Finding improvements in student models for intelligent tutoring systems via variable selection for a linear logistic test model

Brian W. Junker Ken Koedinger

Carnegie Mellon University Carnegie Mellon University

brian@stat.cmu.edu koedinger@cmu.edu

Mario Trottini

Carnegie Mellon University

trottini@stat.cmu.edu

Research supported in part by NSF grant #LIS-97.20354 to Marsha C. Lovett (PI), Joel B. Greenhouse, Brian W. Junker, Ken Koedinger, and Robert E. Kass.

A Progress Report

•	Background: Computer-based Cognitive Tutors	3
•	Project: Data-Driven Improvement of Cognitive Model	8
•	Some Preliminary Conclusions	20
•	Future Work	23

Background: Computer-based Cognitive Tutors

- A class of *Intelligent Tutoring Systems* (ITS)
- Support learning by doing
 - Cognitive Tutor adds to limited individual attention that teacher can provide
- Cognitive Principles of Instruction
 - Make hidden thinking processes visible
 - Build from students' prior knowledge
- Source of power: The details of the cognitive student model
 - Uncover subtleties of student learning
 - Model subtleties in a running computer simulation
 - the theory has to work

ACT-R Based Tutors

- ACT-R* incorporates both connectionist and production system features, to model human cognition.
- Longstanding R&D effort at Carnegie Mellon aimed at building cognitive tutors on top of ACT-R, in:
 - LISP
 - Algebra
 - Geometry
 - _ ...
 - Statistics [in development]
- We are developing a methodology, using the Geometry tutor, to be applied to the Statistics tutor.

^{*}Anderson, J.R. (1993). Rules of the mind. Hillsdale NJ: Erlbaum.

Underlying Cognitive Theory: ACT-R

- <u>ACT-R</u> models cognitive processes using two types of knowledge representation.
- <u>Declarative knowledge</u>: things we are aware we know and can usually describe to others. (e.g. *facts*)
 - Fundamental units: chunks
 - Arranged in a partially hierarchical connectionist network.
 - "Activation" determines "recallability"; increases with use.
- <u>Procedural knowledge</u>: knowledge which we display in our behavior but which we are not conscious of. (e.g. *automated skills*)
 - Fundamental units: <u>Production rules</u>
 - If/then rules for creating or modifying chunks.
 - "Activation" of chunks and production rules determines whether this rule is selected; increases with use.

ACT-R Tutor Technology

• <u>Student Model</u>: Incorporates multiple strategies and typical student misconceptions

```
Strategy 1: IF the goal is to solve a(bx+c) = d
THEN rewrite this as bx + c = d/a

Strategy 2: IF the goal is to solve a(bx+c) = d
THEN rewrite this as abx + ac = d

Misconception: IF the goal is to solve a(bx+c) = d
THEN rewrite this as abx + c = d
```

- <u>Model Tracing</u>: Follows student through their individual approach a problem: context-sensitive instruction
- <u>Knowledge Tracing</u>: Assesses student's knowledge growth: individualized activity selection and pacing

Successes and Problems

- <u>Success</u>: Cognitive Tutors dramatically enhance student learning*
 - Controlled, full year classroom experiments replicated over 3 years in urban schools In Pittsburgh and Milwaukee
 - 50–100% better on problem solving and representation use;
 - 15–25% better on standardized tests (ITBS; SAT subset).
- <u>Problem</u>: NOT easy to get the details of the cognitive model right
- <u>Solution</u>: Data-driven improvements
 - Collect volumes of data on student learning
 - Fit reasonable approximations to the data quickly to sift through many alternative models

^{*}Koedinger, Anderson, Hadley, & Mark (1995). Intelligent tutoring goes to school in the big city. In J. Greer (Ed.), *Proc. 7th World Conf. Art. Int. & Ed.* AACE, Charlottesville, NC

Project: Data-Driven Improvement of Cognitive Model

- Initial cognitive model comes from analysis of *student work*, *teachers* and *teaching materials*, *experts*, etc.
- But, e.g.: Rules of mathematics \neq Rules of mathematical thinking
 - Rules of thinking determine when, not just how
 - Rules of thinking are induced from experience
- Content knowledge ≠ Pedagogical content knowledge
- Risks of "expert blindspot"

Some Predictions of ACT-R

- <u>Local independence</u>: At appropriate granularity, execution of different production rules is conditionally independent given person.
- <u>Learning curves</u>: The odds of making an error in decrease as a power function of opportunity to apply (OTA) for each rule:

$$\frac{p}{1-p} = \alpha \cdot (OTA)^{-\beta}$$

- <u>Individual differences</u>: Students start at different points on the learning curve, but difficulty and rate of learning are only rule-dependent, not student-dependent or task-dependent.
- Borne out for example, in by-hand iterations of the LISP tutor*
 (next two slides)

^{*}Anderson, Corbett, Koedinger, & Pelletier (1995). Cognitive tutors: Lessons learned. *J. Learning Sciences*, *4*, 167–207.

LISP Tutor: Production Rule Analysis

LISP Tutor: Improving Production Rules

Statistical Model

• The probability of student i successfully performing rule j on the t^{th} opportunity to apply:

$$\frac{p_{ijt}}{1 - p_{ijt}} = \alpha_{ijt} t_{ij}^{-\beta_{ijt}}$$

$$\Rightarrow p_{ijt} = \frac{\exp[a_{ijt} + b_{ijt} \log(t_{ij})]}{1 + \exp[a_{ijt} + b_{ijt} \log(t_{ij})]}$$

Thus* a model of learning curves with individual differences will look like the LLTM[†]

• We will fit error rates / learning curves from features of the cognitive model and other skill / task covariates, *not reproduce cognitive model*.

^{*}Draney, Pirolli & Wilson (1995). A measurement model for a complex cognitive skill. In Nichols, et al. (eds.) *Cognitively diagnostic assessment*. Hillsdale, NJ: Erlbaum.

[†]Fischer, (1997). Unidimensional linear logistic Rasch models. In van der Linden & Hambleton (Eds.) *Handbook of modern IRT*. New York: Springer-Verlag.

Parametrization and Interpretation

• We reparametrize the model as follows:

$$logit p_{ijt} = \theta_i + \alpha_j + \beta_j \log(t_{ij})$$

- $-\theta_i$ models individual differences at the beginning of tutoring.
- α_i models the difficulty of rule j
- β_i models the slope of the learning curve of rule j.
- Searching for cognitive model improvements amounts to adding and deleting
 - Covariates of rule/skill difficulty
 - Covariates of rule/skill learning rate
 that improve the fit of this model.
- Terms α_j and $\beta_j \log(t_{ij})$ may be repeated in the model for multiple difficulty and learning factors

Criteria For A "Good" Cognitive Model

• Simple

- Fewer production rules
- Fewer parameters in LLTM

Accurate

- Correct grain size of knowledge acquisition
- Good fit of statistical model to data

• Interpretable

- Covariates should "make sense" as difficulty factors or learning factors
- Combining covariates with existing model elements should "make sense"

Defining a Search Space

- In the Geometry Tutor, some candidate covariate factors include:
 - Embeddedness
 - Repeatedness
 - Forward-Backward
 - Polygon, Quadrilateral, Parallelogram, Rectangle
- Operators for adding and deleting covariates include
 - Split (Skill, Factor) -> NewSkill
 - Add (Skill, Factor) -> Skill + Hidden-Skill
 - Merge (Skill, Factor) -> NewSkill
 - Others: R-Split, Partial-Split, Partial-Add, Partial-Merge

Operator Examples

• Split (Skill, Factor) -> NewSkill

Problem	Skill	OTA	Factor	\rightarrow	Problem	NewSkill	OTA
p1	PARALLELOGRAM-AREA	1	Alone		p1	PARALLELOGRAM-AREA-Alone	1
p1	CIRCLE-AREA	1	Embedded		p1	CIRCLE-AREA-Embedded	1
p1	CIRCLE-CIRCUMF	1	Alone		p1	CIRCLE-CIRCUMF-Alone	1
p2	CIRCLE-AREA	2	Alone		p2	CIRCLE-AREA-Alone	1
p2	CIRCLE-AREA	3	Embedded		p2	CIRCLE-AREA-Embedded	2
p2	CIRCLE-CIRCUMF	2	Embedded		p2	CIRCLE-CIRCUMF-Embedded	2

- Split (Skill, Factor) -> NewSkill
 - Construct NewSkill = Skill × Factor interaction
 - Recalculate OTA's $t_{ij'}'$ for NewSkill
 - Replace old $\alpha_j + \beta_j \log(t_{ij})$ terms with new $\alpha'_{j'} + \beta'_{j'} \log(t'_{ij'})$ terms
- Add (Skill, Factor) -> Skill + Hidden-Skill
 - <u>Difficulty Factor</u>: Add difficulty terms $\gamma_{k(j)}$ for levels k of Factor.
 - Learning Factor:
 - * Compute OTA's $t_{ik(j)}$ for Factor as a skill
 - * Add terms $\alpha_{k(j)} + \beta_{k(j)} \log(t_{ik(j)})$ to the model.

Example Using Geometry Tutor Data

- 59 Students
- 15 Skills (Production Rules)
- 5431 Skill Opportunities; 92 per student on average
- Implemented model-search (DFS) / variable-building / model-fitting
 (JML) in XLISP-STAT
- Compared models using BIC (Schwarz criterion*)

$$-2\log(\text{likelihood}) + k\log(n)$$

^{*}e.g. Kass & Raftery (1995). Bayes factors. *JASA*, 90, 773–795.

Distribution of All Students' Opportunities to Apply Each Skill

Sample Model Space Search

Some Preliminary Conclusions

- So far we have "proof of concept"
- Statistical analysis can reveal *hidden skills* and *hidden difficulty* factors not apparent through cognitive analysis
- What to do with them:
 - New problems to support acquiring them
 - New interfaces to make them "visible"
 - New hint messages to cue learners to them

Additional Complexities

• Drop Out

- From 4 to 254 observations per student
- Tutor drops student as each skill is mastered
- Currently treating dropout as MCAR; discounting by sample size
- Simple imputation: all-correct after dropout
- Better imputation: use tutor's knowledge-tracing model

Order and Gap Times

- Students encounter opportunities to apply skills in different order
- Gaps between OTA's from under a minute to several days
- Our LLTM doesn't account for this

CIRCLE-CIRCUMFERENCE

Future Work

- Model and Search Improvements:
 - Better fitting: MML, CML, MCMC
 - DFS: recognizing equivalent models
 - Dropout and gap times
 - Speed: Current example 3 hours

• Confirmation:

- Implement other operators
- Can we re-aquire current cognitive model from "textbook" model?

• New Domains:

- Other parts of the Geometry Tutor
- Statistics Tutor [in development]

References

- Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cognitive tutors: lessons learned. *J. Learning Sciences*, *4*(2), 167–207.
- Corbett, A. T., Anderson, J. R. and O'Brien, A. T. (1995). Student modeling in the ACT programming tutor. Chapter 2 in Nichols, P. D., Chipman, S. F. and Brennan, R. L. (eds.) (1995). *Cognitively diagnostic assessment*. Hillsdale, NJ: Lawrence Erlbaum Associates.
- Draney, K. L., Pirolli, P. and Wilson, M. (1995). A measurement model for a complex cognitive skill. Chapter 5 in Nichols, P. D., Chipman, S. F. and Brennan, R. L. (eds.) (1995). *Cognitively diagnostic assessment*. Hillsdale, NJ: Lawrence Erlbaum Associates.
- Fischer, G. H. (1997). Unidimensional linear logistic Rasch models. Chapter 13, pp. 221–224 in van der Linden, W. J. and Hambleton, R. K. (eds.) (1997). *Handbook of modern item response theory*. New York: Springer-Verlag.
- Lovett, M. C. and Greenhouse, J. B. (1999). Applying cognitive theory to statistics instruction. Submitted for publication. Also available at http://lib.stat.cmu.edu/cmu-stats/tr/ as CMU Statistics Tech. Rept. #689.