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Background: Computer-based Cognitive Tutors
� A class of Intelligent Tutoring Systems (ITS)

� Support learning by doing

– Cognitive Tutor adds to limited individual attention that teacher

can provide

� Cognitive Principles of Instruction

– Make hidden thinking processes visible

– Build from students’ prior knowledge

� Source of power: The details of the cognitive student model

– Uncover subtleties of student learning

– Model subtleties in a running computer simulation

— the theory has to work
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ACT-R Based Tutors
� ACT-R� incorporates both connectionist and production system

features, to model human cognition.

� Longstanding R&D effort at Carnegie Mellon aimed at building

cognitive tutors on top of ACT-R, in:

– LISP

– Algebra

– Geometry

– � � �

– Statistics [in development]

� We are developing a methodology, using the Geometry tutor, to be

applied to the Statistics tutor.

�Anderson, J.R. (1993). Rules of the mind. Hillsdale NJ: Erlbaum.
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Underlying Cognitive Theory: ACT-R
� ACT-R models cognitive processes using two types of knowledge

representation.

� Declarative knowledge: things we are aware we know and can

usually describe to others. (e.g. facts)

– Fundamental units: chunks

– Arranged in a partially hierarchical connectionist network.

– “Activation” determines “recallability”; increases with use.

� Procedural knowledge: knowledge which we display in our behavior

but which we are not conscious of. (e.g. automated skills)

– Fundamental units: Production rules

– If/then rules for creating or modifying chunks.

– “Activation” of chunks and production rules determines whether

this rule is selected; increases with use.
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ACT-R Tutor Technology
� Student Model: Incorporates multiple strategies and typical student

misconceptions

Strategy 1: IF the goal is to solve a(bx+c) = d

THEN rewrite this as bx + c = d/a

Strategy 2: IF the goal is to solve a(bx+c) = d

THEN rewrite this as abx + ac = d

Misconception: IF the goal is to solve a(bx+c) = d

THEN rewrite this as abx + c = d

� Model Tracing: Follows student through their individual approach a

problem: context-sensitive instruction

� Knowledge Tracing: Assesses student’s knowledge growth:

individualized activity selection and pacing
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Successes and Problems
� Success: Cognitive Tutors dramatically enhance student learning�

– Controlled, full year classroom experiments replicated over 3

years in urban schools In Pittsburgh and Milwaukee

– 50–100% better on problem solving and representation use;

– 15–25% better on standardized tests (ITBS; SAT subset).

� Problem: NOT easy to get the details of the cognitive model right

� Solution: Data-driven improvements

– Collect volumes of data on student learning

– Fit reasonable approximations to the data quickly to sift through

many alternative models

�Koedinger, Anderson, Hadley, & Mark (1995). Intelligent tutoring goes to school in the

big city. In J. Greer (Ed.), Proc. 7th World Conf. Art. Int. & Ed. AACE, Charlottesville, NC
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Project: Data-Driven Improvement of Cognitive Model

� Initial cognitive model comes from analysis of student work, teachers

and teaching materials, experts, etc.

� But, e.g.: Rules of mathematics �� Rules of mathematical thinking

– Rules of thinking determine when, not just how

– Rules of thinking are induced from experience

� Content knowledge �� Pedagogical content knowledge

� Risks of “expert blindspot”
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Some Predictions of ACT-R
� Local independence: At appropriate granularity, execution of

different production rules is conditionally independent given person.

� Learning curves: The odds of making an error in decrease as a power

function of opportunity to apply (OTA) for each rule:

�
�� �
� � � �������

� Individual differences: Students start at different points on the

learning curve, but difficulty and rate of learning are only

rule-dependent, not student-dependent or task-dependent.

� Borne out for example, in by-hand iterations of the LISP tutor�

(next two slides)

�Anderson, Corbett, Koedinger, & Pelletier (1995). Cognitive tutors: Lessons learned. J.

Learning Sciences, 4, 167–207.
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LISP Tutor: Production Rule Analysis
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LISP Tutor: Improving Production Rules
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Statistical Model
� The probability of student � successfully performing rule � on the ���

opportunity to apply:

����

�� ����

� �����
�����

��

� ���� �

����	��� 	 
��� 
�������


� 	 ����	��� 	 
��� 
�������


Thus� a model of learning curves with individual differences will

look like the LLTM�

� We will fit error rates / learning curves from features of the cognitive

model and other skill / task covariates, not reproduce cognitive model.

�Draney, Pirolli & Wilson (1995). A measurement model for a complex cognitive skill. In

Nichols, et al. (eds.) Cognitively diagnostic assessment. Hillsdale, NJ: Erlbaum.

�Fischer, (1997). Unidimensional linear logistic Rasch models. In van der Linden & Ham-

bleton (Eds.) Handbook of modern IRT. New York: Springer-Verlag.
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Parametrization and Interpretation
� We reparametrize the model as follows:

logit���� � �� 	 �� 	 �� 
�������

– �� models individual differences at the beginning of tutoring.

– �� models the difficulty of rule �

– �� models the slope of the learning curve of rule �.

� Searching for cognitive model improvements amounts to adding and

deleting

– Covariates of rule/skill difficulty

– Covariates of rule/skill learning rate

that improve the fit of this model.

� Terms �� and �� 
������� may be repeated in the model for multiple

difficulty and learning factors
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Criteria For A “Good” Cognitive Model
� Simple

– Fewer production rules

– Fewer parameters in LLTM

� Accurate

– Correct grain size of knowledge acquisition

– Good fit of statistical model to data

� Interpretable

– Covariates should “make sense” as difficulty factors or learning

factors

– Combining covariates with existing model elements should

“make sense”
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Defining a Search Space
� In the Geometry Tutor, some candidate covariate factors include:

– Embeddedness

– Repeatedness

– Forward-Backward

– Polygon, Quadrilateral, Parallelogram, Rectangle

� Operators for adding and deleting covariates include

– Split (Skill, Factor) -> NewSkill

– Add (Skill, Factor) -> Skill + Hidden-Skill

– Merge (Skill, Factor) -> NewSkill

– Others: R-Split, Partial-Split, Partial-Add, Partial-Merge
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Operator Examples
� Split (Skill, Factor) -> NewSkill

Problem Skill OTA Factor

p1 PARALLELOGRAM-AREA 1 Alone

p1 CIRCLE-AREA 1 Embedded

p1 CIRCLE-CIRCUMF 1 Alone

p2 CIRCLE-AREA 2 Alone

p2 CIRCLE-AREA 3 Embedded

p2 CIRCLE-CIRCUMF 2 Embedded

� Problem NewSkill OTA

p1 PARALLELOGRAM-AREA-Alone 1

p1 CIRCLE-AREA-Embedded 1

p1 CIRCLE-CIRCUMF-Alone 1

p2 CIRCLE-AREA-Alone 1

p2 CIRCLE-AREA-Embedded 2

p2 CIRCLE-CIRCUMF-Embedded 2

� Split (Skill, Factor) -> NewSkill

– Construct NewSkill � Skill � Factor interaction

– Recalculate OTA’s ����� for NewSkill

– Replace old �� � �� �������� terms with new ��
�� � ��
�� �����

�
���� terms

� Add (Skill, Factor) -> Skill + Hidden-Skill

– Difficulty Factor: Add difficulty terms ����� for levels � of Factor.

– Learning Factor:

� Compute OTA’s ������ for Factor as a skill

� Add terms ����� � ����� ����������� to the model.
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Example Using Geometry Tutor Data

� 59 Students

� 15 Skills (Production Rules)

� 5431 Skill Opportunities; 92 per student on average

� Implemented model-search (DFS) / variable-building / model-fitting

(JML) in XLISP-STAT

� Compared models using BIC (Schwarz criterion�)

�� 
���likelihood� 	 
 
�����

�e.g. Kass & Raftery (1995). Bayes factors. JASA, 90, 773–795.
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Sample Model Space Search

Skill1

BIC� ��			

Skill1�Embed

BIC� �
���

Skill1�Embed

BIC� ��		

Skill1�Repeat

BIC� �
��


Skill1�Repeat

BIC� ��	�


Skill1�Emb�Rep

BIC� �
��	

Skill1�Emb�Rep

BIC� ��	��

Skill1�Emb�Rep

BIC� ��	
�

Skill1�Rep�Emb

BIC� �
���

��������������

�

�

�

�

���

�

�

�

�

���

���������������

Split(Skill1,Embed) Add(Skill1,Embed) Split(Skill1,Repeat) Add(Skill1,Repeat)

Split(Skill1�Emb,Rep) Add(Skill1�Emb,Rep) Add(Skill1�Emb,Rep) Add(Skill1�Rep,Emb)

	

�

�

�

�

�
��













�

�

�

�

�

�
��

19



Some Preliminary Conclusions

� So far we have “proof of concept”

� Statistical analysis can reveal hidden skills and hidden difficulty

factors not apparent through cognitive analysis

� What to do with them:

– New problems to support acquiring them

– New interfaces to make them “visible”

– New hint messages to cue learners to them
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Additional Complexities
� Drop Out

– From 4 to 254 observations per student

– Tutor drops student as each skill is mastered

– Currently treating dropout as MCAR; discounting by sample size

– Simple imputation: all-correct after dropout

– Better imputation: use tutor’s knowledge-tracing model

� Order and Gap Times

– Students encounter opportunities to apply skills in different order

– Gaps between OTA’s from under a minute to several days

– Our LLTM doesn’t account for this
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Future Work
� Model and Search Improvements:

– Better fitting: MML, CML, MCMC

– DFS: recognizing equivalent models

– Dropout and gap times

– Speed: Current example 3 hours

� Confirmation:

– Implement other operators

– Can we re-aquire current cognitive model from “textbook”

model?

� New Domains:

– Other parts of the Geometry Tutor

– Statistics Tutor [in development]
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