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Background: Computer-based Cognitive Tutors
A class of Intelligent Tutoring Systems (ITS)
Support learning by doing

— Cognitive Tutor adds to limited individual attention that teacher
can provide

Cognitive Principles of Instruction

— Make hidden thinking processes visible

— Build from students’ prior knowledge

Source of power: The details of the cognitive student model
— Uncover subtleties of student learning

— Model subtleties in a running computer simulation
— the theory has to work



ACT-R Based Tutors

e ACT-R* incorporates both connectionist and production system
features, to model human cognition.

e Longstanding R&D effort at Carnegie Mellon aimed at building
cognitive tutors on top of ACT-R, In:
— LISP
— Algebra
— Geometry

— Statistics [in development]

e \We are developing a methodology, using the Geometry tutor, to be
applied to the Statistics tutor.

* Anderson, J.R. (1993). Rules of the mind. Hillsdale NJ: Erlbaum.



Underlying Cognitive Theory: ACT-R

e ACT-R models cognitive processes using two types of knowledge
representation.

e Declarative knowledge: things we are aware we know and can
usually describe to others. (e.g. facts)

— Fundamental units: chunks

— Arranged in a partially hierarchical connectionist network.
— “Activation” determines “recallability”; increases with use.

e Procedural knowledge: knowledge which we display in our behavior
but which we are not conscious of. (e.g. automated skills)

— Fundamental units: Production rules
— If/then rules for creating or modifying chunks.

— “Activation” of chunks and production rules determines whether
this rule is selected; increases with use.




ACT-R Tutor Technology

e Student Model: Incorporates multiple strategies and typical student
misconceptions

Strategy 1: IF the goal is to solve a(bx+c) = d
THEN rewrite this as bx + ¢ = d/a

Strategy 2: IF the goal is to solve a(bx+c) = d
THEN rewrite this as abx + ac = d

Misconception: IF the goal is to solve a(bx+c) = d
THEN rewrite this as abx + ¢ = d

e Model Tracing: Follows student through their individual approach a
problem: context-sensitive instruction

e Knowledge Tracing: Assesses student’s knowledge growth:
individualized activity selection and pacing




Successes and Problems

e Success: Cognitive Tutors dramatically enhance student learning™

— Controlled, full year classroom experiments replicated over 3
years in urban schools In Pittsburgh and Milwaukee

— 50-100% better on problem solving and representation use;
— 15-25% better on standardized tests (ITBS; SAT subset).

e Problem: NOT easy to get the details of the cognitive model right

e Solution: Data-driven improvements
— Collect volumes of data on student learning

— Fit reasonable approximations to the data quickly to sift through
many alternative models

*Koedinger, Anderson, Hadley, & Mark (1995). Intelligent tutoring goes to school in the
big city. In J. Greer (Ed.), Proc. 7th World Conf. Art. Int. & Ed. AACE, Charlottesville, NC



Project: Data-Driven | mprovement of Cognitive M odel

e Initial cognitive model comes from analysis of student work, teachers
and teaching materials, experts, etc.

e But, e.g.: Rules of mathematics # Rules of mathematical thinking

— Rules of thinking determine when, not just how

— Rules of thinking are induced from experience
e Content knowledge # Pedagogical content knowledge

e Risks of “expert blindspot”



Some Predictions of ACT-R

e Local independence: At appropriate granularity, execution of
different production rules is conditionally independent given person.

e Learning curves: The odds of making an error in decrease as a power
function of opportunity to apply (OTA) for each rule:

p _
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e Individual differences: Students start at different points on the
learning curve, but difficulty and rate of learning are only
rule-dependent, not student-dependent or task-dependent.

e Borne out for example, in by-hand iterations of the LISP tutor™
(next two slides)

* Anderson, Corbett, Koedinger, & Pelletier (1995). Cognitive tutors: Lessons learned. J.
Learning Sciences, 4, 167-207.



Mean Error Rate

LISP Tutor: Production Rule Analysis
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LISP Tutor: Improving Production Rules
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Statistical Model

e The probability of student i successfully performing rule j on the ¢t"
opportunity to apply:

Dijt —Bijt
1 —pije it

explaij: + biji log(ts;)]
1+ exp[azjt =+ bz’jt log(tij)]

= Dijt —

Thus™® a model of learning curves with individual differences will
look like the LLTMT

e We will fit error rates / learning curves from features of the cognitive
model and other skill / task covariates, not reproduce cognitive model.

*Draney, Pirolli & Wilson (1995). A measurement model for a complex cognitive skill. In
Nichols, et al. (eds.) Cognitively diagnostic assessment. Hillsdale, NJ: Erlbaum.

TFischer, (1997). Unidimensional linear logistic Rasch models. In van der Linden & Ham-
bleton (Eds.) Handbook of modern IRT. New York: Springer-Verlag.
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Parametrization and Interpretation

e \We reparametrize the model as follows:
|Ogitpijt = (9@ + Q + Bj log(tij)

— 6, models individual differences at the beginning of tutoring.
— «a; models the difficulty of rule 5
— 3, models the slope of the learning curve of rule j.

e Searching for cognitive model improvements amounts to adding and
deleting

— Covariates of rule/skill difficulty
— Covariates of rule/skill learning rate

that improve the fit of this model.

e Terms «; and 3 log(¢;;) may be repeated in the model for multiple
difficulty and learning factors
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Criteria For A ““Good” Cognitive Model

e Simple
— Fewer production rules

— Fewer parameters in LLTM

e Accurate
— Correct grain size of knowledge acquisition

— Good fit of statistical model to data

e Interpretable

— Covariates should “make sense” as difficulty factors or learning
factors

— Combining covariates with existing model elements should
“make sense”
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Defining a Search Space

¢ In the Geometry Tutor, some candidate covariate factors include:
— Embeddedness
— Repeatedness
— Forward-Backward

— Polygon, Quadrilateral, Parallelogram, Rectangle

e Operators for adding and deleting covariates include
— Split (Skill, Factor) -> NewSkill
— Add (Skill, Factor) -> Skill + Hidden-Skill
— Merge (Skill, Factor) -> NewSkill
— Others: R-Split, Partial-Split, Partial-Add, Partial-Merge
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Operator Examples

e Split (Skill, Factor) -> NewSkill

Problem Skill OTA Factor Problem NewSkill OTA
pl PARALLELOGRAM-AREA 1 Alone pl PARALLELOGRAM-AREA-Alone 1
pl CIRCLE-AREA 1 Embedded pl CIRCLE-AREA-Embedded 1
pl CIRCLE-CIRCUMF 1 Alone pl CIRCLE-CIRCUMEF-Alone 1
p2 CIRCLE-AREA 2 Alone p2 CIRCLE-AREA-Alone 1
p2 CIRCLE-AREA 3 Embedded p2 CIRCLE-AREA-Embedded 2
p2 CIRCLE-CIRCUMF 2 Embedded p2 CIRCLE-CIRCUMF-Embedded 2

e Split (Skill, Factor) -> NewSkill

— Construct NewSkill = Skill X Factor interaction

— Recalculate OTA's t;;, for NewSkill
— Replace old o 4 5 log(ti;) terms with new o, + 37, log(t;;,) terms

e Add (Skill, Factor)

— Learning Factor:

* Compute OTA’s ¢;,(;) for Factor as a skill

-> Skill + Hidden-Skill
— Difficulty Factor: Add difficulty terms ~y; ;) for levels k of Factor.

* Add terms ay(;y + Br(j) log(tik(,)) to the model.
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Example Using Geometry Tutor Data
e 59 Students
e 15 Skills (Production Rules)
e 5431 Skill Opportunities; 92 per student on average

e Implemented model-search (DFS) / variable-building / model-fitting
(JML) in XLISP-STAT

e Compared models using BIC (Schwarz criterion™)

—21og(likelihood) + k log(n)

*e.9. Kass & Raftery (1995). Bayes factors. JASA, 90, 773-795.
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Sample Model Space Search

Skill1

BIC= —2999

=

Split(Skill1,Embed) Add(Skill1,Embed)

Skilll x Embed
BIC= —3004

Skill1+Embed
BIC= —2996

Split(Skill1 x Emb,Rep) Add(Skill1xEmb,Rep)

Skill1 xEmbxRep
BIC= —3029

Skilll x Emb-+Rep
BIC= —2975
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Split(Skill1,Repeat) Add(Skilll,Repeat)

Skilll x Repeat
BIC= —3016

Skill1+Repeat
BIC= —2973

LN N

Add(Skill1+-Emb,Rep) Add(Skill1x Rep,Emb)

Skill1+Emb+Rep
BIC= —2964

Skill1 x Rep-+Emb
BIC= —3010




Some Preliminary Conclusions
e S0 far we have “proof of concept”

e Statistical analysis can reveal hidden skills and hidden difficulty
factors not apparent through cognitive analysis
e \What to do with them:
— New problems to support acquiring them
— New interfaces to make them “visible”

— New hint messages to cue learners to them
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Additional Complexities

e Drop Out

— From 4 to 254 observations per student

— Tutor drops student as each skill is mastered

— Currently treating dropout as MCAR; discounting by sample size
— Simple imputation: all-correct after dropout

— Better imputation: use tutor’s knowledge-tracing model

e Order and Gap Times

— Students encounter opportunities to apply skills in different order
— Gaps between OTA’s from under a minute to several days
— Our LLTM doesn’t account for this
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Error Rate
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Future Work

e Model and Search Improvements:

— Better fitting: MML, CML, MCMC
— DFS: recognizing equivalent models
— Dropout and gap times

— Speed: Current example 3 hours

e Confirmation:

— Implement other operators
— Can we re-aquire current cognitive model from “textbook”
model?

e New Domains:

— Other parts of the Geometry Tutor
— Statistics Tutor [in development]
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