INVALID (not necessarily true) -
analogous to YES and NO, respectively, in the truth

judgment task, A leading theory on how humans solve
logical syllogisms is Johnson-Laird's (1983) mental model
theory. (Polk and Newell, 1989, have refined this theory
and implemented it in the Soar architecture.) Essentially,
the idea is that subjects convert what is nominally a
deduactive problem into an inductive problem by thinking in
terms of possible models or instances of the premises and
testing whether the conclusion holds true for these
instances.

A deductive strategy for solving syllogism problems
would involve applying logical rules tc the premise
statements in an effort to derive the conclusion, In
contrast, the mental model theory proposes that people
pursue a strategy of imagining one or more specific
instances which are consistent with the premises. Then
they check the problem conclusion 1o see if it is consistent
with the instances they have imagined. In other words,
they check whether the conclusion is a proper induction
from the instances. M it is, they answer VALID, otherwise
they answer INVALID,

What is unigue about our geometry problems is that
while in typical syllogism experiments subjects imagine
their own instance(s), here subjects are given a candidate
instance!. The diagram that goes along with a typical
geometry problem is an instance of the problem premises
and, like any model, it has specific features that are not
explicitly stated in the premises. Some of these features
may actually follow from the premises, for example,
LSTU £ ZSRU in the problem Figure 1, while others
may be fortuitous, for example, Z8TU £ ZQTU in the
same diagram,

By giving subjects a model, the truth judgment task
provides a different kind of test of the mental models
theory. In the typical experiment, the match between the
theory and the subjects’ actual reasoning process is
performed indirectly by comparing the error patterns
predicted by the theory with the subjects’ error patterns, In

1Sul:;je:::ls were ceriainly free to construct other models of the
premises. However, subjecis did this rarely, if at all.

contrast, we designed the truth judgment test, in pan, to see
if we might directly influence the reasoning process (and
the resulting answer) by changing the characteristics of the
model (diagram) we provide. Figure 2 shows the ilem

design and an example group of 4 matched items varying
on whether the correct answer is YES or NO and whether

the problem givens and goal “look true” in the diagram or
the givens and goal “look false™. Consider item b. In this
case, the diagram is more specific (has more features) than
the given requires and the problem goal AB L €D appears
true when, in fact, it does not follow from the given AC &
CB. In this case, a subject reasoning purely from the
provided model would incorrectly conclude the goal was
true. In contrast, a subject reasoning purely deductively
would not be influenced by this instance, would fail to find
a proof and thus, would be led to answer NO (though not

with complete certainty since failure to find a proof does
not guarantee one does not exist). Of course, the ideal
subject would search for a counter-example at this point
and upon finding one would be certain that the correct
answer is NO.

ltem c¢ provides a second kind of misleading or
inconsistent diagram. In this case the correct answer is
YES yet the goal looks-false in the model (and so does the
given necessarily). To the extent thal subjects are working
from this model, they should be biased to incorrectly
respond NO since the goal L@ L R¥ does not appear true
in this diagram. In item types a & d, the model is
consistent with the correct answer, so model-based
reasoners who rely on this model only will perform better
on these item types than on the matched items ¢ & b.
Stated another way, subjects who tend to use the provided
diagram as a model will answer YES on the looks-true
iterns more often than on the looks-false items.

Qur hypothesis was not that subjects would rely purely
on the diagram provided. In fact, we were hoping to find
evidence of proof planning done in service of solving these
problems, While finding evidence that subjects perform
above chance on this task would be consisient with the
hypothesis that they were bringing proof to bear, it would
not rule out other reliable strategies like considering
multiple instances of the given siatements. However, we
can get more discriminating evidence on the use of proof
by picking problems for which the underlying proof varies
in difficolty. If students are doing proofs, they should be
more successful on problems which have “easy” proofs
than on problems that require “hard” proofs. We defined
difficulty with respect to the conceptual sieps in the
psychological model of informal proof planning identified
by our prior research (Koedinger & Anderson, 1990),



Diagram YES NO
Looks-true ja D b:___ _ D
If ZBCD E ZDCA, IfAC £ CB,
must AB 1. CD? must AB L €07
A c A c B
Looks-false §c: R d:__w — R
If ZQMR = ZLMR, IfLM & MQ,
must L@ L RM? mustLq@ L RM?
h M0 h v Q

Figure 2. Truth judgment item types. Item types a & c have the same diagram, respectively, as item types b & d,
while apart from point Iabels, & & b have the same problem statement, respectively, as ¢ & d.

The shortest proof that verifies a YES answer on “easy”
problems requires one conceptual step, while the shortest
proof that verifies a YES answer on “hard” problems
requires two or more conceptual steps. This categorization
is only directly relevant to the YES items (a & c), but in
reporting the data the matching items (b & d) will be
included in this categorization.

We designed eight groups (1-8) of four items each (a-d)
for a total of 32 items. Item groups 1-4 are “easy”
problems, while item groups 5-8 are “hard” problems. The
item in Figure 1 is 8a: it requires a “hard” proof, the givens
and goal look-true in the diagram, and the correct answer is
YES.

Method

Subjects. 30 students participated for pay in the summer
after completing a high school geometry course.
Procedure. This data was collected as part of the pre and
post testing in a study comparing two intelligent tutoring
systems {(ITS) for geometry proof problem solving (see
Koedinger, 1990). The complete set of 32 items was split
into two test versions: 16 items for version A and 16
matching items for version B. Half the subjects received
version A as a pre-test and B as a post-test; the other half
did version B first and A as the post-test. Between the pre
and post tests, subjects received 8 howrs of proof
instruction using one of the ITSs,

The test instructions (1) explained that any points which
appear collinear (on the same line) in a diagram can be
assumed to be collinear, (2) warned that “the diagram may
be misleading”, and (3) provided two example problems
(types ¢ & d) that both contained misleading diagrams and
that, in one case, illustrated an informal proof as a good
reason to answer YES and, in the other, illustrated a
counter-example as a good reason to answer NO.

Resuits

The first thing to note is that on a separate test of proof
skiil, we observed a significant improvement in students’
ability to write two-column proofs, The mean score went
from 36% on a pre-test before the ITS instruction to 68%

on the post-test (p < .001). Given that the proof problems
on the proof test were equally difficult as the proofs
underlying the “hard-YES” problems on the truth judgment
test, we might expect to see similar improvements on the
trath judgment task, However, truth judgment performance
showed only marginal improvement, going from 67% on
the pre-test o 72% on the post-test (p > .09)!. While there
may have been some transfer, it appears that students were
not fully appreciating the relevance of proof to solving
truth judgment problems. This is not to say that students
were not trying proofs in the service of making truth
judgments, in fact, as demonstrated below it is clear they
were. Rather, it appears there was some slippage in the
transfer from the structured problems in the training where
a proof is explicitly required to the open-ended truth
judgment problems where students must determine for
themselves whether and when proof is relevant. These
results are not changed by focussing the data analysis on
the items for which improved proof skills might be most
relevant (e.g., the hard-YES problems): The improvement
trends of about 5% are uniform across all problem types.

Given that there are no qualitative differences beiween
students' performance on the truth judgment pre- and post-
tests, the remainder of the analysis uses subjects’ scores on
the pre- and post-tests combined. The goal is to get a
general sense of the reasoning strategies students used to
make truth judgments. In particular, to what extent did
they bring proof to bear? To whai extent are they
influenced by the provided diagram? Is there evidence for
other strategies? The results are displayed in the left hand
graph in Figure 3. This graph shows the mean probability
of answering YES for the 8§ cells in the 2x2x2 item design.
There are three significant main effects on each of three
dimensions (correct answer, difficulty, and diagram) and
one significant interaction between correct answer and
difficulty. They are summarized as follows by indicating
which item types lead to a higher probability for answering
YES:

1This improvement is not as quite as small as it seems since
getting 50% on these YES or NO problems is not difficuls.



1. Main effect: YES ilems > NO items
2. Main effect: looks-true items > looks-false items
3. Main effect: easy items > hard items
4. Interaction: easy-YES > hard-YES,
but easy-NO = hard-YES items

All of these effects are significant across both subjects and
items (p < .01). We will consider them in more detail.

Looking at the answer dimension (represented by the
two lines in the graph), students respond YES significantly
more often when the correct answer is YES (se¢ the dark
line) than when the correct answer is NO (the light line).
This indicates that they were not behaving randomiy and
had some sense for correct answers: they got 66% of the
YES-problems correct and 71% of the NO-problems. That
proof skill was an important factor in this success is
indicated by the fact that performance sigrificantly
diminishes going from easy problems (76% correct) to hard
problems (61%) and, more importantly, that this difference
occurs for the YES-problems but not for the NO-problems.,
Averaging over diagram appearance, subjects are 83%
correct on easy-YES items but 49% comrect for hard-YES
items while they are 69% correct for easy-NO items and
73% for hard-NO items. In other words, the evidence that
students are doing proofs is that students’ performance
varies in a predictable way on the problems for which proof
is required, but not on the problems for which proof is not
required.

Though smaller in magnimde, the diagram had a clear
and consistent effect on student performance. Independent
of the correct answer, students were more likely to say YES
on the looks-true items than on the looks-false items. In
Figure 3, note how the points drop from the first column
(looks-true} 1o the second (looks-false) and from the third
io the fourth. This meant that they made significantly more
errors on problem types b & ¢ where the correct answer
and the looks of diagram were in conflict than on problem
types a & d where the answer and diagram were in accord.
Stating this result in a different way, students showed a
significant tendency to reason from the provided diagram
{or model) making the inductive leap that if the goal looks-
true (looks-false) in the model, then YES (NO) it must (not)
be true in general,

Modeling Reasoning Strategies and Biases

In this section, we first present a task analysis of what
strategies might be brought 10 bear on this task and the
circumstances in which they are effective. With that
background, we next discuss what strategies these students
appear 10 have used and how they interact. 'We propose a
mathematical model as a concise summary of our claims
about what students are doing. The model is supported
both by its close fit to the quantitative data as well as from
some preliminary protocol data.

Task Analysis

Effectively solving these truth judgment problems, requires
two complementary strategies. A deductive rule-based

strategy that involves looking for a proof (i.c., & sequence
of rules) which derives the problem goal from the givens.
If one finds a correct proof, one can conclude YES with
certainty. However, if one fails to find a proof, i is not
necessarily that case that there isn’t one. In this case, one
can answer NO heuristically with some better than chance
probability of being right. An inductive example-based
strategy is complementary in that when properly applied
one can answer NO with certainty, but can answer YES
only heuristically. This strategy, like Johnson-Laird's
mental model approach, involves considering examples of
the given statements and checking whether the goal is true
in these examples. If it is in all cases, one can answer YES
but only heuristically since there is no guarantse that the
next example won't contradict the problem statement. If
the goal is ever found to be false, this example is counter-
example to the problem statement and one can answer NO
with certainty,

The normative overall strategy is to alternatively pursue
one and then the other of these strategies until one of them
yields a certain result, that is, until either 2 proof or a
counter-example is found.

A Mathematical Model

By looking at the statistical results from the study, it
appeared that students’ behavior could be characterized by
the interaction of a proof strategy and a degenerate version
of the inductive example-based strategy as follows:

1. Subjects initially attempt to find a proof and answer

YES if they find one.
2. If they don't find a proof, they “guess” at the answer
based on an induction from the provided diagram.
In mathematical terms, this is:
prob(YES) = p + (1-p)g
where p = prob of finding a proof
g = prob of guessing YES
This general form is instantiated in different ways
depending on the problem characteristics. If the correct
answer to the problem is NO, the probability of finding a
proof is 0. If the correct answer is YES, the model claims
that students find a proof with probability e for an easy
problem or probability k for a hard problem. I they don’t
find a proof, they will guess YES with probability ¢ if the
problem goal looks-true in the diagram or f if the goal
locks-false. In summary, p=0 for NO problems, p=¢ for
easy-YES problems, and p=h for hard-YES problems while
g=t for looks-true problems and g=f for looks-false
problems.

Note that the model implies that there should be no
difference between the easy and hard problems when the
correct answer is NO. This is how the model captures the
interaction between correct answer and difficalty. The
graph on the right in Figure 3 shows the model predictions
for the following set of parameter values, e=.77, h=.29,
=37, f=.19. The model provides a close fit 10 the data. A
chi-square test indicates that it does not deviate
significantly from the data (X2(4, N=30) = 2.19, p>.5)
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Figure 3. Eight data points and model predictions for the 2x2x2, answer by difficulty by diagram, item design, In the
data, all three main effects are significant across both subjects and items and 5o is the interaction between answer and
difficulty. The model does not deviate significantly from the data (X2(4, N=30) = 2.19, p>.5).

This model of student performance suggests three
deviations from the normative one. First, the deductive
strategy component is quantitatively different in that
ideally students should be able to find all the proofs for the
YES problems, not just 77% (the value of ¢) for the easy-
YES problems and 29% of the hard-YES problems.
Second, the model’s inductive example-based strategy is
different in that students are not considering multiple
examples, but are only considering the provided example
and also in that they are not realizing that the looks-false
problems are not good examples. Third, there is no
alternation in the model between the deductive and
inductive strategy.

Other Evidence for the Model

One source of additional evidence for the model comes
from the notes students wrote on the test handout provided.
In support of the claim in the model that students are not
pursuing a search for counter-examples and are not
recognizing that the looks-false problems are not good
examples, we looked 10 see how oflen subjects drew
another diagram in addition to the one provided. There
were only three cases out of 480 possible opportunities in
which a subject redrew a looks-false diagram. While this
was a NO problem, none of these diagrams were a counter-
example, that is, the goal still looked-true in the diagrams
the students drew. Two other instances of redrawing
occurred on a different looks-true problem apparently to
maich up comresponding points of potentially congruent
triangles.

We recently gave a version of the test in which we asked
students to give reasons for their answers, A large number
of the reasons students provide are idiosyncratic, along the
lines of “because I think so”. But there are also a number
of more sensible responses. The reasons students provide
for problems they answer YES are often informal proofs,
citing intermediate steps and/or theorems from their
geometry class. On problems they answer NO, we have yet

to find a single instance where the student provided a
counter-example. Instead, the most typical, non-
idiosyncratic reason for saying NO is that the student fails
to find a proof .

Conclusion

While these results provide some partial support for
Johnson-Laird's mental model theory, there are two key
differences from that theory. First, student reasoning was
not exclusively model-based (inductive), in fact, more
prominent in their reasoning is a deductive strategy to find
a proof. Second, while subjects solving syllogism
problems appear to consider multiple models, students in
this study showed little or no evidence of considering any
alternative models beyond the given one. This is
particularly surprising given that half of the provided
models (the looks-false items) did not accurately represent
the problem statement. From a pedagogical standpoint, this
study suggests that students need extra instruction both
1} in recognizing the applicability of the proof strategy
outside the standard context and 2) in understanding and
executing the inductive model-based stralegy.
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