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Abstract 

This paper presents a generalized scheme for modeling 
learning in simple and more complex tasks, and shows how 
such a model can be applied to optimizing conditions of 
practice to maximize some desired performance. To enable 
this optimal allocation of lesson time, this paper describes 
how to quantify the preferences of students using utility 
functions that can be maximized. This conventional game 
theoretic approach is enabled by specifying a mathematical 
model that allows us to compute expected utility of various 
student choices to choose the choice with maximal expected 
utility. This method is applied to several educational decisions 
that can benefit from optimization. 
Keywords: Memory; Economics; Practice; Computer-Aided 
Instruction. 

Introduction 
This paper describes a method for applying economic 
principles in order to allocate the scarce resource of learning 
time toward satisfying the unlimited need for education. To 
do this, we describe a model that decomposes learning into 
individual knowledge components (KCs) that possess some 
degree of independence from other skills (a “knowledge 
component” is any proficiency that can be learned). By 
assuming this independence, the model accounts for the 
unique effects of practice on specific KCs, with the goal of 
optimizing the benefit of practice. 

We do not argue that the model is a precise representation 
of all the processes involved in learning, but rather that it 
provides a heuristic tool to track observed strengths of KCs 
as a general function of practice, so that improvement over 
time and across KCs can be optimized. The model we will 
present, like similar models, is effective in capturing 
practice effects (Cen, Koedinger, & Junker, 2006). Further, 
it is interesting to note that the dynamic practice model 
presented here (based on the ACT-R computational model 
of declarative memory, Anderson & Lebiere, 1998) might 
be substituted with another model of cognition with only 
minimal modification to the approach. 

Although the model is a simplification of learning 
processes in most cases, this simplicity provides an 
important advantage in application. It allows closed form 
predictions of which learning events (LEs) might be 
assigned at what times to maximize learning (a “learning 
event” is any discrete interval over which a learned 
proficiency increases). Ultimately, it is explaining this 
collection of closed form predictions and recommendations 

that is the goal of this paper. 
To explain these concepts this paper has three parts. The 

first section on the dynamic practice model is largely a 
review of the ACT-R model of declarative memory. This 
section serves to orient the reader on the output functions 
(probability and latency of recall) that will be used later. 
The second section on structural models details how 
compound events can be modeled using the dynamic 
practice model. Compound events are important to consider 
when responses are not independent and are especially 
relevant for certain kinds of optimization situations (i.e. 
part-task to whole-task transfer of performance). The final 
section shows several ways the model built in the first half 
of the paper can be applied to optimizing knowledge 
component learning.  

Dynamic Practice Model 
To understand the quantitative model that will be used to 
predict and optimize learning, we will begin with the 
equations that predict probability of correct performance 
and latency of correct performance as a function of the 
activation strength of a KC. 

 
Probability Correct. The first dependent measure of KC 
performance is probability of correct response. Equation 1 
shows the standard Boltzmann equation (similar to the 
Rasch model used in item response theory), a logistic 
function that characterizes the threshold of correct 
performance (the level of activation at which performance is 
correct greater than 50% of the time) and distributional 
noise as τ and s respectively. Equation 1 describes a model 
of the probability of giving a correct response (p) for a given 
KC activation strength value (m) and the parameters 
described above.  

pm =
1

1 e
τ m

s +  
Equation 1 

 
Latency. A second dependent measure used to track KC 
performance is latency (labeled q in our model). Various 
sources suggest modeling latency with a Weibull 
distribution (Anderson & Lebiere, 1998; Logan, 1995). 
Such a Weibull distribution can be produced by using 
Equation 2 to represent latency as a function of F (which 
scales latency magnitude), m (memory strength) and a fixed 
cost (which is determined from data and captures the 
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minimum time necessary for perceptual and motor costs of 
responding). Logistic noise on m determines the shape of 
the aggregate Weibull function for a population of response 
latencies. 

qm = Fe m fixedtimecost +  Equation 2 

Knowledge Component Strength Function 
Given these two output functions, which correspond to two 
important ways of measuring KC performance, we can now 
elaborate how current m is computed as a function of the 
history of a student’s practice of a KC practice item across n 
prior LEs. Equation 3 shows this KC strength function. The 
history term, the final portion of Equation 3, is essentially 
described by three values, t, d and b, for each LE. The 
values for t represent the times since each past LE (the ages 
of each LE effect). The d values are the power law decay 
values for each LE. The b values scales the effect of each 
LE depending on the amount of learning for the LE (i.e. 
longer duration LEs and successful test LEs result in higher 
bs). To model history, the bt-d quantity is summed for each 
of the n learning events (LEs). The logarithm serves to scale 
the quantity from –∞ to ∞. This power law decay 
formulation was first explored by Anderson and Schooler 
(1991), who showed that it results in patterns of forgetting 
that match the relative need for performance in the 
environment. The β parameters, the first portion of Equation 
3, capture naturally occurring error when the model is fit to 
data from multiple students or multiple KCs. βs is the 
parameter that captures consistent error across KCs as a 
function of student. βi captures consistent error across 
students as a function of KC (i stands for item). Finally βsi 
captures the residual error for a specific KC and a specific 
student over multiple LEs.  

mn = βs βi + βsi + ln ∑
k=1

n
bktk

dk + 
 

Equation 3 

bstudy = g( )1 e v studyduration
 Equation 4 

Equation 4 shows how b can be computed as a function of 
the duration of a study LE (where v and g represent a 
growth constant and the maximum possible encoding 
respectively). This captures the notion that continuous time 
spent on a single KC has a diminishing effect on learning 
(Metcalfe & Kornell, 2003). Recent work by Pavlik (in 
press) has shown how this b scalar can be used to capture 
the learning difference between active correct responding 
and passive study. In such work, bsuccessfulretrieval is typically 
set at a constant, whereas bstudy varies as described in 
equation 4. This supposes two canonical forms of the LE: 
the “study LE,” which comes from unassessed study over 
some fixed period of time of a stimulus representing a KC, 
and the “test LE,” which comes from a variable-duration 
assessment of learning (test LEs are often followed by study 
opportunity and then are called “drill LEs”). Test LEs are 
interesting not only because they tend to lead to more 
learning than passive study (for correct responses), but also 
because they provide information about the current state of 
learning that can be used to implement knowledge tracing. 

Such knowledge tracing algorithms have changed form over 
different applications of the model. In the original version 
(Pavlik Jr., 2005), the distribution of residual βsi variance is 
used as the initial Bayesian prior for item strength and 
numerical integration is used to adjust this value after each 
practice by integrating the logistic distribution for 
correctness given the response of the student. In the more 
recent version, we have found that a more computationally 
inexpensive model that allows the simpler bsuccessfulretrieval 
parameter to capture the βsi variance works well in practice 
(Pavlik Jr. et al., 2007). Further, the latest version also uses 
a blatency parameter multiplied by each bsuccessfulretrieval 
parameter for each successful test. This blatency parameter is a 
natural log transform (with a scalar parameter) of the 
difference between qm (the predicted latency) and the 
latency data from the student. This creates a knowledge 
tracing model that assumes that faster responding means 
more learning has occurred. 

Equation 5 shows a more recent modification of the ACT-
R equations to capture the spacing effect, the spacing-by-
practice interaction, and the spacing-by-retention interval 
interaction (Pavlik Jr. & Anderson, 2005). This change says 
that the forgetting rate from any LE depends on the level of 
activation at the time of the LE. As modeled in Equation 5, 
when spacing between trials gets wider, activation decreases 
between presentations; decay is therefore less for each new 
presentation, and long-term probability of correct 
performance does not decrease as much. 

In Equation 5, the decay rate dk is calculated for the kth 
presentation of a KC item as a function of the activation mk-1 
at the time the presentation occurred (e.g., the decay rate for 
the 7th LE (t7) depends on the activation at the time of the 
7th LE, which is a function of the time from last exposure of 
the prior 6 LEs and their decay rates. It is important to note 
that since tks are ages (or differences between the current 
time and the time of the past trial), activation and decay 
depend on the current time as well as the number of LEs).  

dmk 1
= cemk 1 a +  Equation 5 

Anderson, Fincham, and Douglass (1997) found that 
Equation 3 could account for practice and forgetting during 
an experiment, but it could not fit retention data over long 
intervals. Because of this, they concluded that between 
sessions, the presence of intervening events erodes KCs 
more slowly than during an experimental session. This 
slower forgetting was modeled by scaling time as if it were 
slower outside the experiment. Forgetting is therefore 
dependent on the “psychological time” between 
presentations, rather than the true intersession interval. This 
factor is implemented by multiplying the portion of time 
that occurs between sessions by h (a scalar parameter for 
time) when calculating recall. This is done by subtracting 
h*total intersession time from each age (tk) in Equation 11 
(Pavlik Jr., 2005; Pavlik Jr. & Anderson, 2005). Because of 
this mechanism, time in the model is essentially a measure 
of destructive interfering events. The decay rate, therefore, 
is a measure of “fragility” of memories to the corrosive 
effect of these other events.  
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This model has the flexibility to capture many varieties of 
learning and practice effects. To further understand this 
flexibility, consider the issue of more implicit production 
rule (procedural) learning in contrast to explicit factual 
(declarative) learning. This distinction is supported by 
research from widely distinct theoretical perspectives such 
as ACT-R and connectionism and is supported by 
dissociable neural mechanisms (McClelland, McNaughton, 
& O'Reilly, 1995). We might wonder whether the equations 
just presented are adequate to capture both knowledge (and 
KC) types. Specifically, that work implies that declarative 
learning is both faster (reflected by a larger b parameter) 
and more easily forgotten (reflected by a larger d parameter) 
than procedural learning, and our model can clearly 
characterize these differences. 

Structural Model 
The structural level model assumes that few domains are 
made up of entirely independent KCs, as seems to be 
implied in the model we just presented. The word 
“structural” refers to the fact that, because of this lack of 
independence, the modeler must be concerned with the 
structure that links the multiple KCs and their association. 
In many domains, predictions of the probability of correct 
response and latency are derived from the strength of more 
than one underlying KC. For example, in studies of Chinese 
vocabulary learning, stimuli can be presented in one of four 
modes (Hanzi character, pinyin text, sound file, and English 
text). This results in 6 possible test LE types, two of which 
are English pinyin and Hanzi pinyin drill LEs 
[(stimulus) (response)]. In both of these cases, drill 
success depends not only on the strength of the link between 
the stimulus and response, but also on the ability to recall 
and produce the pinyin response. Because of this, 
performance for these pairs cannot be independent.  

Similarly, in work with a French gender identification 
task, words fall into gender categories based on spelling and 
semantic cues. For instance, words that end in –age are most 
often masculine in French, as in le fromage. Although each 
of these words might yield a correct response independent 
of the general rule (through recall), it is also obvious that all 
rule exemplars share a KC that can be used to respond to 
any items in a cue category (and in fact, it is this generalized 
responding, rather than exemplar-based recall, that we want 
to optimize). 

To deal with the fact that multiple KCs are required for 
these single skills, we will propose two basic structural 
models that account for this, each of which fits some 
possible learning tasks: the conjunctive structure and the 
disjunctive structure.  

Conjunctive Model 
In a conjunctive model, all component KCs must be active 
to produce a correct response. For instance, in the Chinese 
vocabulary work, probability of correct performance for 
each trial is captured by the probability of correct recall for 
both the response and the link between the stimulus and the 

response. Given this model, probability correct depends on 
both the strength of the link and the strength of the response 
in a conjunctive function: p(link) * p(response), such that 
both elements are necessary for a correct response. The 
more general form for the conjunction of 2 KCs is shown in 
Equation 6. Latency, on the other hand, is handled as the  
sum of the perceptual motor costs, the cost for recall of the 
link KC, and the cost for recall of the response KC. Not 
only does this structural model handle the pinyin response 
example above, but it also captures data showing that 
responding with a word in the native language should be 
easier than the recently learned foreign equivalent (e.g. 
Schneider, Healy, & Bourne, 2002). 

p( )KC1andKC2 = p( )KC1 p( )KC2  Equation 6 

Disjunctive Model 
The disjunctive model, in contrast, assumes that a trial can 
yield a correct response due to performance of any one of 
the two or more independent KCs. Often disjunctive models 
apply in a generalization situation where the domain 
contains specific KCs that apply for individual stimuli and 
general KCs that each apply to a group of stimuli, as in the 
French gender case. In this example, we can imagine that 
general group KCs control performance for “clusters,” the 
members of which can also be learned by rote. Given the 
example of a general (rule-based) and specific (rote) 
component controlling each performance, probability of 
correct skill performance depends on the strength of both 
general and specific components in a disjunctive function, 
p(general) + p(specific) * (1-p(general)), such that (for 
example) a student could classify a novel word on the sole 
basis of the general KC. The general form of this model is 
shown in Equation 7.  

p( )KC1orKC2 = p( )KC1 p( )KC2 ( )1 p( )KC1 +  
Equation 7 

Optimizing Learning 
The following procedures describe how one can use the 
model to compute optimal practice schedules. Usually, we 
assume that what is being optimized is gain in some long-
term measure of learning for a KC or multiple KCs. 
Although using long-term probability correct as a dependent 
measure works when we focus on optimizing some global 
aggregate task (like the optimal total number of practices for 
an item), we need a different utility function for more 
dynamic local scheduling (such as picking an item to 
practice next), in order to formalize preferences for the 
learning gains from different LE schedules. 

Utility Optimizations 
We propose to use Equation 8 as the utility function for a 
LE (where b controls the weight of the LE, t is the desired 
retention interval of the LE, and decay (d) is a function of 
the activation (m) at the time of practice). Most importantly, 
Equation 8 does not have the all-or-none property of 
probability correct (because probability correct is a sigmoid 
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function, it usually approaches 0 or 1). If we tried to use 
long-term probability correct as our measure of local utility, 
it would value practice most heavily when it comes near the 
transition from mostly incorrect performance to mostly 
correct performance across a sequence of test LEs (those 
LEs that fall on the intermediate part of the curve). This bias 
distorts the fact that we are ultimately more concerned with 
the minimum number of practice trials required to reach a 
certain long-term retention, not scheduling each practice 
trial so that it increases percent correct maximally. These 
goals are actually quite different since long-term percent 
correct gain from the next practice depends on nearness to  
long-term floor or ceiling performance, while utility gain is 
not affected by these bounds. Thus, our utility function 
maximizes the overall goal by valuing LEs independently of 
the order they occurred, considering only their unique 
contributions (a function of strength of encoding, recency, 
and the decay rate) to the long-term KC strength. 

u = bt dm Equation 8 
We will use Equation 8 as a cardinal utility function: e.g., 

a .2 increase in strength is half as good as a .4 increase in 
strength. One reason why this assumption is reasonable is 
because LEs contribute to KC strength in small increments 
and these increments are interchangeable, as illustrated in 
Equation 3. Using a cardinal utility function allows us to 
directly compare different possible spacings and KC 
presentation orders, to determine when learning is maximal, 
given learning history. Further, we assume that this utility 

equation satisfies the von Neumann and Morgenstern game 
theoretic axioms of completeness, transitivity, continuity 
and independence required for comparing expected utility 
lotteries (Von Neumann & Morgenstern, 1944).  

 
Practice Spacing Optimization (PSO). For each KC and 
each student, it is useful to decide when it would optimal to 
repeat a drill LE of that KC. Therefore, we are trying to 
schedule the LEs under conditions of allocative efficiency. 
In economics, allocative efficiency is a condition where 
costs (time spent learning) are allocated in a way that 
maximizes gains (increases in utility). Taking this parallel to 
learning theory, we search for the retention interval (for 
each KC) at which the expected rate of learning utility gain 
is maximal given a new LE. This is expressed in Equation 9, 
which calculates the maximum utility gain for a KC as a 
function of m (activation of that KC) and t (the target 
retention interval needed to compute g in Equation 8). All 
the other values are fixed parameters (bs = success LE 
weight from Equation 8 if the test LE is successful, bf = 
failure LE weight from Equation 8 for the study LE given as 
review, -d computed from the current m (needed with t, bf 
and bs to compute u values), pm and qm estimated for the test 
LE from Equations 1 and 2, and failure costs estimated from 
prior data). Because t and m are the only values that vary in 
finding the optimum spacing, we can solve for the optimal 
level of the one given the other. For example, if we know 
the desired retention interval, we can solve for the max of 
Equation 9 to solve for the optimal level of activation at 

dmk 1
= cemk 1 a + 

 
pm =

1

1 e
τ m

s + 

 qm = Fe m fixedtimecost + 

 
mn = βs βi + βsi + ln ∑

k=1

n
bktk

dk + 

max
pmn

n

max
pmn

expectedfrequency
n max( )PSOTask1

PSOTask2
, 

bstudy = g( )1 e v studyduration

u = bt d m

max
g( )1 e v studyduration

studyduration fixedcost + 

max
pmubs

( )1 pm ubf
 + 

pmqm ( )1 pm failurecost + 

max( )TwPSOw[ ]pppw qp qw + , 

 
Figure 1. Organizing diagram of the mathematical relationships in this paper. 
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which practice should occur. 
In practice, Equation 9 tends to suggest (for a drill 

procedure) that when failure costs for errors and error 
feedback are high, or success gains from correct responding 
are much greater than failure gains from feedback study, 
long-term gains in utility per second of practice will be 
highest when repetitions are scheduled so that test LE 
performance is maintained at a high probability. However, 
because the decay parameter can be large for an LE after a 
short spacing, some spacing is always preferred.  

max
pmubs

( )1 pm ubf
 + 

pmqm ( )1 pm failurecost +  
Equation 9 

 
earning Event Type Optimization. The above discussion L

assumes a single task (drill) which can be selected for each 
item. However, we can also propose other types of LEs and 
then compare them with the drill trial. For example, we 
could decide whether it was better to give a study LE alone 
or to give a drill LE( a test LE followed by a study LE when 
the test fails). To do this, Equation 10 shows how we can 
compare the learning rates for each trial type to determine 
the optimal next trial type for the student. This principle can 
be extended to compare any two tasks (e.g., tutored problem 
solving vs. untutored problem solving). This is typically 
used in combination with dynamic PSO calculations (when 
the PSOs in Equation 10 are computed as a function of the 
current time) to pick the optimal time for the optimal task. 

max( )PSOTask1
PSOTask2

,  Equation 10 
 

Part- to Whole-Task Transfer Optimization. For this 

, we model the effect of 
th

optimization, the question is whether to practice only single 
KC components of a whole skill (a conjunctive skill 
containing at least 2 KCs), only the whole skill or some 
mixture of the two types of practice. Imagine, for example, 
practicing simple algebra, and consider that a component of 
the whole task may be knowing the times tables (the low 
level component). In this case, the question is how much 
practice should be allocated to times tables practice before 
doing algebra practice (the high level component). We 
might expect that either spending no time on times tables or 
no time on algebra would likely result in poorer algebra 
performance than some mixture of these extremes, and that 
an optimal mixture would allow for the best possible algebra 
performance. Part to whole transfer optimization allows us 
to determine this optimal mixture. 

To compute this optimal mixture
e low level component LEs on the high level component 

learning rate. To do this, we must create an equation 
expressing whole task learning as a function of part task 
learning. Equation 11 (where subscripts w and p refer to 
whole and part task respectively) captures the notion that we 
are looking to maximize whole task time (Tw) * learning rate 
from an optimally spaced LE, which equals the total 
learning (this method assumes that all practice occurs at the 
PSO optimal point). Here we specify that PSO for a 

conjunctive task is a function of the strength of the whole 
(dependent) KC and the probability and latency estimates 
for the part task. By doing this, we have created a new 
version of the PSO, PSOw, that depends on the strength of 
both the part and whole task KCs. At the same time, we are 
only concerned with the learning of the whole task, so in 
practice, the t (retention interval) and g (utility gain) terms 
are not changed from the original PSO. This provides a 
mechanism whereby the higher probability and lower 
latency for a practiced part task increases the expected 
strength of the PSOw. 

max(TwPSOw[ ])pppw qp qw + ,  Equation 11 
Having this mechanism, we can comp eeded 

to
ute the time n

 train the part task to maximize its effects on whole task 
learning. In this case, it can be noted that totaltime-Tw is 
spent on the part task, with a learning rate of PSOp; these 
values, therefore, control pp

Practice Length Optimization 
nes the optimal duration 

 (probability correct) and qp 
(latency). This allows us to construct Equation 11, which 
represents total learning as a function of time spent on the 
whole task, multiplied by the learning rate for the whole 
task (which, because of the conjunctive response functions 
in the PSOw, is itself a function of time spent on the part 
task multiplied by the part task learning rate). Equation 11 
can then be solved for Tw where Tw≥0 and Tw≤totaltime.  

Practice length optimization determi
of a given LE. PLO relies on the fact that KC study for each 
LE has diminishing marginal returns as a function of time as 
shown in various studies (Metcalfe & Kornell, 2003; Pavlik 
Jr., in press). Equation 12 shows how this optimal study 
duration is found when the total LE weight score (from 
Equation 4) divided by the time spent studying is 
maximized. (Equation 12 assumes some minimum study 
duration greater than 0 to account for fixed costs.) 

max
g( )1 e v studyduration

studyduration fixedcost +  
Equa n 12 

Practice Quantity Optimization 
robability correct for 

tio

Practice quantity optimization uses p
long-term practice as a utility measure, then determines how 
many optimally spaced repetitions it takes to reach the point 
where probability gain per LE is maximal (the practice 
quantity optimization point is the pm value when Equation 
13 is maximized)  for each item being learned of a set of 
items. 

max
pmn

n  
Equation 13 

Figure 2 graphs Equati  1 rameter set in 
Pa

on 3 for the pa
vlik Jr. (2005, Experiment 4) where it was found that 11 

practices would have been optimal for each KC, as the 
maximum value of the probability correct/practices curve 
occurs at 11 repetitions. It is useful to note that the utility 
function should reflect the nature of our preferences for 
target knowledge. For example, if the need for one KC is 
higher than others, then getting it correct has a higher utility.  
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Figure 2. Practice quantity optimization. 

To imp  we can 
w

lement this in the model, for instance,
eight the utility function by the expected frequency of the 

item we are interested in. This captures the notion that it is 
twice as important to know a word when that word is used 
twice as frequently. Having weighted the utility functions, 
we could then determine a cutoff word frequency below 
which we will not be concerned with learning the word (this 
fixes the total amount of time we will need to spend 
learning the corpus in question).  

max
pmn

expectedfrequency
n  

Equation 14 

Because the weights represent our prefe ways 
of

Conclusion 
This paper was about a economic” method of 

cognitive model, 
th
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