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C H A P T E R C H A P T E R 

Abstract

Learning to think is about transfer. The scope of transfer is essentially a knowledge representation 
question. Experiences during learning can lead to alternative latent representations of the acquired 
knowledge, not all of which are equally useful. Productive learning facilitates a general representation that 
yields accurate behavior in a large variety of new situations, thus enabling transfer. This chapter explores 
two hypotheses. First, learning to think happens in pieces and these pieces, or knowledge components, 
are the basis of a mechanistic explanation of transfer. This hypothesis yields an instructional engineering 
prescription: that scientific methods of cognitive task analysis can be used to discover these knowledge 
components, and the resulting cognitive models can be used to redesign instruction so as to foster 
better transfer. The second hypothesis is that symbolic languages act as agents of transfer by focusing 
learning on abstract knowledge components that can enhance thinking across a wide variety of situations. 
The language of algebra is a prime example and we use it to illustrate (1) that cognitive task analysis can 
reveal knowledge components hidden to educators; (2) that such components may be acquired, like first 
language grammar rules, implicitly through practice; (3) that these components may be “big ideas” not 
in their complexity but in terms of their usefulness as they produce transfer across contexts; and 
(4) that domain-specific knowledge analysis is critical to effective application of domain-general 
instructional strategies.

Key Words: computational modeling, language and math learning, educational technology, transfer, cogni-
tive tutors, cognitive task analysis, in vivo experiments

Learning to ! ink: Cognitive 
Mechanisms of Knowledge Transfer

Kenneth R. Koedinger and Ido Roll

“Learning to think” is diff erent from “learning” 
in that it implies that a learner achieves an increase 
in more general intellectual capability, rather than 
just in more specifi c domain content. Learning to 
think implies more than learning English, learning 
math, learning history, or learning science. In other 
words, learning to think implies transfer (Barnett 
& Ceci, 2002; Gick & Holyoak, 1983; Singley & 
Anderson, 1989). Is it possible to “learn to think”; 
that is, is general transfer possible? A simple “yes 
or no” answer is not to be expected. A substantial 
amount of transfer can be achieved, especially with 
scientifi cally designed instruction, but full general 

transfer is a tempting dream, not a practical real-
ity. It is not possible to teach children how to be 
generally intelligent, experts in all domains, without 
specifi c instruction in some domains. But dreams 
can help inspire action, and the action we need is 
research and development to understand human 
learning capacities and constraints and to design 
and evaluate instruction that achieves as-general-
as-possible transfer. Progress is required not only 
in domain-general cognitive and learning science 
but also in domain-specifi c analysis of the content 
domains across and within which we hope to see 
general transfer.

40
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Components of Learning to ! ink 
and How Symbolic Languages Help

One way to learn to think is learning languages 
with which to think more powerfully. ! e obvious 
case is learning a natural language, like English. 
It seems uncontroversial that a good part of what 
makes human thinking so powerful is our capabil-
ity for language (cf. Tomasello, 2000; see Gleitman 
& Papafragou, Chapter 28). ! e spoken form of 
natural language not only facilitates communica-
tion and collaborative thinking but also provides a 
medium for reasoning and logical thinking (Polk & 
Newell, 1995). ! e written form further facilitates 
collaborative endeavors over wide stretches of time 
and space and is also arguably a vehicle for improv-
ing thought. Anyone who has written a manuscript, 
like this one, is likely to have had the experience 
that the writing process changes one’s thinking and 
yields a better product than spontaneous speech 
would have. Clearly, language-learning activities are 
a huge part of learning to think and a major respon-
sibility of our educational systems.

But natural languages like English are not the 
only languages we use to enhance our thinking. By 
“language,” in a more general sense, we mean a cul-
turally transmitted symbolic system including any 
commonly used form of external representation. 
Examples include symbolic algebra and other math-
ematical notation systems (e.g., calculus notation, 
probability and statistics notation), Cartesian graph-
ing and other scientifi c visualization techniques, and 
computer programming languages, including the 
huge and growing number of end-user program-
ming languages (e.g., functions in Excel or html). 
We create external symbols (including pictures and 
diagrams; see Hegarty & Stull, Chapter 31) to make 
abstract ideas more available to our brains’ power-
ful perceptual processing and learning mechanisms 
(e.g., Goldstone, Landy, & Son, 2010; Koedinger 
& Anderson, 1990). ! ese forms make the abstract 
concrete and leverage thinking by allowing easier 
processing of the abstract ideas (e.g., Larkin & 
Simon, 1987).

In this chapter we explore two themes. ! e 
fi rst theme is the idea that external symbol systems 
(languages in the broad sense) greatly enhance the 
power of our thinking and learning. ! ey organize 
the changes internal to the mind that are necessary 
to implement learning and transfer (cf. Goldstone 
et al., 2010; Novick, 1990).

! e second theme is that learning grows in 
“pieces” and thinking involves using those pieces in 

new combinations. ! e amazing fl exibility humans 
can exhibit in thinking and learning would not be 
possible if it were not for their extendable and reus-
able base of knowledge. Many pieces of knowledge 
have analogs or near analogs in external symbol 
systems, such as knowledge of English letters and 
words, but many do not. Such “knowledge compo-
nents” (Koedinger, Corbett, & Perfetti, 2010) can 
include categories for which there is no word (e.g., a 
category of objects my 2-year-old calls “phones” but 
which includes remote controls and small blocks of 
wood). ! ey can be “pragmatic reasoning schemas” 
(Cheng & Holyoak, 1985; see Evans, Chapter 8) 
that support correct reasoning about certain kinds 
of social rules, but not about abstract logical rules. 
! ey can be the “intuitions,” heuristics, or abstract 
plans that guide our search, decision making, and 
discoveries. ! ey can be metacognitive or learning 
strategies, like knowing to try to “self-explain” a 
worked example (Chi, Bassok, Lewis, Reimann, & 
Glaser, 1989) or to cover up one’s notes and try to 
recall what’s there while studying (cf. Pashler et al., 
2007).

! is knowledge component view is supported 
by researchers who have done detailed cognitive 
analysis of complex real-world learning domains, 
such as learning physics (diSessa, 1993; Minstrell, 
2001; VanLehn, 1999), mathematics (Koedinger 
& Corbett, 2006), legal argumentation (Aleven, 
2006), or programming (e.g., Pirolli & Anderson, 
1985). ! e view is also supported by attempts to 
create large-scale computational models of com-
plex human reasoning and problem solving (e.g., 
Anderson & Lebiere, 1998; Newell, 1990). With 
respect to transfer, this view echoes the classic “iden-
tical elements” conception of transfer (! orndike & 
Woodworth, 1901) but is enhanced by advances 
in cognitive theory and computational modeling 
(cf. Singley & Anderson, 1989). ! e identical ele-
ments, or units of transfer, are no longer stimulus-
response links but are latent representations of 
components of tasks or their underlying structure. 
It is not suffi  cient to provide behavioral task (stimu-
lus-response) descriptions of such elements; rather, 
we need a language of abstraction for specifying 
cognitive representations that will often general-
ize over, or be applicable across, many situations. 
In computational modeling terms, there need to be 
“variables” (or some functional equivalent) in the 
formalism or language used (by cognitive scientists) 
to represent general cognitive elements (see Doumas 
& Hummel, Chapter 5).
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In this chapter, we begin by elaborating the 
knowledge component view on transfer. We then 
provide examples of identifying and modeling 
knowledge components in algebra and show how 
these models can be tested in classroom stud-
ies. ! ese studies have also identifi ed the missing 
components—missing both in terms of students 
lacking the relevant knowledge, as well as cognitive 
scientists overlooking these pieces in their puzzle 
of the domain. We then argue that these missing 
components are intimately tied with the symbolic 
forms of the language itself. Next, we demonstrate 
how supporting language acquisition helps students 
achieve better transfer. Last, we discuss various 
aspects of applying laboratory-derived instructional 
principles in the classroom, and we review methods 
for knowledge component (or cognitive model) dis-
covery from data. ! e conclusion raises open ques-
tions about the insuffi  ciently understood interplay 
between language-mediated and non-language-me-
diated processes in transfer and learning to think.

Knowledge Components as 
Carriers of Transfer

Questions of transfer of learning have been 
addressed by a number of contemporary cognitive 
scientists (e.g., Barnett & Ceci, 2002; Singley & 
Anderson, 1989; see Bassok and Novick, Chapter 
21). Much discussion has been around issues of 
what is “far” transfer, how much transfer instruc-
tional improvements can achieve, and what kind of 
instruction does so. A key observation is that when 
transfer occurs some change in the mind of the stu-
dent is carrying that transfer from the instructional 
setting to the transfer setting. It might be a new 
skill, a general schema, a new mental model, better 
metacognition (see McGillivray et al., Chapter 33), 
better learning strategies, a change in epistemologi-
cal stance, new motivation or disposition toward 
learning, or a change in self-beliefs about learning or 
social roles.1 In the Knowledge-Learning-Instruction 
(KLI) Framework, Koedinger et al. (2010) use the 
term “knowledge component” to include all these 
possible variations and provide a taxonomy of kinds 
of knowledge components. Knowledge components 
are the carriers of transfer.

To better understand how knowledge compo-
nents act as agents of transfer, one should identify 
the breadth or scope of applicability of those knowl-
edge components in tasks, problems, or situations 
of interest. In other words, in how many diff erent 
kinds of situations does the acquired knowledge 

apply, and what are its boundaries? Understanding 
the answer to this question allows us to design 
instruction that better supports transfer. For exam-
ple, instruction on computer programming might 
yield knowledge that applies (a) only to program-
ming tasks that are quite similar to those used in 
instruction, (b) to any programming task involving 
the same programming language, (c) to program-
ming in other languages (e.g., Singley & Anderson, 
1989), or (d) to reasoning tasks outside of program-
ming, like trouble-shooting or “debugging” a set of 
directions (e.g., Klahr & Carver, 1988).2

! ese two questions suggest a scientifi c path 
toward achieving more general transfer or learning 
to think. A key step along that path is identifying 
those knowledge components that are as broad or 
as general as possible in their scope of application. 
Take, for example, the algebraic task of combining 
like terms (e.g., 3x + 4x). Students may learn this 
skill as a mental equivalent of something like “com-
bine each number before each x.” ! is encoding 
produces correct results in some situations, but not 
all. It is overly specifi c in that it does not apply to 
the cases like x + 5x where the coeffi  cient of x (1) is 
not visually apparent. It might also yield –3x + 4x as 
–7x, if the mental skill encodes “number before” too 
specifi cally as a positive number rather than more 
generally as a signed number (e.g., Li et al., 2010). 
Acquired knowledge may also produce incorrect 
responses by being overly general. For example, if 
students have encoded “number before each x” too 
generally, they may convert 3(x + 2) + 4x to 7x + 2.

Big Ideas and Useful Ideas
In the search for transfer-enabling knowledge 

components, special attention has been given to the 
notion of “big ideas,” which has been a rallying cry 
in much educational reform, particularly in math-
ematics. It is worth refl ecting on what the “big” in 
big idea means. It is often used in contrast with 
facts, procedures, or skills and associated with con-
cepts, conceptual structures, or mental models. For 
instance, Schoenfeld (2007, p. 548) makes a con-
trast between “long lists of skills” and “big ideas,” 
and Papert (2000, p. 721) characterizes school as “a 
bias against ideas in favor of skills and facts.”

A particularly tempting example of this is the 
general problem-solving strategies of the sort math-
ematician George Polya (1957) identifi ed in his 
refl ections on his own mathematics thinking and 
teaching. Experimental eff orts to investigate the 
eff ect of instruction designed to teach such general 
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problem-solving strategies have met with limited suc-
cess. Post and Brennan (1976), for instance, found 
no improvement from teaching general problem-
solving heuristics such as “determine what is given” 
and “check your results.” Schoenfeld (1985) devel-
oped more specifi c versions of Polya’s heuristics, and 
Singley and Anderson’s (1989, p. 231) analysis of 
that study suggests an important reason for caution 
in pursuing the “big idea” approach. ! ey noted 
that Schoenfeld’s heuristics that led to transfer were 
ones that indicated when the heuristic should be 
applied, such as “If there is an integer parameter, 
look for an inductive argument.” Other heuristics, 
such as “Draw a diagram if at all possible,” did not 
indicate conditions of applicability and did not lead 
to transfer. Students can learn such heuristics, in the 
sense that they can repeat them back, but they do 
not get any use out of them because it is not clear 
when they apply. So a fi rst caution is that sometimes 
an apparently as-general-as-possible knowledge 
component may not lead to broad transfer because 
it is too vague to be useful.

Just because a student knows general strategies 
for working backward, or problem decomposition, 
does not mean that he or she can successfully exe-
cute those strategies in a specifi c context. Haverty, 
Koedinger, Klahr, and Alibali (2000) provide an 
informative example. ! ey investigated college stu-
dents ability to induce functions, like “y = x*(x – 
1)/2,” from tables of x-y pairs, like {(2, 1) (3, 3) (4, 
6) (5, 10)}. ! ey found that all students engaged in 
working backward by performing operations on the 
y values, such as dividing each by the correspond-
ing x value to produce {.5 1 3/2 2}. However, those 
who succeeded were diff erentiated from those that 
did not by recognizing that this pattern is linear 
(increasing by ½). In other words, it was specifi c fl u-
ency in number sense that distinguished students, 
not general problem-solving skills that all students 
manifest. ! us, a second caution regarding the 
search for big ideas to yield far transfer is that many 
general concepts or strategies require the learner to 
obtain domain-specifi c knowledge in order to apply 
those general strategies eff ectively.

A third caution is that some general problem-
solving or critical-thinking skills may be relatively 
easy to learn, in the sense that they are generally 
acquired without any formal schooling. Lehrer, 
Guckenberg, and Sancilio (1988) taught third grad-
ers a general “problem decomposition heuristic” as 
part of an intensive 12-week curriculum surround-
ing the LOGO programming language. Although 

they found evidence of transfer of some big ideas, 
they found no evidence of improvement in gen-
eral problem decomposition as measured by puzzle 
tasks. It may be that many children acquire the rel-
evant problem decomposition skills through prior 
experiences. Another example can be found in the 
self-explanation literature. One consistent and sur-
prising result is that merely prompting students to 
self-explain improves learning, even without teach-
ing students how to self-explain productively (Chi 
et al., 1989; Siegler, 2002). While improving the 
dispositions toward self-explanation is an important 
goal, it seems that the skill of knowing how to self-
explain does not need much support.

! e temptation to seek really big ideas is strong 
and these cautions are nuanced. Statements like the 
following are indicative: A recent National Academy 
of Education paper (2009) called for better assess-
ment of “skills such as adapting one’s knowledge to 
answer new and unfamiliar questions.” ! is state-
ment and the surrounding text, which is a call for 
assessments to measure “higher order, problem-
solving skills,” implies that there is a general skill 
of “adapting one’s knowledge” that can be acquired, 
measured, and applied generally. It is quite unlikely, 
however, that there is a single, general skill of adapt-
ing knowledge. Adapting one’s knowledge is not 
a single skill, but, more likely, a complex set of 
skills that have domain-specifi c ties—some adapta-
tions come easily, when the domain knowledge is 
in place, and others do not. ! ere may be general 
skills that students can acquire for better adapting 
knowledge, but until we have identifi ed assessments 
that can measure them, we should not assume that 
they exist.

! e search for big ideas assumes that some ideas 
are sophisticated enough to be applied across a wide 
range of domains and tasks. But focusing on the 
complexity or sophistication of the idea itself is not 
suffi  cient if we are aiming for more eff ective transfer 
and learning to think. ! e issue is not the size of the 
idea itself, but rather the size of what the idea opens 
up for a learner. More precisely, it is about the size of 
the productive reuse of the idea. Some sophisticated 
concepts indeed get a lot of reuse, but so do some 
simpler facts, associations, or procedural knowledge 
components. For instance, knowing the phoneme 
associated with the letter “s” is not big in the sense 
of the idea being big—this fact is a small and simple 
one. However, it is big in the sense of its reuse. As 
children acquire it and the 36 or so phonemes asso-
ciated with the 26 letters,3 a whole new world opens 
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up for them. ! ey can use and reuse this relatively 
small set of knowledge components to identify 
(decode and pronounce) a much larger set of words 
in text. ! ey can thus read words that they have 
not read before. Many will be words they already 
know from spoken language and some will be new 
words, which they can begin to acquire in con-
text. Furthermore, this decoding capability (made 
possible by this small set of grapheme->phoneme 
knowledge components) greatly increases the learn-
ing capabilities of the child—he or she can now 
learn by reading in addition to listening, watching, 
and doing.4 ! us, rather then simply search for big 
ideas, we should be searching for useful ideas.

Small-big ideas are knowledge components that 
may be quite specifi c but are big in the scope of their 
use—they get reused in many contexts. ! e notion 
is similar to Gagne’s “vertical transfer” in its empha-
sis on components that can combine with others 
to produce broader competency. However, unlike 
vertical transfer, small-big ideas are not limited to 
within-domain transfer. Small-big ideas may extend 
beyond their nominal domain to improve perfor-
mance or learning in other domains. Phonemes are 
nominally in the reading domain, but acquisition 
of them improves learning in history, science, math, 
and so on—all domains in which reading is part 
of learning. Similarly, the distributive property is 
nominally in the algebra domain, but acquisition 
of it (and the cluster of skills associated with it) sup-
ports performance and learning in physics, chemis-
try, engineering, statistics, computer science, and so 
on—in the STEM disciplines generally.

Testing Knowledge Component Models 
in Instructional Contexts

Beginning in the 1980s, John Anderson and col-
leagues have put the series of ACT theories of cog-
nition (e.g., Anderson, 1983) to test through the 
development of a brand of intelligent tutoring sys-
tems, called Cognitive Tutors (Anderson, Corbett, 
Koedinger, & Pelletier, 1995). Since then the work has 
greatly expanded in its dissemination—over 500,000 
students a year use the Cognitive Tutor Algebra 
course (e.g., Ritter, Anderson, Koedinger, & Corbett, 
2007)—and in its scope—Cognitive Tutors and vari-
ations thereof have been created for a wide variety of 
content, including intercultural competence (Ogan, 
Aleven, & Jones, 2010), statistics (Lovett, Meyer, & 
! ille, 2008), chemistry (Yaron et al., 2010), and 
genetics (Corbett, Kauff man, MacLaren, Wagner, & 
Jones, 2010). Many large-scale evaluations of these 

courses have demonstrated their eff ectiveness (Ritter, 
Kulikowich, Lei, McGuire, & Morgan, 2007). More 
important for this chapter, tutoring systems (and 
online courses more generally) have become platforms 
for advancing research on thinking and learning in 
the fi eld and in the context of substantial knowledge-
based academic content. ! is makes it possible to test 
and advance theories of learning that may be over-
generalized or otherwise inaccurate given their origins 
in laboratory settings and typically knowledge-lean 
content. Such technology allows us to carry out well-
controlled studies in the classroom environment and 
to collect detailed moment-by-moment data. Many 
of the research fi ndings of such research can be found 
in the open research wiki of the Pittsburgh Science of 
Learning Center at http://www.learnlab.org/research/
wiki.

A key tenet of the ACT-R theory is that human 
knowledge is modular—it is acquired and employed 
in relatively small pieces (Anderson & Lebiere, 
1998). Although such pieces can be recombined 
in many diff erent ways, they are not completely 
abstracted from context. Indeed, a second key tenet 
is that knowledge is context specifi c. A procedural 
form of knowledge (implicit knowledge for doing) 
is characterized by an if-then production rule nota-
tion (see Doumas & Hummel, Chapter 5), whereby 
the context in which the production applies is speci-
fi ed in the if-part and an associated physical action, 
subgoal, or knowledge retrieval request is specifi ed 
in the then-part. Similarly, a declarative form of 
knowledge (explicit or directly accessible knowledge 
that can be visualized or verbalized) has retrieval 
characteristics that depend, in part, on the context 
of other active knowledge (the more that related 
knowledge is active, the more likely to retrieve the 
target knowledge).

! ese tenets lead to two important ideas for 
instructional design. First, it is possible to create spe-
cifi cally targeted instruction that isolates the learn-
ing of a particular knowledge component. Second, 
it is critical to design instruction so that knowledge 
components are acquired with appropriate context 
cues or features so that they generalize or transfer 
broadly, but accurately. ! us, isolated practice can-
not be too decontextualized, otherwise inert or shal-
low knowledge acquisition may result.

In the process of applying the ACT intelligent 
tutoring systems to support learning of program-
ming and mathematics, eight principles of instruc-
tional design were formulated to be consistent with 
ACT and with experience in developing, deploying, 
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and evaluating these systems (Anderson, Corbett, 
Koedinger, & Pelletier, 1995). One of these princi-
ples is that tutor design should be based on a knowl-
edge component analysis of the target domain.5 
! is principle emphasizes the importance of the 
modular nature of human knowledge and the great 
value of domain-specifi c cognitive task analysis for 
producing eff ective instruction. Clark et al. (2007) 
describe a meta-analysis of seven studies compar-
ing existing instruction with redesigned instruction 
based on a cognitive task analysis, which yielded an 
average eff ect size of 1.7 (i.e., students who received 
the redesigned instruction scored 1.7 standard devi-
ations better on posttests than did students who 
received normal instruction).

! e theory of transfer, as briefl y outlined earlier, 
makes specifi c predictions about students’ learning. 
For example, one prediction is that knowledge of 
a specifi c component can manifest itself in many 
diff erent contexts. Students who acquire multiplica-
tion knowledge (with general and accurate retrieval 
features) can apply it to diff erent numbers (e.g., 
2*3=?; 6*5=?), to more complex symbolic problems 
(e.g., 2*3+5=?), and to problems presented as or 
emerging in a broader situation (Danny bought two 
pens for $3 each). Another useful hypothesis is that 
performance on each component improves with 
practice. Cognitive Tutors and paper-based assess-
ments allow us to put these hypotheses and analysis 
of the domain to test. By analyzing students’ behav-
ior on problems that share knowledge components, 
we can evaluate whether our analysis of knowledge 
components is accurate.

! is idea can be illustrated with a story about 
algebra story problems. ! e cognitive science litera-
ture includes statements about how students “fi nd 
word problems . . . more diffi  cult to solve than prob-
lems presented in symbolic format (e.g., algebraic 
equations)” (Cummins et al., 1988, p. 405). When 
asked to predict student performance, teachers and 
educators indicate that algebra story problems are 
harder for students to solve than matched symbolic 
equations, since students need to fi rst translate these 
word problems into symbolic notation (Nathan & 
Koedinger, 2000).

Koedinger and Nathan (2004) compared 
students’ performance on story problems and 
matched equations, and discovered that the 
assumed knowledge component analysis (e.g., that 
equations are needed to solve story problems) was 
incorrect. ! ey found that beginning algebra stu-
dents are actually better able to solve introductory 

story and word problems than matched equations. 
For instance, students were 62% correct on word 
problems such as, “Starting with some number, 
if I multiply it by 6 and then add 66, I get 81.9. 
What number did I start with?” but only 43% 
were correct on matched equations, such as “x × 6 
+ 66 = 81.90.”

One striking fact regarding these studies is the 
contrast between beliefs of researchers and educators 
on the one hand and actual student performance on 
the other. In this example, students’ actual perfor-
mance is at odds with the predictions of scientists 
and teachers alike. Koedinger and Nathan’s (2004) 
domain analysis revealed previously unrecognized 
knowledge demands in acquiring symbolic skills. 
! is analysis pinpoints knowledge components for 
symbolic language comprehension.

Learning to ! ink by Learning 
Languages to ! ink With

! e fact that students are better at solving word 
problems than solving equations may sound coun-
ter to our point that learning symbolic languages, 
symbolic algebra in this case, facilitates thinking. 
However, our point is not that being “given” a sym-
bolic language suddenly makes one a better thinker, 
but that the payoff  for learning a symbolic lan-
guage is more powerful thinking. ! at students are 
still struggling with the language of algebra many 
months into a course is surprising to many and, 
ironically, more so to those who have succeeded in 
doing so. For instance, high school algebra teach-
ers are more likely to make the wrong prediction 
(equations are easier) than elementary or middle 
school teachers (Nathan & Koedinger, 2000). It 
seems that many successful algebra learners do not 
have good explicit memory for, and perhaps did not 
have much explicit awareness of, all the work they 
did (or their brains did) while learning algebra. ! is 
observation is consistent with the hypothesis that 
much (not all!) of algebra learning is done with little 
awareness of many of the mental changes that are 
taking place. Although algebra textbooks and classes 
include lots of verbal instruction, much of the pro-
cess of learning appears to occur while students 
are studying examples and practicing on problems 
(cf. Matsuda et al., 2008; Zhu & Simon, 1987), 
and neither examples nor problems contain verbal 
descriptions of the to-be-learned patterns or rules. 
Many of the pattern, rule, or schema induction pro-
cesses that carry out this learning are implicit (see 
Evans, Chapter 8), that is, are not mediated by (nor 
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involve the subvocalization of ) the verbal rules read 
in the text or heard in class.6

Although our empirical and theoretical support 
for this claim comes largely from research in the 
algebra domain, this substantial nonverbal charac-
ter of learning may extend beyond algebra. ! at is, 
much of our learning even in the academic context 
may be implicit (nonverbally mediated), particu-
larly so in the STEM disciplines where symbolic 
notations are so common (e.g., chemical symbols, 
genetics notations, process diagrams). ! is claim is 
less surprising when you consider that the human 
brain has an amazing capability for learning lan-
guage (without already having language available). 
Does this capability stop working once we have 
learned our fi rst language, so that subsequently we 
only learn through language and through conscious 
awareness? ! at seems unlikely. It seems more likely 
that the ability to learn languages without language 
continues to operate even after students begin using 
language-mediated learning strategies. ! e hypoth-
esis that nonverbal learning mechanisms are critical 
to learning formal symbolic “languages,” like alge-
bra, is at least worth pursuing.

Learning a symbolic language is hard, not in 
the sense that it feels hard (though it might), but 
in the sense that it takes a long time, many months 
or years, to reach profi ciency. Children are acquir-
ing their fi rst spoken language, like English, during 
the fi rst 4 or 5 years of life. It typically takes a few 
more years to learn the written form of English, that 
is, reading and writing. It takes at least a year for 
most students to (begin to) learn algebra, and most 
only become fl uent as they continue to use (and 
improve) their algebra skills in downstream STEM 
courses, such as Algebra II, Calculus, Chemistry, 
Physics, Statistics, and Programming.

! rough work on Cognitive Tutor math proj-
ects, it became increasingly apparent to the fi rst 
author that students’ struggles were as or more 
often with the specifi cs of the math content than 
with general strategies for employing it eff ectively 
in problem solving. Some targeted instruction on 
strategies for general problem solving may be eff ec-
tive, but a major challenge for students is learning 
specifi c symbolic material (e.g., vocabulary, nota-
tional tools, principles) and specifi c symbolic pro-
cessing machinery (interpretive procedures) to fuel 
those general problem-solving strategies.

! e Koedinger and McLaughlin (2010) study 
summarized later in this chapter provides evidence 
of grammar learning being important to progress 

in algebra. Computational modeling by Li, Cohen, 
and Koedinger (2010) indicates that probabilistic 
grammar learning mechanisms are not only capable 
of acquiring key aspects of algebra but appear to 
provide a candidate answer to a mystery in expertise 
development. Such mechanisms provide an expla-
nation for how learners achieve representational (or 
“conceptual”) changes along the path from novice to 
expert, accounting not only for their improved per-
formance (accuracy and speed) but also for acquisi-
tion of deep features (e.g., Chi, Feltovich, & Glaser, 
1981) and perceptual chunks (e.g., Gobet, 2005; 
Koedinger & Anderson, 1990). Similar learning 
mechanisms (Bannard, Lieven, & Tomasello, 2009) 
have been demonstrated to characterize children’s 
language acquisition.

Non-language-mediated learning mechanisms 
may also be a key part of learning in other STEM 
domains, which involve specialized symbol sys-
tems (e.g., chemistry equations, physics principles, 
genetics notations) and associated semantics, new 
vocabulary, and problem-solving processes. ! ese 
physical symbol systems7 allow our powerful percep-
tual pattern-fi nding and structure-inducing learn-
ing mechanisms to operate in new abstract worlds 
that are designed as visible metaphors of hidden 
scientifi c phenomenon. Learning to see complex 
scientifi c ideas in symbolic forms allows experts 
to off -load long chains of abstract reasoning into 
physical space (on paper or computer screens). Such 
chains of reasoning are diffi  cult to do in one’s head, 
without the external memory and perceptual pro-
cessing support of symbol systems (cf. Goldstone et 
al., 2010). Experts are certainly capable of chains 
of mental reasoning without external symbolic sup-
port. ! is reasoning may often be done through 
subvocalization or subvisualization (in our “mind’s 
eye”), whereby (with experience) we can simulate 
in our minds what we might have previously done 
with the external support of a symbolic language 
(cf. Stigler, 1984).

Improving Transfer With Domain-General 
and Domain-Specifi c Approaches

So far we have focused on the role of domain-
specifi c symbols and modular knowledge acquisi-
tion in facilitating transfer. However, diff erences in 
domain-general instructional and learning strategies 
(e.g., spacing practice, comparison, self-explanation) 
also infl uence transfer (cf., Koedinger et al, 2010; 
Pashler et al., 2007). Can such strategies be eff ec-
tively and straightforwardly applied across domains? 

40_Holyoak_Ch40.indd   70540_Holyoak_Ch40.indd   705 12/1/2011   10:02:49 PM12/1/2011   10:02:49 PM



706      

We fi rst illustrate how applying domain-general 
instructional strategies necessitates addressing the 
domain-specifi c question of what are the as-general-
as-possible knowledge components. Next, we illus-
trate how the nature of knowledge components in 
a domain may change regardless of whether one 
instructional strategy produces more learning and 
transfer than another.

Finding the Right Level of Generality 
to Apply an Instructional Strategy

Consider the Gick and Holyoak (1983) studies 
that compared the eff ects on an analogical trans-
fer task of diff erent instructional strategies (see 
Holyoak, Chapter 13). ! e domain involves “con-
vergence” tasks whereby a story lays out a problem 
(e.g., about the need for radiation treatment of 
high intensity that reaches a brain area, but with-
out damaging the skull and tissue surrounding it), 
to which the solution involves a dividing of forces 
along multiple paths that then converge together 
on a target. Gick and Hoyoak found that the best 
transfer was achieved by instruction that asked stu-
dents to compare two examples (or analogs) of a 
general solution schema in the context of a symbolic 
abstraction (a diagram) representing the general 
solution schema. Other studies have also demon-
strated the eff ectiveness of prompting for example 
comparisons (Gentner et al., 2009; Rittle-Johnson 
& Star, 2009), or for providing an abstraction of 
a general rule, pattern, or theory behind solutions 
(e.g., Judd, 1908; Holland, Holyoak, Nisbett, & 
! agard, 1986).

How might we best map laboratory results like 
these onto educational practice? One challenge is 
determining the general schema that is the target of 
instruction or, to put it in more concrete terms, the 
scope of tasks, examples, or analogs from which to 
draw for use in instruction and in assessing transfer. 
It is necessary to have a clear defi nition of the target 
knowledge, or, in other words, the as-general-as-
possible knowledge components.

Consider the goal of applying these results to the 
teaching of algebra symbolization, that is, translat-
ing story problems to algebraic expressions.8 Figure 
40.1 illustrates the potential complexity of this ques-
tion (data from Koedinger & McLaughlin, 2010). Is 
there a general schema that covers all algebra prob-
lems (or even broader, covering all math problems 
or all problems including convergence problems)? 
Or is the schema something more narrow, like all 
problems whose solution is a linear expression of the 

form mx + b? Gick and Holyoak (1983) observed 
that the level of similarity or dissimilarity of the 
analogs may play an important role in how much 
learning and transfer occurs. Analogs with higher 
similarity have the advantage that students may be 
more likely to make a reasonable mapping between 
them and induce a general schema. ! ey have the 
disadvantage that the schema that is induced may 
not be as general as it could be.

Here are two symbolization problems that are 
quite close analogs:

1) Sue is a plumber and gets $30 for showing 
up to a job plus $60 per hour she works. Write an 
expression for how much Sue makes if she works 
for x hours. Answer: 60x + 30

2) Rob is an electrician. He gets paid $50 per 
hour and also gets $35 for every job. Write an 
expression for how much Rob makes if he works 
for h hours on a job. Answer: 50h + 35

! ey are both in the form Mx + N, where M 
and N are small positive integers. ! ey have some 
diff erent features, including the diff erent numbers 
(values for M and N) and diff erent cover story fea-
tures (e.g., “plumber” in one but “electrician” in the 
other). Analogs that are even closer in similarity 
are possible, for example, where the cover story is 
the same, but only the numbers change; or where 
the cover story changes, but the numbers do not. 
Analogs that are more dissimilar can also be pro-
duced, for example, by changing the type of quanti-
ties from money to distances. Structural changes are 
also possible, for example, introducing problems of 
the Mx – N form (i.e., story problems with solu-
tions like 5x – 10). As shown in Figure 40.1, student 
performance on Mx + N and Mx – N forms is quite 
similar, which suggests that such variation is not too 
much—does not cross into the disadvantage side of 
dissimilarity—and thus transfer between such prob-
lems may well be achieved. But what about more 
dissimilar problems?

Would it be better to include an analog with a 
negative slope, that is, story problems with a solu-
tion like 800 – 40x (31% correct)? Might that fos-
ter more generalization such that students would 
be more likely to transfer their learning experience 
not only to other positive slope problems but also 
to all problems of the form mx + b, where m and b 
can be positive or negative? Might we go even fur-
ther to foster even greater generalization and trans-
fer? ! e generalization hierarchy of problem types 
(potential general schemas) in Figure 40.1 illustrates 

40_Holyoak_Ch40.indd   70640_Holyoak_Ch40.indd   706 12/1/2011   10:02:49 PM12/1/2011   10:02:49 PM

Ken Koedinger


Ken Koedinger
Change "As shown in Figure 1, student ..." to "Student ..."



 ,    707

a challenge for instructional designers: Even if the 
instructional principle is clear and well documented, 
applying it to a domain of interest is not obvious. As 
shown next, the challenge is greater in cases where 
diff erent instructional principles suggest competing 
paths to learning.

Knowledge-Based Dependencies 
in Applying Instructional Principles

Two competing instructional principles are learn-
ing by doing and learning from worked-out examples. 
Learning by doing (e.g., Dewey, 1916) essentially 
suggests that ideas or skills that we are told or shown 
do not stick, are not robustly learned, unless we use 
them. A version of this principle is another one of 
the Cognitive Tutor principles: Provide instruc-
tion in a problem-solving context (Anderson et 
al., 1995). It is related to the “testing eff ect” (e.g., 
Roediger & Karpicke, 2006), in that problem solv-
ing requires or “tests” recall in targeted contexts and 
so strengthens the mental link between context and 
appropriate action.

However, cognitive load theory (e.g., Sweller, 
1988; Van Merriënboer & Sweller, 2005) suggests 
that premature problem-solving practice (e.g., 
before enough study of worked examples) pro-
duces extraneous cognitive load. One unfortunate 
outcome of intuitive instructional design is that it 
often introduces activities requiring more cogni-
tive processing than necessary, which distracts stu-
dents from processes relevant to learning (cf. Clark 
& Mayer, 2003). Indeed, many studies in science, 
math, and technical domains have demonstrated the 
“worked example eff ect,” whereby replacing many 

problems with worked examples enhances learning 
(see reviews by Renkl & Atkinson, 2010; Pashler et 
al., 2007). In an apparent contrast with the “testing 
eff ect,” the worked example principle implies more 
study (of examples) and less testing (fewer problems 
to solve). Both principles reject the extremes of all 
learn by being told or all learn by doing. However, 
it is unclear whether the greater student assistance 
recommended by the worked example principle 
is actually, or just apparently, contradictory to the 
greater student challenge recommended by the test-
ing eff ect.

One possible account of the apparent contradic-
tion focuses on diff erences in the knowledge con-
tent involved in the corresponding instructional 
experiments. Experiments on the testing eff ect 
have targeted specifi c facts (e.g., in language learn-
ing), simpler knowledge components, and the cor-
responding learning theory emphasizes memory 
processes. In contrast, experiments on the worked 
example eff ect have targeted general schemas (e.g., 
in math and science learning), more complex 
knowledge components, and the corresponding 
learning theory emphasizes the induction of sche-
mas (see Holyoak, Chapter 13). Koedinger et al.’s 
(2010) KLI Framework provides a principled dis-
tinction between simpler and more complex knowl-
edge components. Schema induction may be more 
optimally supported by increased study of examples 
before turning to practice (e.g., Gentner et al., 
2009; Gick & Holyoak, 1983), whereas fact mem-
ory may benefi t from a faster transition from study 
to recall practice. However, as far as we know, no 
one has attempted to test this content-by-principle 
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n(x + c)
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Fig. 40.1  What is (are) the general 
schema(s) for algebra symboliza-
tion? More broadly defi ned schemas 
(at the top) increase the potential for 
transfer, but more narrowly defi ned 
schemas (at the bottom) increase 
the probability that a general sche-
ma is induced and some transfer is 
achieved.
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interaction hypothesis, namely, that a higher ratio 
of study/examples to test/problems is appropriate 
for more complex knowledge (schema induction), 
whereas a lower ratio is appropriate for simpler 
knowledge (fact memory).

Translating general instructional approaches, 
such as comparison of examples, to real instruc-
tional problems may seem relatively straightfor-
ward, but this discussion suggests that it requires the 
answer to what can be a diffi  cult question: What is 
the target schema that should guide which analogs 
are selected, how general should it be, and, corre-
spondingly, how much transfer can be achieved? 
Typically, instructional designers make a decision 
based on intuition, but a more scientifi c approach 
is possible. ! e next section provides an example of 
such an approach.

Discovering a Small-Big Idea: Algebra as 
Language Learning

Koedinger and McLaughlin (2010) performed 
an experiment targeting the highest level in Figure 
40.1. ! ey identifi ed a general schema (or knowl-
edge component) common to all problems in 
this broad category. Prior empirical cognitive task 
analysis (Heff ernan & Koedinger, 1998) had dem-
onstrated that students’ diffi  culties in translating 
story problems to algebra were not so much in 
understanding the English of the story but primar-
ily in producing algebraic expressions. We hypoth-
esized that a general knowledge component that 
many students were missing was (probably implicit) 
knowledge of the grammar of algebraic expressions 
involving more than one operator (see the top box 
in Fig. 40.1). Such students can accurately produce 
algebraic expressions of the form “number operator 
number” (e.g., 800 – y or 40x), but have trouble 
producing expressions involving a subexpression 
like “number operator expression” (e.g., 800 – 40x), 
that is, learning recursive grammatical patterns. 
We hypothesized that we could support students 
in learning of such recursive grammar patterns 
through exercises isolating the production of two-
operator expressions, namely, substitution problems 
like “Substitute 40x for y in 800 – y.” We found 
that tutored practice on such substitution problems 
led to greater transfer to performance on translat-
ing two-operator stories than did tutored practice 
on translating one-operator stories (Koedinger & 
McLaughlin, 2010).

We did not provide any direct instruction on 
the algebraic grammar, but nevertheless students 

improved in their algebraic language produc-
tion. ! e transfer observed is consistent with the 
hypothesis that implicit (non-language-based) 
symbolic language-learning mechanisms are oper-
ative even for algebra students.

While the diff erence in transfer was statistically 
reliable, it was not large. ! e large diff erences in 
error rates for problems in Figure 40.1 suggest that 
learning recursive grammar rules is not be the only 
challenge for students. Problems whose solutions 
include parentheses are likely harder than other-
wise similar problems. In fact, producing the asso-
ciated expressions requires new grammar rules. It 
also appears that additional knowledge is needed to 
address problems in which a quantity serves in mul-
tiple roles, like the “d” in “d – 1/3d.” ! ese obser-
vations about problem diffi  culty suggest hypotheses 
for alternative instructional design. Students may 
benefi t, for instance, from more focused instruction 
on the use of parentheses in algebraic expressions.

! e earlier example is illustrative of using student 
performance data to drive cognitive task analysis, 
search for as-general-as-possible knowledge compo-
nents, and correspondingly improve instructional 
design. ! e next section describes some strategies 
for fostering the process of discovering such general 
knowledge components.

Methods for Discovering As-General-As-
Possible Elements of Transfer

We review a number of empirical methodologies 
for discovering transfer-enabling knowledge com-
ponents or, in diff erent terms, to perform cognitive 
task analysis to aid designing eff ective instruction 
for transfer. Because so much of learning is not lan-
guage based and not available to our intuitions, we 
need techniques that bring theory and data to bear 
on questions of what constitute ideal instructional 
objectives, what are the big ideas instruction should 
target, and how general instructional principles can 
be best applied in specifi c content domains to pro-
duce transfer.

Think Aloud: Empirical Analysis of 
Experts and Novices

Having experts or novices think aloud as they 
solve tasks in a target domain (Ericsson & Simon, 
1984) is a powerful tool for aiding in identify-
ing the knowledge they employ. Chi et al. (1989) 
used think-aloud methods with physics learners to 
identify a potential “big-big” idea, self-explanation. 
Designing instruction that prompts students to self-
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explain has been demonstrated to greatly enhance 
student learning in a variety of domains (see rec-
ommendation #7 in Pashler et al., 2007). As men-
tioned earlier, Haverty et al. (2000) performed a 
think-aloud procedure with students engaged in 
inductive pattern discovery and were surprised to 
fi nd that success was diff erentiated not by big-big 
ideas like general problem-solving strategies, but by 
small-big ideas that produce fl uency with number 
patterns.

One too-rarely-employed strategy for identifying 
as-general-as-possible elements of transfer is to use 
the think-aloud method on tasks for which experts 
lack domain-specifi c knowledge. For example, 
Schunn and Anderson (1999) asked social psychol-
ogists to design experiments to address a cognitive 
psychology question so as to isolate domain-gen-
eral scientifi c inquiry skills from domain-specifi c 
experience.

Difficulty Factors Assessment: 
Experimental Analysis of Task Factors 
That Reduce Learners’ Performance

Wanting to preserve the value of getting empiri-
cal data on student task performance yet reduce the 
costs of think-aloud data collection and analysis, 
the fi rst author began a strategy of placing item-
based experimental designs into classroom quiz-
zes. We have called this approach Diffi  culty Factors 
Assessment (DFA), and the Koedinger and Nathan 
(2004) story problem data described earlier is an 
example of this approach. A DFA is a factorial 
design of matched tasks or problems that vary in 
a multidimensional matrix of factors, for instance, 
whether the problem is presented in a story, in 
words, or in an equation, whether the unknown is 
in the result (4 * 25 + 10 = x) or start (x * 25 + 10 = 
110) position, or whether the numbers involved are 
whole numbers or rational numbers. ! ese items 
are distributed on multiple forms and administered 
to students as a quiz. We have run DFA studies in 
many domains, including algebra problem solving, 
algebra symbolization, negative numbers, fractions, 
data display interpretation and production, and 
fi nding areas (e.g., Heff ernan & Koedinger, 1998; 
Koedinger & Nathan, 2004). Baker, Corbett, and 
Koedinger (2007) discuss how DFA studies can be 
used in instructional design. ! e idea, described ear-
lier, of using algebraic expression substitution exer-
cises to improve transfer in algebra symbolization, 
was discovered from DFA studies. In general, iden-
tifying the task factors that cause students the most 

diffi  culty supports the instructional designer both 
in focusing their eff ort on the greatest need, and in 
testing whether purported forms of instructional 
assistance actually improve student performance.

Educational Data Mining: Discovering 
Cognitive Models From Student 
Performance and Learning Data

As we have fi elded more interactive tutoring 
systems, they have increasingly become valuable 
sources of data to understand student learning 
(Cen, Koedinger, & Junker, 2006; Koedinger et al., 
2010). In these tutoring systems, students typically 
solve a series of problems and the system evaluates 
student performance on a step-by-step basis such 
that error rate (did they get that step right on their 
own on the fi rst try) can be logged for each task 
(each step in each problem). As with DFA stud-
ies, such student error data can be used to develop 
better cognitive models of the factors of problems 
or tasks that cause students diffi  culty. One current 
disadvantage of using tutor data relative to DFAs 
is that the set of problems given to students in the 
former type of study are typically not as systemati-
cally designed and administered, with matched sets 
of problems in a Latin square design, as they are in 
DFA studies.

However, there are also multiple advantages 
of tutor data over DFA data. First, fi elded tutors 
allow for much more data to be naturally collected 
as a part of normal system use, that is, without the 
need to administer a special-purpose paper-based 
quiz. Second, student performance is automati-
cally graded. ! ird, the data are more fi ne grained: 
whether the student got each step right, rather than 
just whether the student got the whole problem 
right. Even if students show their work on paper, 
if an error is made on an early step in a problem, 
the rest of the steps are typically absent or suspect. 
Tutoring systems, on the other hand, provide data 
on every step because they give students assistance 
so that early steps are eventually performed correctly 
and thus the student can attempt every step on his 
or her own. ! e fourth, and most important, advan-
tage of tutoring systems over DFAs is that tutor data 
are longitudinal, providing an indication of changes 
in student performance over time. Seeing change in 
performance over time (sequence data) is of critical 
importance for understanding transfer.

Let us illustrate this point by contrasting how 
a question of knowledge decomposition (what are 
the elements of transfer) can sometimes be better 
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addressed using sequence data (from tutor log data) 
rather than factorial design data (from a DFA). ! e 
question in the abstract is whether there is transfer 
between two tasks that have some core similarity, 
that is, they share a deep structure (or key aspects of 
a deep structure) but have some signifi cant dissimi-
larity, which may be either or both substantial (but 
solution-irrelevant) surface diff erences or nonshared 
aspects of the deep structure. Call these tasks “dis-
similar analogs.” ! e knowledge component ques-
tion concerns the components that are in common 
in these dissimilar analogs and what components, if 
any, are specifi c to each analog.

Consider task A and task B as dissimilar analogs 
where the average success rate on A is 43% and B 
is 27%. Table 40.1 shows an example of two such 
tasks.

One of the simplest knowledge component 
models to characterize this situation is that the 
harder task B requires two knowledge compo-
nents, say K1 and K2, whereas the easier task A, 
requires just K1. ! is “overlap” knowledge compo-
nent model predicts transfer between instruction 
on one of these tasks and performance on another. 
! is situation is illustrated in Table 40.1 where task 
A (in the fi rst row) is modeled by a single knowl-
edge component representing algebra grammar 
knowledge for producing a recursive expression (an 
expression, like “72 – m,” inside another expres-
sion, like “(72 – m)/4”). Task B is represented by 
two knowledge components, one for comprehend-
ing English sentences and translating them to math 
operations, like 72 – m and x/4, and the other is 
the overlap, the knowledge for producing a recur-
sive expression.

A competing nonoverlap model corresponds to 
the idea that these dissimilar analogs are not (func-
tionally) analogs at all, but they are diff erent topics 
and draw on diff erent skills or concepts. Each task 
involves a separate knowledge component, say Ka 
for task A and Kb for task B. ! is model predicts no 
transfer. How can we use data to determine which is 
the correct model?

According to the “identical knowledge compo-
nents” theory of transfer, the overlap knowledge 
component model predicts that successful instruc-
tion (e.g., tutored practice) on task A will improve 
performance on task B, whereas the nonoverlap 
knowledge component model predicts no improve-
ment. We can distinguish these models if we have 
sequence data that provide performance on task B 
after task A for some students and before task A for 
others. If performance on task B is better after task A 
than before it, then the overlap knowledge compo-
nent model is the better model. For the tasks shown 
in Table 40.1, students who saw Task B after seeing 
two substitution problems (isomorphic to Task A) 
indeed achieved reliably greater success, 38% cor-
rect, as compared to 27% for students who had not 
seen substitution problems.9

More generally, computer-collected student per-
formance and learning data have been used to evalu-
ate cognitive models and to select among alternative 
models (e.g., Anderson, 1993; Ohlsson & Mitrovic, 
2007). Automated methods have been developed 
to search for a best-fi tting cognitive model either 
purely from performance data, collected at a single 
time (e.g., Falmagne, Koppen, Villano, Doignon, & 
Johannesen , 1990), or from learning data, collected 
across multiple times (e.g., Cen et al., 2006).

Table 40.1 Two Dissimilar “Analogs” With Diff erent Problems but Similar Solutions

 
Problem Solution % Correct

Knowledge 
Components Needed

A Substitute 72 – m for d in d/4. Write the 
resulting expression.

(72 – m)/4 43% RecExprProda 

B Ann is in a rowboat on a lake. She is 800 yards 
from the dock. She then rows for m minutes 
back toward the dock. Ann rows at a speed of 
40 yards per minute. Write an expression for 
Ann’s distance from the dock.

800 – 40x 27% EngToMathOpsa

+
RecExprProd

aEngToMathOps = English comprehension and translation to math operations, such as 40x and 800 – y. RecExprProd = Recursive expression 
production, like 800 – 40x from 40x and 800 – y.
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We should also be alert for decomposition 
opportunities, where the transfer may not be at 
the whole problem level (problem schemas), but 
at the level of intermediate steps (step schemas or 
knowledge components). ! e concept of a prob-
lem schema, which is emphasized in most stud-
ies both in the psychology (e.g., Gentner et al., 
2009; Gick & Holyoak, 1983) and educational 
psychology (e.g., Sweller & Cooper, 1985) litera-
ture, mostly ignores the important componential 
character of the construction of human intelligence. 
Transfer of knowledge to novel situations comes as 
much or more from the reconfi guration or recom-
bination of smaller pieces of knowledge into new 
wholes than from the analogical application of 
larger pieces of knowledge.

Conclusions and Future Directions
Learning With and Without Language

We have focused on an aspect of learning to 
think that involves the leverage of symbolic systems 
or languages to enhance thinking and learning (see 
Gleitman & Papafragou, Chapter 28). ! is kind of 
learning to think is rather direct because before one 
can make use of a new language to aid thinking, 
one must fi rst learn that language. We have con-
strued learning languages broadly to include learn-
ing symbolic patterns (syntax, perceptual chunks) 
and semantic interpretations of those patterns, as is 
done in many STEM disciplines. A child learning 
his or her fi rst natural language is the prime example 
of the fact that the human mind can learn language 
without knowing any language to support that 
learning. Let us call the learning processes used in 
this case non-language-mediated (NLM) learning.10 
NLM learning is responsible not only for language 
acquisition but also for learning of other knowledge 
components (e.g., How do you know how much salt 
to put on your food?). Such processes include per-
ceptual learning (e.g., Gobet, 2005), unsupervised 
statistical learning (e.g., Blum & Mitchell, 1998), 
and some supervised learning in which the learner 
imitates or induces from correct examples (Gentner 
et al., 2009; Hummel & Holyoak, 2003) or gets 
nonverbal negative feedback from incorrect actions 
(e.g., Matsuda et al., 2008; VanLehn, 1987).

On the other hand, it seems clear enough, given 
how much instructors talk, that language is an 
important part of the academic learning process 
(cf., Michaels, O’Connor, & Resnick, 2008). Let us 
call the learning processes used in this case language-
mediated (LM) learning.

Here are some related questions for future cogni-
tive science research on learning and thinking:

1) NLM learning: What are the learning 
mechanisms that humans use to learn a language 
(at least their fi rst language) without using 
language? What are the mechanisms behind 
learning by watching, by doing after watching, or 
after nonverbal feedback?

2) LM learning: What are the learning 
mechanisms that humans use to make use of 
language in learning other things? What are the 
mechanisms of learning by listening, by reading, by 
writing, by doing after verbal explanation, or after 
verbal feedback?

3) Continued use of NLM learning: How do 
NLM learning mechanisms continue to be used 
by learners after they have acquired the relevant 
language?

4) Separate or subservient: Do NLM and LM 
processes operate independently or do LM learning 
processes work by calling upon NLM learning 
processes?

Language Improves Thinking
We have evidence for the “language improves 

thinking” claim in the domain of algebra (Koedinger 
et al., 2008). We see that students who have learned 
the language of algebra are much more likely to solve 
a particular class of complex story problems (which 
do not absolutely require equations) than students 
who have not learned the language of algebra.11

Some research has shown that prompting 
students to think with a symbolic language can 
enhance learning (Roll, Aleven, & Koedinger, 
2009; Schwartz, Martin, & Pfaff man, 2005). In 
both of these studies, students who were asked to 
reason using mathematical symbols acquired a more 
general, transferable representation knowledge than 
students who were not instructed to use math-
ematical notations. Other studies have shown that 
prompting students to explain their reasoning (in 
English) as they solve problems or study examples 
helps them acquire deeper understanding of the tar-
get knowledge components (Aleven & Koedinger, 
2002; Chi, De Leeuw, Chiu, & LaVancher, 1994).

Experimental evidence that language improves 
thinking has been collected in other domains as well. 
For example, 3-year-old children given instruction 
on relational language (e.g., big, little, tiny) make 
better abstract inferences than children without such 
symbolic support (Gentner, 2003). Beyond algebra, 

40_Holyoak_Ch40.indd   71140_Holyoak_Ch40.indd   711 12/1/2011   10:02:50 PM12/1/2011   10:02:50 PM

Ken Koedinger


Ken Koedinger
Change "rather direct" to "rather indirect"



712      

others have also argued that human-invented sym-
bol systems, like computer modeling languages, are 
“literally languages and accordingly off er new cog-
nitive tools” (Goldstone & Wilensky, 2008).

Language-Mediated Versus Non-Language-
Mediated Learning, Expert Blind Spot, 
and Eff ective Educational Design

A key point of this chapter is that too much 
instructional design is suboptimal because it is driven 
by memories of LM learning experiences. It is not 
driven by memories of NLM learning processes 
because these processes and the resulting tacit changes 
in knowledge are hard for learners to refl ect upon. In 
essence, because of NLM learning processes, experts 
have worked harder and know more than they real-
ize. Indeed, experts often have diffi  culty describing 
what they know (e.g., Biederman & Shiff rar, 1987). 
As illustrated earlier, instructors and educators can 
have expert blind spots whereby their own expertise 
may lead them to overestimate students’ abilities with 
the normative problem-solving strategies (e.g., use of 
algebraic equations). In general, our intuitions about 
what and how to teach are underinformed. ! us, 
cognitive task analysis can provide a powerful tool for 
improving our intuitions and producing more eff ec-
tive instruction (cf. Clark et al., 2007).

More eff ective educational practice could be 
achieved through a better understanding of the role 
of NLM learning in academic learning. ! e popu-
lar (and appropriate) rejection of the “transmission 
model” of instruction is a step in the right direction. 
Students usually do not learn simply by being told. 
Unfortunately, the constructivist alternative (cf., 
Tobias & Duff y, 2009) is sometimes misinterpreted 
to essentially mean students must teach themselves 
and instructors need not teach at all! A more sophis-
ticated interpretation suggests that it is the students 
who should be primarily doing the talking, and 
the teachers’ role is to get them talking (Michaels, 
O’Connor, & Resnick, 2008). While there is much 
merit in this idea, it is driven by intuitions that LM 
learning is where all the action is. ! e merits of 
classroom dialog can be bolstered by a complemen-
tary emphasis on the role of NLM learning (exam-
ple induction and repeated practice with feedback) 
and its interplay with LM learning.

Knowledge Representation and Transfer
Small-Big Ideas

! e focus on big ideas tends to ignore the 
importance of small-big ideas, that is, specifi c facts, 

skills, or concepts that have a very high frequency 
of reuse. Furthermore, the learning of big-big 
ideas is often mediated by the learning of external 
symbols—new ideas are often associated with new 
vocabulary. For example, new mathematical ideas 
like the distributive property have concise symbolic 
descriptions, and learning the syntax of those sym-
bolic descriptions strengthens and may even seed 
the semantics of the underlying idea. How can we 
identify the small-big and big-big ideas that are 
most valuable to pursue in improving educational 
improvement?

Search for Appropriate Grain 
Size of Transfer

A related issue is the instructional decision of 
what level of analog to choose to target. ! is deci-
sion is a nontrivial part of testing the generality 
of basic cognitive science research in educational 
contexts. Can we develop empirical and theoreti-
cal approaches to identify the ideal level of gener-
ality that instructional design should target to best 
enhance learning and transfer?

Does Understanding (via Language-
Mediated Learning) Occur Before or 
After Practice (Non-Language-Mediated 
Learning)?

Is understanding necessary for transfer, that is, 
does understanding lead transfer? Or is understand-
ing emergent from transfer, that is, does “under-
standing follow transfer”? To the extent that much 
of learning to think is about learning specialized 
languages, it may be that what it means to “under-
stand” is to develop a “metalanguage” (e.g., words 
like “term” and “coeffi  cient” in algebra or “conjuga-
tion” in second language learning) that one can use 
to describe and refl ect on the language that has been 
learned, as well as give words and symbols to knowl-
edge components that were acquired via MLM 
learning mechanisms. ! is kind of understanding, 
that is, the development of such metalanguage, 
may as often be a consequence of NLM learning, 
rather than a source of it. Here the idea/skill is fi rst 
acquired in nonverbal form (e.g., students who have 
learned to remove a “coeffi  cient” in an algebra equa-
tion but don’t know the term), and later the stu-
dent may learn the language to describe what he or 
she learned. However, other examples suggest the 
reverse route. For example, asking students to rea-
son with data prior to giving them instruction may 
facilitate mental representations that support the 
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subsequent acquisition of procedural competencies 
(Roll, Aleven, & Koedinger, 2009; 2011; Schwartz 
& Martin, 2004; Schwartz, Martin, & Pfaff man, 
2005).

A Literally Physical Symbol System
! inking of these pieces of mental function 

or “knowledge components” as “symbols,” as 
proposed in Newell and Simon’s (1976) physi-
cal symbol system hypothesis, is both helpful and 
potentially misleading. Cognitive scientists can 
certainly describe these pieces in symbols, whether 
we use English or a computational modeling lan-
guage. However, the cognitive scientist’s symbolic 
representation of a piece of mental function, 
like the code that implements a neural network 
model, is not the mental function itself. Whether 
the mental pieces are symbols we will leave to oth-
ers (e.g., see Nilsson, 2007). ! e important claim 
here is that representing mental pieces or knowl-
edge components in symbolic form, in some 
language, facilitates thinking on the part of the 
cognitive scientist or analyst.

Closing
! e notion of cultural transmission is suggestive 

of language, but, while quite powerful, language is 
not the sole contributor to learning to think. ! e 
human brain is built on an animal brain that has 
perceptually based forms of learning that are eff ec-
tive despite functioning without the use of lan-
guage (see Penn & Povinelli, Chapter 27). ! ese 
learning mechanisms, we have argued, are still in 
use by adult learners with language abilities. It is 
an interesting and important scientifi c goal to either 
disprove this hypothesis or to better identify and 
understand these NLM learning processes and how 
they interact with LM learning. Such an endeavor 
will also have important practical consequences for 
educational improvement.

Notes
1. ! at such changes are not directly observable poses a chal-

lenge to scientifi c advance. One way to gain leverage is to create 
scientifi c languages to describe these hidden changes, as has been 
frequently done, for instance, for genes, elements in chemical 
compounds, or atoms. ! at is why computational modeling is 
so important to advance cognitive science and fuel better educa-
tional applications.

2. Or, for another example, reading instruction could tar-
get learning to decode (sound out) a particular word list (e.g., 
cat, dog, run, etc.) and the scope of that knowledge, if acquired, 
might reasonably be reading of those words in the context of 

the many sentences in which they might appear. Or, in contrast, 
reading instruction might use related words (e.g., cat, fat, car, 
far, etc.) to target particular letter-to-sound mappings (e.g., c, f, 
a, t, and r), and the scope of that knowledge, if acquired, might 
reasonably be the reading of the many words that involve those 
letter-to-sound mappings in the many sentences in which they 
might appear.

3. Estimates of the number of phonemes vary. See http://
www.spellingsociety.org/journals/j30/number.php#top.

4. Note that decoding is necessary but not suffi  cient for com-
prehension. Good decoders may not be good comprehenders, 
but bad decoders are bad comprehenders. Furthermore, children 
have a head start on comprehension through their spoken lan-
guage experience and decoding opens doors to greater conceptual 
and vocabulary acquisition that can expand comprehension.

5. ! e original principle called for a “production rule” analy-
sis, which focuses, in ACT-R terms, on procedural knowledge. 
We generalize to “knowledge component” analysis (Koedinger, 
et al., 2010) to include declarative knowledge and to account for 
declarative as well as procedural transfer (cf., Singley & Ander-
son, 1989).

6. ! e point is not that algebra students are unaware of learn-
ing algebra in the whole or in the strong sense of implicit learning 
used, for instance, in paradigms like Reber (1967) grammar tasks. 
Instead, we mean that there are many details being learned (like the 
grammar of algebra equations) that are not the result of verbally 
mediated reasoning. Students have diffi  culty explaining many of 
these details and, especially, how they came to know them.

7. We use “physical” here not in the sense of Newell and 
Simon (1976) of having a physical existence in human minds, 
but in the more literal sense that the symbols exist, on paper, 
white boards, computer screens, and so on, in perceptually avail-
able spaces.

8. Algebra symbolization is a particularly important area of 
algebra learning. Today computers can solve algebraic equations 
and such capabilities are increasingly available even on mobile 
phones. However, translating the semantics of a problem situa-
tion into abstract symbolic form will remain a task for humans 
for quite a while.

9. ! is statistically reliable diff erence (χ2(1, N = 303) = 4.68, 
p = .03) comes from alternative analysis of data in Koedinger and 
McLaughlin (2010).

10. Why have we used “non-language-mediated learning” 
instead of “implicit learning”? Implicit learning is learning that 
one is not aware of, but it may be possible that one is sometimes 
aware of the results of NLM learning and thus such learning 
would not qualify, at least empirically, as implicit learning. 
It is straightforward to tell when language was not used (by 
a teacher or in instructional materials) as part of instruction. 
! at’s clearly NLM instruction. Pinpointing NLM learning 
is harder as subvocalization and self-explanation may count 
as LM learning. One form of evidence is when we can create 
computational models that can learn from examples without 
being given any verbal instructions that behaviors of the model 
match those of human learners (e.g., Matsuda, Lee, Cohen, & 
Koedinger, 2009).

11. Data from Study 2 in Koedinger et al. (2008) show that 
when a student correctly solved a complex equation, the student 
was 82% correct on the matched complex story problem, but 
when the student failed on the complex equation, he or she was 
only 44% correct on the matched story problem. ! at is, sym-
bolic competence enhances reasoning.
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