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Abstract. Previous studies have shown that self-explanation is an effective
metacognitive strategy and can be supported effectively by intelligent tutoring
systems. It is plausible however that students may learn even more effectively
when stating explanations in their own words and when receiving tutoring fo-
cused on their explanations. We are developing the Geometry Explanation Tutor
in order to test this hypothesis. This system helps students, through a restricted
form of dialogue, to construct general explanations of problem-solving steps in
their own words. We conducted a pilot study in which the tutor was used for two
class periods in a junior high school. The data from this study suggest that the
techniques that we chose to implement the dialogue system, namely a knowl-
edge-based approach to natural language understanding and classification of
student explanations, are up to the task. There are a number of ways in which
the system could be improved within the current architecture.

1 Introduction

Recently, many researchers have embraced the notion that tutorial dialogue systems
will make a dramatically more effective “3" generation” of computer-based instruc-
tional systems (Graesser, et al., 2001; Evens, et al., 2001; Rosé¢ & Freedman, 2000;
Aleven, 2001). But what pedagogical approaches should underlie the dialogues con-
ducted by these systems? A number of cognitive science studies have shown that self-
explanation is an effective metacognitive strategy (Bielaczyc, Pirolli, & Brown, 1995;
Chi, 2000; Renkl, et al., 1998). That is, when students study textbooks or worked-out
examples, they learn with greater understanding to the extent that they explain the
materials to themselves. However, not all students self-explain spontaneously and
even when prompted to self-explain, it is difficult for students to arrive at good expla-
nations (Renkl, et al., 1998).

This has led a number of researchers to investigate how self-explanation can be
supported effectively by intelligent tutoring systems (Aleven & Koedinger, in press;
Conati & VanLehn, 2000) or other instructional software (Renkl, in press). In previous
work, we showed that even simple means of supporting self-explanation within an
intelligent tutoring system, such as menus, can help students learn with greater under-
standing, as compared to tutored problem solving without self explanation (Aleven &
Koedinger, in press). It is plausible that students learn even better when they explain
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in their own words. However, the potential advantages of “free-form” explanation do
not seem to materialize when the system merely prompts students to explain but does
not provide feedback on students’ explanations (Aleven, et al., 2000).

Our long-term goal is to find out whether a tutorial dialogue system can effectively
tutor students as they produce self-explanations and whether it thereby can help them
learn with greater understanding. We are developing a tutorial dialogue system that
supports self-explanation in the domain of geometry, the Geometry Explanation Tutor
(Aleven, Popescu, & Koedinger, 2001). This system helps students, through a re-
stricted form of dialogue, to produce explanations that not only get at the right mathe-
matical idea but also state the idea with sufficient precision. The system evaluates
whether students’ explanations are correct and sufficiently precise and is able to detect
common omissions and errors in explanations. We have opted for a knowledge-based
approach to natural language understanding, with a logic-based representation of se-
mantics, similar in spirit to those discussed in Allen (1995). We have presented our
arguments for our choice elsewhere (Popescu & Koedinger, 2000). Further, we have
opted to keep dialogue management as simple as possible, adopting a “submit and
critique” approach described below.

In this paper we present the results of a short pilot study in a school and discuss
how far along we are towards having a robust and effective tutorial dialogue system
that is ready for the classroom. Further, we discuss whether the techniques we have
chosen to implement our tutorial dialogue system are adequate and were a good
choice.

2 The Geometry Explanation Tutor

The Geometry Explanation Tutor was built on top of an existing Cognitive Tutor (An-
derson, et al., 1995) for geometry problem solving, the Geometry Cognitive Tutor™.
This tutor was developed by our research group in tandem with a full-year high school
geometry curriculum. The combination of these two components has been shown to be
better than traditional geometry classroom instruction (Koedinger, et al, 2000). The
tutor and the curriculum are being marketed commercially and are in use in about 100
schools in the United States (see http://www.carnegielearning.com).

The Geometry Explanation Tutor provides for guided problem-solving practice. In
addition, it requires that students provide general explanations of their problem-
solving steps in their own words (Aleven, et al., 2001). It helps students, through a
restricted form of dialogue, to improve their explanations and arrive at explanations
that are mathematically precise (see Figure 1, which shows a dialogue with the system
collected during the pilot study described below). So far, the dialogues deal with the
topics covered in one of the six units that make up the tutor curriculum, the Angles
unit, which deals with the geometric properties of angles.

The system’s architecture has been described elsewhere (Aleven, et al, 2001) so
here we provide only a short outline. An important knowledge source is the system’s
hierarchy of 149 explanation categories, which represent the most common ways in
which students express or attempt to express geometry rules in their own words. For



346 V. Aleven, O. Popescu, and K. Koedinger

each relevant geometry rule, the hierarchy contains one or more categories represent-
ing correct and complete ways of stating the rule. For example, category
COMPLEMENTARY-ANGLES-SUM-90 represents all correct and complete statements
of the definition of complementary angles, including “the sum of the measures of
complementary angles is 90 degrees”. For each relevant geometry rule the explanation
hierarchy also contains numerous categories that represent commonly-occurring in-
complete or incorrect ways of stating the rule. For example, category
COMPLEMENTARY-ANGLES-90 represents sentences meaning ‘“‘complementary an-
gles are 90 degrees,” which falls just short of being a complete and correct explana-
tion.

Student-Tutor Dialogue Explanation
Categories
1. Student: whole and parts postulate None.

Tutor: The Geometry Tutor is not able to understand your explana-
tion. Sorry! Please add to your explanation or type something

different.
2. Student: two complementary angles equal 90 degrees EQUAL, ANGLES-90,
Tutor: You are going in the right direction. Exactly what kinds of COMPLEMENTARY-
ANGLES-90
angles are 90 degrees?
3. Student: two adjacent complementary angles equal 90 degrees COMPLEMENTARY-
Tutor: Correct, except for one thing: what exactly is 90? ANGLES-90,
ADJACENT-ANGLES,
EQUAL

4. Student: two adjacent complementary angles equal nine degrees COMPLEMENTARY-

Tutor: That may not be the right number. Can you state a geometry ANGLES, EQUAL,

rule that justifies your answer? ADJACENT-ANGLES,
Jushiies y T QUANTITY
5. Student: two adjacent complementary angles equal 90 degrees COMPLEMENTARY-
Tutor: Correct, except for one thing: what exactly is 90? ANGLES-90, EQUAL,
ADJACENT-ANGLES

6. Student: two adjacent complementary angles add up to 90 degrees COMPLEMENTARY-
ANGLES-SUM-90,

Tutor: (Implicit feedback saying that the explanation is correct.)
ADJACENT-ANGLES-SUM

Fig. 1. Example dialogue with the Geometry Explanation Tutor

The system has a natural language understanding (NLU) component, primarily
knowledge-based, whose task is to construct a logic-based representation of the se-
mantic content of student input and classify that representation with respect to the
explanation categories. In this regard our system is different from many other tutorial
dialogue systems, which rely on statistical approaches (Graesser, et al., 2001), key-
word spotting (Evens et al., 2001), or bypass language understanding altogether (Hef-
fernan & Koedinger, 2000) and from systems that use hybrid approaches combining
deep and shallow methods (e.g., Wahlster, 2001).The NLU component uses a left-
corner chart parser with a unification-based grammar formalism to parse the input
(Rosé & Lavie, 1999). It uses the Loom description logic system (MacGregor, 1991)
to construct a semantic representation of student input. Once the semantic representa-
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tion has been constructed, it is classified with respect to the explanation hierarchy.
This may result in a set of explanation categories, as is illustrated in Figure 1, right-
most column.

If the student’s explanation was classified as a complete and correct statement of an
applicable geometry theorem, the tutor accepts the explanation, as illustrated in step 6
of the dialogue shown in Figure 1. Otherwise, if the explanation was classified under
one or more categories that represent incomplete or incorrect statements of an appli-
cable geometry theorem, the tutor selects one of these categories randomly and dis-
plays the feedback message associated with the selected category. In Figure 1, the
explanation category on which the tutor feedback was based is shown in bold face in
the rightmost column. The system also appropriately handles explanations that are
merely references to geometry rules (student gave the name of a geometry rule) and
explanations that focus on the wrong rule. Since the pilot study described in this paper,
a number of improvements have been made to the system, as described below. None-
theless, it is fair to say that the techniques for dialogue management used by the Ge-
ometry Explanation Tutor are fairly straightforward compared to those used in other
systems (Graesser, et al., 2001; Evens, et al., 2001; Wahlster, 2001).

3 A Pilot Study

At the end of the 2000-2001 school year, we conducted a pilot study in order to get a
sense of how well the system was working. During this study, the Geometry Explana-
tion Tutor was used briefly in a suburban junior high school in the Pittsburgh area, as
part of a 9"-grade Integrated Mathematics II course. This course covered a number of
topics in geometry and algebra. Approximately 30 students of ages 14 and 15 partici-
pated in the pilot study. The students were “honors students,” which means that within
their school they were among the best of their grade level in terms of academic ability
and diligence. During two 40-minute class periods, the students worked in pairs on the
Geometry Explanation Tutor, running the tutor on the school’s wireless PC laptops.
Earlier during the semester, they had learned about angles and their interrelationships
(the topics covered in the tutor’s Angles unit, on which we focused in the study) but
they did not have any computer tutoring related to these topics.

4 Effectiveness of Student-Tutor Dialogues

The logs of the student-tutor interactions were analyzed in order to evaluate how ef-
fective the student-system dialogues were. The logs contained information about 185
dialogues comprising 791 explanation attempts to explain a geometry theorem or
definition, or 12.3 *+ 4.6 dialogues per pair of students. Students arrived at a complete
explanation in 75% of the 185 dialogues. About half of the incomplete dialogues oc-
curred simply because the bell rang at the end of the period. For the other half, the
logs indicate that the students’ work on the problem ended abnormally. Such abnormal
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Fig. 2. Number of attempts to explain a given geometry rule, by opportunity

endings were especially likely to occur with geometry theorems that require longer
statements (angle addition and angle bisection) and seem to have been caused by long
system response times.

First, we looked at the number of attempts that it took students to complete their
explanations. This variable provides a measure of how difficult it is to explain prob-
lem-solving steps, assisted by the system’s feedback. In advance, we did not have a
clear expectation of what the value of this variable should be. However, if practice
with the system helps students learn to explain, one should see a decline in the number
of attempts needed to explain any given theorem as students gain experience.

Overall, it took students 3.6 + 4.5 attempts to get an explanation right. This average
breaks down as follows: On the first opportunity to explain any given theorem, stu-
dents needed 4.7 £ 5.6 attempts, whereas on later opportunities, they needed 2.5 £ 2.5
attempts. This decrease over time in the number of attempts was observed for most of
the theorems, as is illustrated in Figure 3, which provides a more detailed break-down
of the data. This figure shows also that some theorems are considerably more difficult
to explain than others. Overall, the number of attempts that were needed to arrive at
complete explanations seems reasonable. Further, our expectation that this number
would go down as students gained experience was clearly borne out. Thus, students
learned to explain the various geometry rules as they worked with the tutor.

A different way of measuring the effectiveness of the student-system dialogues is to
see how often students were able to improve their explanation from one attempt to the
next, assisted by the system’s feedback. A priori, it is not clear on what percentage of
attempts one would expect to see such progress. If students would rarely make prog-
ress, this would obviously not be a good sign. On the other hand, if they would make
progress on every attempt, this might indicate that the tutor feedback makes the task
too easy for students. As a very rough rule of thumb, then, let us say that a minimum
criterion is that students make progress more often than not.
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We define progress as follows: an attempt at explaining a geometry rule constitutes
progress over a previous attempt if

(a) itis a correct and complete statement of an applicable geometry rule, or

(b) ifitis closer to a complete statement than the previous attempt, meaning that it

classifies under a more specific category in the explanation hierarchy, or

(c) if the attempt focuses on an applicable geometry rule whereas the previous at-

tempt focused on a geometry rule that does not apply to the current step.

For example, in the dialogue shown in Figure 1, attempts 2, 5, and 6 constitute pro-
gress according to this criterion. The actual criterion is slightly more complicated due
to the fact that some explanations are references to geometry rules and also because
explanations can fall under multiple categories.

We define regression as the opposite of progress, see for example step 4 in Figure
1. Some explanations constitute neither progress nor regression. These may be expla-
nations that classify under the same set of categories as the previous attempt or expla-
nations that are classified under a different set of categories but constitute “lateral
movement”. This means either that the explanation is better than the previous attempt
in one respect but worse in another, or that the explanation is different from the previ-
ous attempt but no closer to the correct explanation. An example of the latter type is
shown in Figure 1, step 3: although not wrong, it was not necessary to add the term
“adjacent”.

In assessing this kind of local progress, we obviously need not be concerned with
the first attempt at explaining any given step (185 attempts). Further, we disregard
steps where the student’s input was identical to the previous attempt. Such repetitions
occurred rather frequently (namely, 218 times), but we suspect that they are mostly
unintentional, due to imperfections in the system’s user interface that have been fixed
meanwhile. Therefore, we focus on the remaining 388 explanation attempts. For each,
we computed whether or not it constitutes progress based on the explanation catego-
ries assigned by a human rater, namely, the first author. We found that of the 388
attempts, 44% constituted progress over previous attempts, 26% were classified under
the same set of categories as the previous attempt (even though the explanation was
different), 17% represented lateral movement, and 14% constituted regression. Thus,
the percentage of attempts in which students made progress was close to the 50%
threshold presented above, although ideally, it would be somewhat higher than it was.

Some changes have been made within the current dialogue management framework
that are likely to improve the progress rate. First, due to its policy of selecting ran-
domly when a student explanation classifies under multiple explanation categories, the
tutor did not always base its feedback on the most appropriate category. For example,
in step 2 in Figure 1, it would have been better if the tutor had selected category
COMPLEMENTARY-ANGLES-90. We have meanwhile changed the tutor’s selection
criterion so that the tutor selects the explanation category that is closest to a complete
and correct explanation. Second, the tutor feedback can likely be improved by associ-
ating multiple levels of (increasingly specific) feedback messages with each explana-
tion category. This enables the system to provide more specific feedback when the
student’s explanation classifies under the same explanation categories as the previous
attempt and may help reduce the amount of stagnation in the dialogues. This technique
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has since been implemented. Third, some parts of the explanation hierarchy are not yet
fine-grained enough to detect certain improvements to explanations. We have added
18 categories already (for a total of 167), based on the analysis of the current data set
and will likely add more. Finally, it is likely to be useful if the tutor pointed out to the
student whether an explanation attempt implies progress or not. The criterion for prog-
ress used here will be a good stating point. While these improvements are very likely
to raise the progress rate, we cannot rule out that for some of the more difficult-to-
state geometry theorems, such as angle addition, we will need to model more elaborate
dialogue strategies that do not easily fit within the current framework.

5 Evaluation of the System’s NLU Performance

We also evaluated the system’s NLU component, to get an idea of how well it works
and because the question of how well knowledge-based natural language understand-
ing works in analyzing mathematical explanations by novices is an interesting research
question in its own right. We focused on the accuracy with which the system’s NLU
component is able to classify student explanations with respect to its set of explanation
categories. There is inherent ambiguity in this classification task: for some explana-
tions, it is difficult even for human raters to determine what the correct category or
categories are. Therefore, rather than compare the labels assigned by the system
against a “correct” set of labels, we ask to what extent the agreement between system
and human raters approaches that between human raters. This design was used also in
earlier studies, for example a study to evaluate an automated method for essay grading
(Foltz, Laham, & Landauer, 1999).

From the set of explanations collected during the pilot study, we removed those ex-
planations that are identical to the previous attempt. As mentioned, we strongly sus-
pect that these repetitions were unintentional, caused by small flaws in the user inter-
face, which meanwhile have been fixed. Therefore, these repetitions should not influ-
ence the evaluation of NLU performance. Three human raters (two authors and a
research assistant) labeled the remaining set of 573 examples, assigning one or more
labels to each explanation. Each rater went through the data twice, in an attempt to
achieve maximum accuracy. After the first round, we selected 24 “difficult” exam-
ples, explanations that all raters had labeled differently. The raters discussed these
examples extensively, in order to calibrate their labeling approaches. We then re-
moved the 24 examples from the data and all raters made a second pass through the
data, independently revising their labels. The sets of labels assigned by the human
raters and by the system were then processed automatically, in an attempt further to
reduce labeling errors, inconsistencies, and irrelevant differences between label sets.
These changes preserved the intention of the raters and would not have affected the
system’s responses. Out of the 167 labels that could be assigned (the categories in the
explanation hierarchy plus some extras for explanations that were references to ge-
ometry rules), 91 were actually used, combined in 218 different sets of labels.
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Table 1. Average pair-wise inter-rater agreement between human raters and average pair-wise
agreement between the system and each human rater.

Actual Agree- Chance
K ment Agreement

Set equality

Avg Human-Human 0.77 0.77 0.033

Avg System-Human 0.60 0.61 0.030
Overlap

Avg Human-Human 0.81 0.81 0.043

Avg System-Human 0.65 0.66 0.039
Weighted overlap

Avg Human-Human 0.88 0.91 0.26

Avg System-Human 0.75 0.81 0.25

To compute the inter-rater agreement, we use the ¥ statistic (Cohen, 1960), as is
customary in the field of computational linguistics and other fields (Carletta, 1996).
The « statistic provides a measure of how much agreement there is between raters
beyond the agreement expected to occur by chance alone. We computed x in three
different ways: First we computed x based on “set equality” — two raters were consid-
ered to agree only if they assigned the exact same set of labels to an explanation.
However, this measure seems unduly harsh when there are small differences between
label sets. Therefore, we also computed two versions of “weighted K (Cohen, 1968),
a version of the ¥ statistic that takes into account the degree of difference between
labels (or in our case, label sets). So, second, we computed a weighted k based on
“overlap” — meaning that the degree of disagreement was computed as the ratio of the
number of unshared labels versus the total number of labels. Third, we computed a
weighted k based on “weighted overlap” — to take into account a (somewhat rough)
measure of semantic similarity between the individual labels, measured as the distance
in the explanation hierarchy between the labels. In the discussion that follows, we
interpret the set equality measure as a lower bound on the agreement and focus mostly
on the other two measures.

For each of the three agreement measures, we computed the average of the k for
each pair of human raters, as well as the average of the k between the system and each
human rater. As can be seen in Table 1, the average human-human K was good. The
set equality gives a lower bound of .77. According to the (more appropriate) overlap
and weighted overlap measures, the human-human agreement is .81 and .88, respec-
tively. The system-human ks were reasonable but somewhat lower than the corre-
sponding human-human «s. The system-human x according to the overlap measure is
.65, according to the weighted overlap measure, it was .75. Thus, while the compari-
son of human-human ¥ and human-system x indicates that the system’s classification
accuracy was quite good, there seems to be some room for improvement.

In an attempt to find ways to improve the NLU component, we examined cases
where there was high agreement among the human raters (i.e., at least 2 out of the 3
human raters were in full agreement, according to the set equality measure), but where
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the system’s classification did not agree with the majority of human raters. There were
170 such cases. A detailed examination of those cases revealed about 32 different
causes for the system’s failure, ranging from difficult to very minor. The most difficult
problems deal with insufficient flexibility in the face of ungrammatical language and
cases where the system’s semantics model was not developed enough to deal with the
complexity of the meaning of the student’s explanations. The system needs better
repair capabilities to deal with ungrammatical sentences such as “the measures of the
two angles in the linear pair are add up to 180 degree.” Also, the system needs a bet-
ter semantic representation of coordinated structures, to handle for example the sen-
tence “adjacent supplementary angles form a straight line and are a linear
pair.”Further, a number of problems of medium difficulty need to be addressed, deal-
ing with quantifiers, relative clauses, multi-clause sentences, and the semantics of
certain predicate constructs (e.g., “isosceles triangles have two sides equal”). Finally,
there are a number of small flaws with various components of the system that can
easily be fixed. A number of problems have been fixed already. While it will take a
considerable amount of time to address all problems, overall the evaluation results
suggest that knowledge-based NLU with logic-based semantics is able to perform the
detailed analysis of student explanations necessary to provide helpful feedback.

6 Discussion and Conclusion

We are developing the Geometry Explanation Tutor in order to evaluate the hypothesis
that natural language self-explanation can be tutored effectively by an intelligent tu-
toring system and leads to improved learning, as compared to alternative ways of
supporting self-explanation. We conducted a pilot study to get an idea of the effective-
ness of the current system and of the techniques chosen to implement it. This pilot
study constituted the first time that the system was used in a school by a group of
students from the target population and thus represents a realistic test for the Geome-
try Explanation Tutor. It does not yet represent a full test, given the limited time and
scope; it covered about half the geometry theorems and definitions of the relevant
curriculum unit. Also, the students probably were somewhat better prepared and of
somewhat higher ability than the students in the target population.

We found evidence that the student-system dialogues are beginning to work well.
The logs of student-system dialogues showed evidence that students were learning to
explain geometry theorems. On the other hand, the data also revealed some room for
improvement. We would like to see a higher completion rate for the dialogues. Also,
the number of attempts within dialogues on which students made progress was decent
but could be higher. We have described a number of measures that we took in order to
improve the system’s feedback, which we expect will lead to better progress rates.

Further, there was evidence that the system’s knowledge-based NLU component is
reaching a reasonably good level of performance in classifying student explanations.
We found that the system’s classification of student explanations was quite reason-
able: it was not too far behind the agreement between human raters, no mean feat
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given that we are classifying with respect to a fine-grained set of categories. All in all,
the results are encouraging but also indicate room for improvement.

What does the evaluation say about the particular techniques we have chosen for
dialogue management and natural language understanding? For some geometry theo-
rems, such as vertical angles, linear pair, and supplementary angles, it seems quite
clear that the current dialogue management framework is adequate. It is still an open
question however, whether this kind of architecture is going to help students to explain
such difficult-to-state theorems as angle addition. At this point, we need to leave open
the possibility that we will need more elaborate dialog strategies. Knowledge-based
natural language understanding with logic-based semantics seems to be able to deal
with challenging input such as students’ mathematical explanations.

The broader goal of our project is to get students to learn with greater understand-
ing, as compared to other (simpler) forms of tutored self-explanation. We are currently
involved in a larger evaluation study, involving two schools, three teachers, and four
classes, in which we compare the current system to a version where students explained
their steps by making reference to a rule in a glossary.
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