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Abstract

This paper presents the interaction design of, and demonstration of technical feasibility for, intelligent tutoring systems that can accept

handwriting input from students. Handwriting and pen input offer several affordances for students that traditional typing-based interactions do

not. To illustrate these affordances, we present evidence, from tutoring mathematics, that the ability to enter problem solutions via pen input

enables students to record algebraic equations more quickly, more smoothly (fewer errors), and with increased transfer to non-computer-based

tasks. Furthermore our evidence shows that students tend to like pen input for these types of problems more than typing. However, a clear

downside to introducing handwriting input into intelligent tutors is that the recognition of such input is not reliable. In our work, we have found

that handwriting input is more likely to be useful and reliable when context is considered, for example, the context of the problem being solved.

We present an intelligent tutoring system for algebra equation solving via pen-based input that is able to use context to decrease recognition

errors by 18% and to reduce recognition error recovery interactions to occur on one out of every four problems. We applied user-centered design

principles to reduce the negative impact of recognition errors in the following ways: (1) though students handwrite their problem-solving process,

they type their final answer to reduce ambiguity for tutoring purposes, and (2) in the small number of cases in which the system must involve the

student in recognition error recovery, the interaction focuses on identifying the student’s problem-solving error to keep the emphasis on tutoring.

Many potential recognition errors can thus be ignored and distracting interactions are avoided. This work can inform the design of future

systems for students using pen and sketch input for math or other topics by motivating the use of context and pragmatics to decrease the impact

of recognition errors and put user focus on the task at hand.

& 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Pen-based input is one of the more transparent interface
modalities, increasing the naturalness of an interaction by
removing the ‘‘physical interface as a barrier between the user
and the work [he or] she wishes to accomplish’’ (Abowd,
1999). Rather than focusing on translating one’s intent into
special-purpose input for a specific system, a user can use pen
input to quickly sketch or write the intent in his or her normal
e front matter & 2012 Elsevier Ltd. All rights reserved.

g/10.1016/j.ijhcs.2012.04.003

ing author. Present address: Information Systems

MBC, 1000 Hilltop Circle, Baltimore, MD 21250, USA.

5 6395; fax: þ1 410 455 1073.

esses: lanthony@cs.cmu.edu (L. Anthony),

u.edu (J. Yang),

mu.edu (K.R. Koedinger).
mode of expressing such concepts. For example, sketching
user interface diagrams (Landay and Myers, 1995; Lin et al.,
2000), drawing and animating physics simulations (Cheema
and LaViola, 2010; LaViola and Zeleznik, 2004), or entering
mathematical formulae (Anthony et al., 2005, 2007a) are all
domains in which pen input improves on the transparency of
traditional interaction modalities. In our work, we have
explored the affordances of handwriting and pen-based input
in the domain of intelligent tutoring systems for mathematics,
specifically algebra equation solving. Through a series of
laboratory and classroom studies, we found evidence that
using pen input instead of typing enables students to record
algebraic equations more quickly, more smoothly (e.g., with
fewer user errors), and with increased transfer to non-
computer-based learning tasks such as tests and other assess-
ments. We also found that both students and adults tend to

www.elsevier.com/locate/ijhcs
dx.doi.org/10.1016/j.ijhcs.2012.04.003
www.elsevier.com/locate/ijhcs
dx.doi.org/10.1016/j.ijhcs.2012.04.003
dx.doi.org/10.1016/j.ijhcs.2012.04.003
dx.doi.org/10.1016/j.ijhcs.2012.04.003
mailto:lanthony@cs.cmu.edu
mailto:jie.yang@cs.cmu.edu
mailto:koedinger@cs.cmu.edu


L. Anthony et al. / Int. J. Human-Computer Studies 70 (2012) 866–887 867
prefer pen input for doing math tasks over other modalities
such as typing or speaking.

A challenge of introducing handwriting input into intelligent
tutors is that the recognition of pen input is not reliable. In no
domains has it achieved 100% recognition accuracy (cf. Liu
et al., 2010; Märgner and Abed, 2010). Depending on the
domain, recognition errors may be more or less impactful; in
tutoring systems, recognition errors might cause faulty tutor-
ing to occur, confusing the student and harming learning.
To mitigate the negative impact such recognition errors would
have on the interaction, and on the student’s learning, we
introduced the use of context to improve the recognition
accuracy and increase the utility and reliability of handwriting
input. The tutoring system we developed considers the context
of the problem being solved (e.g., what is the correct next step)
to refine the handwriting recognizer’s confidence about the
hypothesized student input. The system design also takes
advantage of what we call task pragmatics, that is, the needs
of the task at hand (tutoring, in our case), to limit distracting
interactions about potential recognition errors.

In this paper, we present an intelligent tutoring system for
algebra equation solving via pen-based input that is able to
reduce recognition errors by 18% and reduce unnecessary
interruption of the student’s learning process to one out of
every four problems. The tutoring system is based on the
Cognitive Tutor family of tutoring systems (Koedinger and
Corbett, 2006), and uses the character recognizer and spatial
math parser of the Freehand Formula Entry System (FFES)
(Smithies et al., 2001) for recognition of handwritten input. We
applied user-centered design principles, focusing the design of
the system on the student’s learning needs rather than
requiring the student to change his or her behavior (e.g., to
correct recognition errors) to successfully solve math problems.
This approach enabled us to reduce the negative impact of the
remaining recognition errors in the following ways: (1) though
students handwrite their problem-solving process, they type
their final answer to reduce ambiguity for tutoring purposes,
and (2) in the small number of cases in which the system must
involve the student in recognition error recovery, the interac-
tion focuses on identifying the student’s first problem-solving

error to keep the emphasis on tutoring. Thus, recognition
errors that might occur in full processing of correct solutions
or in steps after the first error can be ignored. We describe in
detail the evolution of the interaction paradigm, as a model for
other technologies, especially educational technology, that
may be improved by accepting handwriting or pen input.

In today and tomorrow’s classrooms, touchscreens and
tablet computers are becoming increasingly affordable and
commonplace (Roschelle et al., 2007). Pen input is becoming a
standard input modality whose availability allows all students
to take advantage of its benefits during computer-based
learning. The work presented in this paper, including the
design recommendations and interaction paradigm, can
inform the design of future systems for students using pen
and sketch input for math or other topics. The use of a variety
of types of context, such as the problem-solving context, the
user’s handwriting or drawing style, knowledge about the
student’s mastery of the material, and needs of the task
(pragmatics), can be used to decrease the impact of recognition
errors on the student, allowing him or her to focus on, and
achieve higher marks in, the learning at hand.

1.1. Affordances of handwriting input

The use of handwriting interfaces has particular pedagogical
advantages in the domain of learning environments, especially
for the mathematics domain. Studies conducted as part of our
motivating work found that handwriting input for math is
faster than in typing interfaces (Anthony et al., 2005, 2007a).
The efficiency of a handwriting interface for a math tutor
allows students to complete more problems in the same
amount of time (cf. Glaser, 1976). Second, the use of hand-
writing rather than a menu-based typing interface may result
in a reduction of extraneous cognitive load on students during
learning. Extraneous cognitive load (cf. Sweller, 1988), in this
context, is a measure of how much mental overhead is
experienced as a result of interface-related tasks while one is
also trying to learn a mathematical concept. Additionally,
students may prefer handwriting, especially if it makes the
problem-solving process easier or more natural for them, and
therefore leads to increased engagement during tutoring (cf.
Elliott and Dweck, 1988).
Furthermore, in mathematics, the spatial relationships

among symbols have inherent meaning, even more so than
in other forms of writing. For example, the spatial placement
of the x in the following expressions significantly changes the
meaning: 2x vs. 2x. Handwriting is a much more flexible and
robust modality for representing and manipulating such
spatial relationships, which become more prevalent as students
advance in math training. Finally, students still learn to write
before they can type, lending a higher degree of fluency to their
written work that takes longer to develop in typing (cf. Read
et al., 2001a). In our work, we have found support for this
fluency factor in that students experience greater degrees of
transfer to non-computer-based tasks when they enter their
problem-solving solutions via handwriting than via typing or
menus (Anthony et al., 2007a). These affordances encourage
the adoption of handwriting and pen input into learning
environments, as long as the technology is available to
support it.

1.2. Motivation and approach

The technology to support handwriting input has not
always been successful, affordable or prevalent enough to
use in the classroom. However, in recent years, the cost of
tablets and digital stylus devices has become reasonable for
widespread use, reflected in their increased appearance and
adoption in mainstream markets. Still, recognition and
understanding of users’ handwritten input is not a solved
problem. Accuracy rates vary greatly depending on the
task and evaluation dataset(s). For example, in the ICFHR
2010 Arabic handwriting recognition competition, recogni-
tion accuracies from six teams on seven different test



Fig. 1. A screenshot of the Cognitive Tutor interface for an algebra unit involving formulating the relationship between two variables.

L. Anthony et al. / Int. J. Human-Computer Studies 70 (2012) 866–887868
datasets ranged from 67.9% to 99.7% (Märgner and Abed,
2010). Recognition rates with children on various tasks can
be as low as 49.6% to 72.2% (Read, 2007). In our work,
we determined that, in order to enable students to reap the
benefits of using handwriting-based interaction with intel-
ligent tutors, the interaction would have to be designed
with the limitations of the recognition technology in mind.
We took several steps to accomplish this: (a) we trained the
recognition engine using students’ writing to improve a

priori accuracy on input from the target population in the
target domain; (b) we used domain-specific context to
improve accuracy even further; (c) we altered the default
pedagogical intervention to avoid use of step-targeted
feedback, which could be error-prone in handwriting;
and (d) we designed an interaction paradigm to minimize
the impact on the student of recognition errors by avoiding
directly requesting the student to correct the system’s
recognition hypotheses. Steps (a) and (b) we regard as
taking advantage of domain-specific context, whereas steps
(c) and (d) we regard as capitalizing on the pragmatic
needs of the learning task. In the end, a realistic user
interaction paradigm was achieved, in spite of modest
baseline recognition accuracy. In the next few sections, we
provide background for our approach, including the
intelligent tutoring system we adapted and related work
on handwriting input in general, for math and for children.
1.2.1. Intelligent tutoring systems and cognitive tutors

An intelligent tutoring system (ITS) is educational software
containing an artificial intelligence component (Corbett et al.,
1997). Many ITSs present complex, multi-step problems and
provide the individualized support that students need to
complete them. The software monitors the student as he or
she works at his or her own pace. By collecting information on
a particular student’s performance, the software can make
inferences about her strengths and weaknesses, and can tailor
the curriculum to address her needs.
Cognitive Tutors comprise a specific class of ITSs that

are designed based on cognitive psychology theory and
methods; they pose authentic problems to students and
emphasize learning-by-doing (Koedinger and Corbett,
2006). Each Cognitive Tutor is constructed around a
cognitive model of the knowledge students are acquiring,
and can provide step-by-step feedback and help as students
work. These tutors have been created for a variety of
learning domains, including algebra, geometry, foreign
languages, chemistry, computer programming and more.
Cognitive Tutors for mathematics are in use in over 2600
schools in the United States. A screenshot of a typical
Cognitive Tutor interface for an algebra unit is shown in
Fig. 1, showing important interface components such as
the worksheet and equation solver tool. In this solver,
students type equations or steps of the problem and must
use the Transformation and Simplification menus to per-
form manipulations on the equation to solve it.
1.2.2. Handwriting input for math tutors and learning

One area in which tutoring systems may be improved is
with respect to the interface they provide to students for
problem solving. Most ITSs use keyboard- and mouse-
based windows-icons-menus-pointing (WIMP) interfaces.
Such interfaces may not be ideally suited for math tutoring
systems. These interfaces impose cognitive load (Sweller,
1988) on the student, extraneous to learning because using
and learning the interface is (and should be) separable
from the math concepts being learned. A more natural



L. Anthony et al. / Int. J. Human-Computer Studies 70 (2012) 866–887 869
interface that can directly support the standard notations
for the mathematics that the student is learning could
reduce extraneous cognitive load and therefore yield
increased learning (cf. Sweller, 1988).

Furthermore, young children may be a particularly good
audience for handwriting-based interfaces, even without
considering learning. Studies have shown that children
experience difficulties with the standard QWERTY key-
board, making text entry laborious and causing them to
lose their train of thought – a sign of high cognitive load –
even given the rise in computer use by children (Read
et al., 2000). There is also some evidence that children may
write more fluently when using a handwriting-based inter-
face than a standard keyboard-and-mouse interface when
entering unconstrained text (Read et al., 2001a).

Anecdotally, teachers say that students have difficulty
moving from the computer tutor to working on paper.
Teachers report seeing students having trouble solving
problems on paper that are just like problems they recently
solved on the computer with no trouble. The WIMP
interface may act as a crutch: the knowledge students
acquire may become most strongly activated by (or linked
to) the visual cues of the interface, making it difficult for
students to access their conceptual knowledge without
those cues.

1.2.3. Pen input and handwriting recognition

Handwriting recognition has been an active area of
research since the late 1950s (Brown, 1964; Dimond,
1957), even for mathematics (Anderson, 1968). Techniques
for the recognition of handwritten mathematics range from
the recognition of a page of notes after it has already been
written (offline) (Fateman et al., 1996; Miller and Viola,
1998), to the recognition of a user’s handwriting even while
he or she is in the process of writing (online) (Belaid and
Haton, 1984; Dimitriadis and Coronado, 1995). For a
survey of the techniques used in handwriting recognition
systems, see (Chan and Yeung, 2000). Each of the many
techniques presents different speed, accuracy, and memory
tradeoffs, but none of them significantly outperforms all
others in every respect (Guyon and Warwick, 1998). It is
difficult to quote a state-of-the-art handwriting recognition
accuracy rate because recognition can be highly dependent
on the task and individual writer (cf. Read, 2007; Märgner
and Abed, 2010). Furthermore, citing and comparing
performance evaluations can be difficult because authors
do not always report all the pertinent details of the
evaluation needed for interpretation and reproducibility
(Lapointe and Blostein, 2009), and because public bench-
mark datasets are not widely available (Awal et al., 2010).
New standardized metrics for evaluation of pen input
performance are still being proposed and validated
(Blostein et al., 2002; Zanibbi et al., 2011). A second
problem is that few rigorous evaluations have been done
from a usability perspective on handwriting recognizers for
any domain, a weakness identified in the literature
(Goldberg and Goodisman, 1991) but not strongly
pursued. Many of the evaluations that do exist are now
out-dated (MacKenzie and Chang, 1999; Santos et al.,
1992) as recognition technology has continued to advance
over the past decades.
Handwriting recognition systems for math are especially

lacking in formal evaluations and are rarely evaluated for
usability or other human factors. MathPad2 is one of the
few recent systems to perform a complete user study
designed to gauge factors such as user performance,
satisfaction, ease-of-use, and learnability along with recog-
nition engine performance (LaViola, 2006). In that study,
seven adult participants performed a variety of math-
related tasks in MathPad2, such as writing and evaluating
equations and making mathematics and physics sketches.
The handwriting recognizer was writer-dependent and
yielded accuracy rates of 95.1%. Participants generally
noted that MathPad2 was easy to use during the study and
useful for accomplishing math tasks. PenProof (Jiang
et al., 2010), a system for sketching and writing geometric
proofs, reported results of a simple user study with 12
students that showed positive user feedback and yielded
writer-independent recognition rates of 92.1% (symbols)
to 87.3% (full proofs). AlgoSketch (Li et al., 2008), an
interaction layer on top of MathPaper (Zeleznik et al.,
2008), is another system that has reported results of a
(positive) usability evaluation (O’Connell et al., 2009), but
did not also record recognition accuracy during that study.
More studies are needed at the intersection of pen input
recognition and human-computer interaction.
Early work in computer-aided instruction (CAI)

explored the interplay between tutoring system context
and recognition of handwritten math (Purcell, 1977). Our
work builds on this early pioneering effort: (a) moving
from the first generation of educational software into the
modern generation of intelligent tutoring systems running
on desktop and tablet computers rather than mainframes,
and (b) moving from the early approaches to character
recognition which required user training and neat printing
to writer-independent recognition of potentially messy
student writing.

1.2.4. Usability and user acceptance of recognition errors

In terms of handwriting recognition performance levels
that are acceptable to users, LaLomia (1994) provided
evidence that adults will tolerate accuracy rates in hand-
writing recognition for a variety of tasks (not including
math) only as low as 97%. Note that human recognition
rates of handwriting are around this level (Santos et al.,
1992). In contrast to the adult figures, Read et al. (2003b)
found that children are more tolerant of recognition errors,
finding acceptance among children for accuracy rates of
only 91%. Reasons for this difference in acceptability of
errors include the fact that children find handwriting input
to be very appealing and engaging, thus increasing their
overall tolerance for the system making errors (Read,
2002). Frankish et al. (1995) explored the relationship
between recognition accuracy and user satisfaction and
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found that it was highly task-dependent: some tasks (such
as a form-filling task) were rated as very suitable for pen-
based input no matter what the recognition accuracy level
was, whereas others (such as a diary task) were only rated
highly when accuracy was also high. Therefore, recognition
error acceptance is domain- and population-dependent. Based
on the range of values reviewed here, we use the 91–97%
range as a goal for an ITS that accepts handwriting input. Our
approach also uses pragmatics of the task to mitigate the need
for such high rates.

1.3. Evidence from foundational studies

In our work we have conducted three foundational
studies that build on the prior work described in the
previous sections and that provide concrete evidence for
the theoretical affordances of handwriting input for learn-
ing math. In this section, we summarize the main details
and results of those studies.

1.3.1. Usability of different modalities for math input

The Math Input Study (Anthony et al., 2005) focused on
the following research questions: (a) Which of the common
desktop input modalities is the fastest or least error-prone
when entering mathematics on the computer? (b) Do these
effects change significantly as the mathematics being
entered increase in complexity? and (c) Which modality
do users rate most highly as being natural for entering
mathematics on the computer? In this within-subjects
study, 48 paid participants were asked to enter mathema-
tical equations of varying complexity using four different
modalities: (1) traditional keyboard-and-mouse (typing)
using the common Microsoft Equation Editor (MSEE), (2)
pen-based handwriting entry (handwriting), (3) speech
entry (speaking), and (4) handwriting-plus-speech (multi-
modal). There was no automatic handwriting or speech
recognition in this study; users simply input the equations
and did not get feedback about computer recognition of
their input. The equations the participants entered were
varied in terms of the equation length (e.g., number of
symbols) and the equation complexity (e.g., number of
non-keyboard symbols such as exponents).

The results indicated that handwriting was three times

faster for entering calculus-level equations on the compu-
ter than typing using a template-based editor, and this
speed impact increased as equations got more complex
(namely, as characters not on the keyboard were included).
In addition, user errors were three times higher when
typing than when writing for entering math on the
computer. Finally, users rated the handwriting modality
as the most natural, suitable modality for entering math on
the computer out of the ones they used during this study
(on a 5-point Likert scale). The increased efficiency of a
handwriting interface for a math tutor would allow
students to accomplish more problems in the same amount
of time, and the fact that students prefer handwriting
might lead to increased engagement during tutoring (cf.
Elliott and Dweck, 1988). As a result, the Math Input
Study established that, even when not considering learning
as a task, math input via handwriting is generally more
usable than typical typing interfaces for math.

1.3.2. Learning of math with different input modalities

The Lab Learning Study (Anthony et al., 2007a) focused
on the following research questions: (a) Do students
experience differences in learning due to the modality in
which they generate their answers? and (b) Do the results
reported in the Math Input Study generalize to a younger
population and simpler equations that can be typed easily?
The study was a laboratory experiment in which 48 middle
and high school students were paid to participate. Two of
the modalities used in this study were: (1) typing, in which
students typed out the solution in a blank text box (not
MSEE); (2) handwriting, in which students wrote the
solution using a stylus in a blank space on the screen.
Students first copied equations in all modalities and then
solved nine equations in one of the modalities. When
solving problems, students saw a worked example (Pashler
et al., 2007) of the same type of problem they were about
to solve before the introduction of each new problem type
to act as an instructional intervention. No automatic
recognition of student solutions was done in this study.
Feedback on their solutions was provided via a Wizard-of-
Oz format: an experimenter received a screenshot of the
student’s solution when the student clicked a ‘‘Check my
Answer!’’ button; the Wizard was only able to respond
‘‘Yes’’ or ‘‘No’’ and the student had to try again if he got
the problem wrong. To prevent students from becoming
stuck on a problem, after the third incorrect try to solve a
problem, the problem turned into an example and students
were required to copy the solution.
Findings from the Lab Learning Study did in fact show

that the usability advantages found in the Math Input
Study generalized to students performing a learning task
with simpler equations. Students completed the tutoring
lesson in handwriting in half the time than in typing, but
experienced no significant difference in learning—the extra
time students spent in the typing condition did not help
their learning. In addition, students overwhelmingly chose
handwriting as their favorite of the modalities that they
tried during this study. In the Math Input Study, hand-
writing was three times as fast; here in the Lab Learning
Study, handwriting was twice as fast. This difference is
likely due to the simpler nature of the equations given in
this study (fewer advanced characters used), the simpler
nature of the typing interface used (to be more like the
handwriting interface), and the addition of the learning
task. Students experienced sizeable learning gains from
pre-test to post-test in spite of being given only answer-
level feedback, in the context of worked-examples-based
instruction. This finding supports the hypothesis that
worked examples are an appropriate instruction method
when using handwriting input interfaces that may not be
able to support step-targeted feedback. Finally, an
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important finding from this study was that students
experienced better transfer of their learned skills to
paper-based tasks in the handwriting condition than in
the typing condition: the tutor predicted student perfor-
mance on the post-test in the handwriting condition
significantly better than in the typing condition. Predicting
paper-based performance is critical for accurate assessment
of student knowledge within curricula that use ITSs.

1.3.3. Learning in cognitive tutors with handwriting input

The Cognitive Tutor Study (Anthony, 2008) focused on
the following research questions: (a) Do students experi-
ence differences in learning due to the modality in which
they generate their answers? (b) Do the benefits due to the
presence of worked examples sufficiently counteract the
disadvantages of the lack of step-targeted feedback? (c) Do
the results from the Math Input Study and the Lab
Learning Study for the benefits of handwriting, in terms
of time, user satisfaction, and improved transfer-to-paper,
generalize to a more complex tutoring system and class-
room environment? and (d) Do students experience less
cognitive load, measured by self-report, when they use
handwriting to solve problems than when they use typing?
This study was an in vivo classroom study in which eight
algebra classes taught by four different teachers at two
high schools worked in a modified tutor lesson that
enabled handwriting input. Students were approximately
aged 13–17. Data from 76 students were usable; others had
to be removed due to missing either the pre-test or post-
test or spending too little time in the tutor during the study
(e.g., less than 30 min). Classrooms were randomly
assigned to use the control tutor or one of three modified
tutors. We will focus here on the three main characteristics
of each tutor: modality (handwriting or typing), worked
examples (yes or no), and type of feedback (step-targeted
or answer-only). The three modified tutors were: (1)
Typing-Examples-StepFeedback, (2) Typing-Examples-
AnswerFeedback, and (3) Handwriting-Examples-Answer-
Feedback. No automatic recognition of the students’
solutions was done; students typed their final answer and
the system checked it for correctness. The control tutor
(normal Cognitive Tutor) was classified as Typing-NoEx-
amples-StepFeedback. The material in the lesson covered
two- and three-step algebra equations, and contained
problem types such as axþb¼c, axþb¼cxþd, and
a/xþb¼c, with integers, decimals and large numbers
(greater than 1000). The study lasted for two to three
classroom periods, after which all students in a class
received the post-test at the same time. The Cognitive
Tutor’s automatic curriculum selection mechanism was
used to provide students with problems appropriate to
their skill level as the tutoring sessions progressed.

The Cognitive Tutor Study found that the usability
benefits of handwriting input continue to hold, in terms of
total time spent during the lesson: students were 20%
faster in the handwriting condition than in the others. This
study also found that worked examples added value to the
normal Cognitive Tutor, even without handwriting, which
is positive evidence that they can be instructionally helpful
in this context. In addition, step-targeted feedback was
important for student learning, and handwriting, while
outperforming typing input without step-targeted feed-
back, did not outperform typing input with step-targeted
feedback and examples. Therefore, the Cognitive Tutor
Study determined that step-targeted feedback is important
instructionally for students in the math tutoring domain,
and so the technology needs to be improved to be able to
provide more than just answer-level feedback.

1.4. Early results of handwriting recognition of students’

math input

Prior work showed that recognition accuracy can be
highly dependent on the user and on the task (cf. Read,
2007; Märgner and Abed, 2010). Therefore, we conducted
some early explorations of handwriting recognition on the
target domain (algebra and math) and population (middle
and high school student learners) in order to understand
the baseline performance we could expect.

1.4.1. The algebra learner corpus

As mentioned, our foundational studies did not include
automatic recognition of students’ handwriting during
problem-solving. We used these studies as opportunities
to collect a large corpus of handwriting data from students
so that we could train a recognition engine to the target
population and domain. The corpus we collected is called
the ‘‘algebra learner corpus.’’ It primarily consists of data
from the Lab Learning Study, and is based on handwriting
samples from 40 middle and high school students writing
algebra equations. The corpus has been hand-segmented
and hand-labeled. The corpus includes 16,191 symbols
grouped into 1738 equations. Twenty-two unique symbols
appear in the corpus: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, x, y, a, b, c,
þ , � , =, (, ), ___,/} (Anthony et al., 2007a).

1.4.2. Establishing baseline recognition performance

We chose the Freehand Formula Entry System (FFES)
as the recognition engine for our math tutor, based on
initial evaluations of various freely available recognizers
on the algebra learner corpus (see (Anthony, 2008) for
more information). FFES (Smithies et al., 2001) uses
nearest-neighbor classification based on a 48-dimensional
feature space. FFES recognizes mathematical equations
in a two-component process: character recognition (the
California Interface Tools (CIT) character recognizer)
(Smithies et al., 2001), and mathematical expression par-
sing (DRACULAE) (Zanibbi et al., 2002). Stroke group-
ing (character segmentation) is performed via an algorithm
that finds the highest-confidence grouping of a set of m

recently drawn strokes, where m is the maximum number
of strokes in any symbol in the recognizer’s symbol set.
The authors of FFES reported single-symbol accuracies of
77% for eight users when the system was not specifically
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trained to their handwriting (writer-independent), and
rates as high as 95% for eight users when the system was

specifically trained to their handwriting (writer-dependent)
(Smithies et al., 2001).

To understand the baseline recognition accuracy we
could expect in our target domain and population, we
conducted a suite of similar experiments on the algebra
learner corpus (Anthony et al., 2007b, 2008). We tested the
recognizer both on single symbols and on full equations.
Table 1 shows the comparison of FFES’ performance on
the algebra learner corpus to previously reported results of
FFES. Writer-dependent tests were conducted individually
for each of the 40 users in the algebra learner corpus and
final results were averaged over all users. Accuracy on
symbols was about 91%, while accuracy on equations was
lower, only about 78%, due to errors in the stroke
grouping step and accumulated chance of errors across
all symbols in an equation.

For classroom use, writer-independent performance is
required since the tutoring system cannot train its handwriting
recognizer for each new student. In our writer-independent
experiments on the algebra learner corpus, the number of
samples per symbol per user included in the training set was
varied, holding out some users’ data for the test set and testing
on both single symbols and equations. Recognition accuracy
for single symbols leveled off around 83% after training on
two samples per symbol per user. Accuracy on equations
leveled off around 71% at the same point.

Note that we use a normalized (Levenshtein’s, 1966)
string distance, a measure of the number of edits (inser-
tions, deletions, and substitutions) required to transform
one string into another, to compute accuracy on equations
rather than a binary yes/no score. The accuracy calculation
is as follows:

1�
ðiþdþsÞ

n

In this equation, i is the minimum number of insertions,
d is the minimum number of deletions, and s is the
minimum number of substitutions required to transform
the target string into the desired string, and n is the length
of the correct string.

Thus, the accuracy for an equation recognized as
‘‘3xþ10¼20’’ that was actually written as ‘‘3x�1¼12’’
would be 1� (1+0+3)/7 or 43%.
Table 1

Average baseline recognition accuracy of FFES for this target domain an

populations. Blank cells were not reported in original FFES papers.

Number of users in corpus

Writer-dependent, no context Accuracy per symbol

Accuracy per equation (string dista

Writer-independent, no context Accuracy per symbol

Accuracy per equation (string dista
These are the baseline results we are working from when
adding context to the recognition process. Cursory com-
parisons to the previously discussed levels of recognition
accuracy needed for user acceptance (91–97%) might seem
to discourage incorporating handwriting input into ITSs.
However, because user acceptance of recognition error is
highly task-dependent, and because we can take away
some of the focus of the user (student) on correcting
system errors, the raw recognition accuracy numbers are
not sufficient criteria to decide whether to proceed. We
next describe our proposed interaction paradigm that
pragmatically focuses the student on his or her own
problem-solving errors rather than system recognition
errors; and we show that we can improve recognition
accuracy through the use of context.
2. Our pen input interaction paradigm

As mentioned, the result of the handwriting recognition
process is not perfect. Recognition noise still occurs, even
with the additional information provided by context, as we
will discuss. Our goal is to minimize the impact of this
noise on the student, allowing the student and the tutoring
system to focus on task pragmatics, e.g., the problem to be
solved, rather than on correcting system errors. This
section describes the paradigm we use to accomplish this
goal; this paradigm concentrates on identifying the step on
which the student made the error, rather than on knowing
exactly what the student wrote for every step. Students in
our paradigm type their final answer rather than hand-
writing it, because typing a number for x is easy compared
to typing the full solution, and it enables the system to
unambiguously determine whether the student entered a
correct final answer. The basis for this approach is the
observation that students rarely get the final answer
correct without solving the problem correctly, so we can
ignore recognition noise that might otherwise occur on
those solutions by skipping recognition for them.
Fig. 2 lays out the interactive process between a tutoring

system (in green boxes) and a student (in blue rounded
boxes). Decision points (in red diamonds) branch in places
where the tutoring system must determine whether it has
enough information to move the student on to the next
problem. We present each phase of the process and
d population compared to prior results published on FFES for other

FFES original corpus Algebra learner corpus

8 40

95% 91%

nce) – 78%

77 83%

nce) – 71%



Fig. 2. The flowchart of our complete interaction paradigm for a handwriting-enabled ITS. The process begins at the upper left corner of the figure and

follows the arrows, branching at certain decision points as tutoring and problem-solving occurs, until the student successfully enters the correct final

answer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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provide illustrations of how a tutoring system can
implement it.

2.1. Worked example phase

To facilitate learning (cf., Pashler et al., 2007), when
introducing a new problem type (for example, solving
equations of a certain structural form such as axþb¼c), the
tutoring system first presents a worked example (e.g., an
example for which the full step-by-step solution is provided,
Clark et al., 2006) to the student. Students are likely to have
already received some group-based classroom instruction on
the topics to be presented in the tutor. In Fig. 3(a), the student
sees the same equation on the top of the screen as is solved for
him or her on the lefthand side of the screen. The student is
instructed by the software to study the example and copy it
step by step, self-explaining (Chi et al., 1989) the rationale
behind each operation as he or she goes along. No recognition
is necessary in the Worked Example Phase. The student copies
the example, successfully types the final answer on the bottom
of the screen, and is allowed to move on, shown in Fig. 3(b).
(See (Pashler et al., 2007; Salden et al., 2010) for a discussion
of worked examples as an instructional paradigm.)

2.2. Problem solving phase

The tutoring system then assigns the student a randomly
generated problem of the same surface form for the
student to solve independently. The worked example
remains onscreen for the student to refer to until the



Fig. 3. Worked example phase. (a) The student receives a new problem type, and is asked to copy the example on the left. (b) The student successfully

copies the example and types the final answer.

Fig. 4. Problem solving phase. (a) The student is assigned a new problem, similar in form to the example on the left (previously copied). (b) The student is

in the process of solving the problem via handwriting input.
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student has solved a few problems successfully, as a type of
scaffolding, which is then removed as the student becomes
more confident and is able to solve problems without
referring to the example. Fig. 4(a) shows the newly
assigned problem. Fig. 4(b) shows the student in the
process of solving the problem in the handwriting-enabled
tutor. As we will see, the student is making an error in the
second step.

2.3. Answer checking phase

Once the student finishes solving the problem, the
tutoring system requires him or her to type the final answer
in the textbox at the bottom of the screen. This is done
because it removes ambiguity in determining whether the
student has been successful and can move on, or if tutoring
is needed; also, typing the final step is simple. In Fig. 5, the
student has not successfully solved the problem. He or she
has made the common student error of dropping the
negative sign that should be in front of ‘‘1308y’’ (we will
discuss common student errors in the next section). Because
the final answer is wrong, the tutoring system is able to tell
with 100% confidence that the student has made an error
on this problem, so recognition must begin. If the student
had been correct, the system would have gone directly to
the Curriculum Selection Phase (Section 2.8).



Fig. 5. Answer checking phase. The student completes the problem and

types in his or her final answer. However, the student has made an error in

dropping the negative sign from ‘‘�1308y’’ after step 1.

Fig. 6. Recognition phase. Next, the system launches the recognition

process, by first extracting baselines for each problem-solving step and

grouping strokes that make up individual steps together.
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2.4. Recognition phase

Once the tutoring system has detected the need for
tutoring, recognition of the student’s problem solving
solution commences. The first step of the recognition
process is to extract baselines (or reference lines) of each
line of input from the student’s written input, e.g., using a
mathematical expression parser such as DRACULAE
(Zanibbi et al., 2002). Student problem-solving solutions
are largely line-based, due to the step-by-step solution
process taught in schools, making baseline extraction
relatively reliable. The tutoring system then recognizes each
step of the problem individually. DRACULAE (Zanibbi
et al., 2002) can also provide mathematical parsing informa-
tion to help the tutor group the right entities into mathe-
matical relationships once each subgroup is recognized.

During recognition, we also use tutor context, for
example the correct solution, to help narrow down the
recognition space. Other potential pieces of context include
the student model’s expectation that this student will make
an error, the software’s knowledge about common student
errors, and so on. Fig. 6 shows simulated baseline extrac-
tion results for the example solution shown above. We
present the results of our system’s recognition of real
student problem-solving solutions, and how it improves
with the use of context, in Section 3.3.
2.5. Error identification phase

After recognizing each step and representing it internally
as a mathematical parse tree, the tutoring system attempts
to identify the first step on which the student made an error
(the ‘‘error step’’). The subsequent steps would also be
incorrect as errors propagate through the student’s solution,
but we attempt to find the first instance of a student error,
because the tutoring opportunity is strongest here. To find
the error, the tutoring system examines each hypothesized
recognition result and compares it to the expected correct
entry for that step (using normalized (Levenshtein’s, 1966)
string distance). Use of tutor context comes into play
heavily here: the expected correct entry depends on previous
steps the student has made (correctly), since there is often
more than one way to solve a problem. A challenge for the
tutoring system in performing the error identification step is
that deviation from correct expected input may be due to
two factors: (1) actual student problem-solving errors or (2)
system recognition errors. We discuss the relative weights of
each of these factors and our system’s performance on this
task in Section 3.3. Once the tutoring system identifies the
hypothesized error step, it highlights this step for the
student and prompts the student to validate the system’s
recognition hypothesis, shown in Fig. 7.
If the student indicates that the hypothesis about what

he or she wrote for that step is not correct, the tutoring
system will branch to the Ambiguous Step Typing Phase
(Section 2.7). If the student agrees with the system’s
hypothesis, however, the tutoring system will know it has
successfully identified not only the erroneous step, but
what the error actually is. At this point, the tutoring system
enters the Error Feedback Phase (Section 2.6). Note that
the student may actually catch the mistake he or she has
made and say ‘‘no’’ to the Error Identification prompt,
intending to correct his or her input. The student will still
be led to the Ambiguous Step Typing Phase (Section 2.7),
where he or she can type the intended input. This example
shows that our interaction paradigm provides a degree of
robustness in allowing the student to self-correct.

2.6. Error feedback phase

In this phase, the tutor can provide detailed hints or
other feedback for that step to help the student correct his



Fig. 7. Error identification phase. Here the system identifies the step on

which it believes the student made the first error (correctly, in this case).

It prompts the student to verify the system’s hypothesis about the

student’s input in order to choose whether to tutor the student on this

skill, or whether the error occurred elsewhere.

Fig. 8. Ambiguous step typing phase. The system is not able to verify its

hypothesis about the student’s input on the error step, and therefore it

asks the student to type the step unambiguously.

Fig. 9. Curriculum selection phase. The student completes the problem

correctly, including typing the correct final answer. The system accepts

this solution and chooses the next appropriate problem for the student.
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or her error. The student rewrites his or her solution and
types the new final answer, re-initiating the Answer
Checking Phase (Section 2.3). This process will continue
until the student enters the correct final answer. Cognitive
Tutors guarantee that students eventually get all solutions
correct on their own without excessive floundering
(Koedinger and Corbett, 2006).

2.7. Ambiguous step typing phase

If the system finds that its hypothesis about what the
expected error step says is incorrect, only then does the
system engage the student in recognition correction inter-
action. It elicits the student’s intent via unambiguous
typing of this step, shown in Fig. 8. Doing so enables the
tutoring system to determine with 100% confidence
whether or not the student actually made an error on this
step. Asking the student to handwrite his or her solution
again could be problematic, as repeated input in the same
modality tends to deviate more from the trained models as
the user’s frustration grows (Oviatt et al., 1998). If the step
is actually correct based on the stored problem solution,
the tutoring system will revisit the Error Identification
Phase (Section 2.5), armed with new certainty about the
steps prior to the first hypothesized error step. (If the step
the student types actually contains an error, the tutoring
system will branch to the Error Feedback Phase and
provide a hint or feedback for the step to help the student
correct his or her error (Section 2.6)).

2.8. Curriculum selection phase

Once the problem has been successfully solved, and the
correct final answer typed (shown in Fig. 9), the tutoring
system will enter the Curriculum Selection Phase. In this
phase, just as in typical Cognitive Tutors, the system
determines whether or not the student has attained
mastery of all the skills being practiced in the problem
type. If the student does have high enough mastery, the
tutoring system will assign a new problem type, returning
to the beginning of this process at the Worked Example
Phase (Section 2.1). If not, the student will receive more
problems of the same structure to solve in the Problem
Solving Phase (Section 2.2).

2.9. Remarks on design for a handwriting-enabled tutoring

system

We have presented the interactive process by which a
handwriting-enabled tutoring system can successfully tutor



Table 2

The most commonly encountered student errors from the Lab Learning Study data, their frequencies and rates in the 73 problems with errors, and a

description of the error. Note that a problem solution can have more than one error.

‘‘Error’’ type Freq. Rate

(%)

Description

Arithmetic error 24 33 The student makes a simple arithmetic error, such as indicating that 7� 6 equals 56.

Negative sign dropped 12 16 The student divides by a negative number and does not include the negative sign in the result.

Example mirroring or copying 12 16 The student writes numbers in the problem that are mirrored from the example provided, rather than

from the problem to be solved.

Using a wrong number 12 16 The student applies an otherwise correct operation using an incorrect number.

Transcription error 5 7 The student copies the problem incorrectly or incorrectly copies a number from one step to another.

Performing different operations

on each side

5 7 The student, for example, subtracts a number from one side but divides on the other side.

Using different numbers on each

side

2 3 The student applies the same operation to both sides but uses different operands on each side.

Operating on terms rather than

sides

2 3 The student applies an operation to two terms on the same side, ignoring the equals sign and the other

side of the equation.

Reciprocal confusion 2 3 The student multiplies by the numerator rather than the denominator to remove a fraction.
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the student by iteratively reducing the ambiguity of the
student’s input. In most cases, the recognition process will,
in the face of recognition noise, recognize the student’s
input well enough to identify the error step, but in the
cases in which the tutoring system has low confidence or
makes mistakes, the paradigm we presented will enable the
student to successfully complete the problem-solving pro-
cess with a minimum of system-oriented interruptions.
There are many ways we deal with input errors in this
design: (1) ignoring them if the student types the correct
final answer or if they occur after a system-identified error
step, (2) confirming the system’s recognition of the stu-
dent’s input at the point it believes the student made an
error, and (3) finally asking the student to type an
individual step that the system needs to understand is
correct or not in order to provide appropriate tutoring.

In the next sections, we describe in more detail the
methods our prototype system actually uses to implement
this paradigm and to recognize written problem-solving
solutions and identify the error steps, and how well it
performs at doing so on real-world data.

3. Evaluation of our pen input interaction paradigm

We begin by describing the types of student errors that
occur in real-world problem-solving datasets and the recog-
nizer test corpus we created to include representative,
common errors. This corpus, which we will call the ‘‘gener-
ated error corpus,’’ was then used to test the recognizer with
context to determine how well the system would do on
identifying student errors and recovering from them.

3.1. Types of student errors

In this section we introduce the types of problem-solving
errors we saw students make. The initial categorization was
made on the data from the Lab Learning Study. Under-
standing what types of errors students make allows us to test
the context-enabled recognition process on real examples of
errors to help ensure the interaction paradigm we developed
would work in real use.

3.1.1. Common error types

Table 2 briefly presents a description of each of the
common problem-solving error types and their frequencies
in our Lab Learning dataset. Table 3 gives examples of
actual handwritten student problem-solving solutions that
illustrate the main error types. Note that the emphasis of
these categories is on how the system can interpret the
student’s input in order to score it relative to the correct
input, and the categories may not necessarily correspond
to the student’s intent. Providing help in these circum-
stances may need to be more broadly worded to cover
multiple possible learner misconceptions that manifest
themselves in the same expressed error. This same chal-
lenge occurs in the existing typing-based tutor when
providing hints for these types of errors.

3.1.2. Other error types

We also saw a large quantity of errors of other types that we
deemed not in scope for this work. Usually this decision was
based on the fact that the ‘‘errors’’ were not problem-solving
errors but rather a result of the student inputting information
that was not on task or not following the directions. Table 4
briefly presents these ‘‘error’’ types and their frequencies in our
Lab Learning dataset. The tutoring system can address these
errors, when the entered answer is incorrect, by requiring the
student to show (more of) his or her work. Note that we do
not intend to imply that these ‘‘errors’’ are not important to
learning and pedagogy, but rather that addressing them would
require more sophisticated intelligence in the system than this
work aims to support. Furthermore, in some cases, such as
‘‘not showing work,’’ the student would still be able to use this
system successfully to enter his or her final answer, but would
need to write the problem-solving solution in the interface to
receive help to fix his or her answer if incorrect.



Table 3

Illustrative examples of the main student-made error types found in our Lab Learning Study.

Arithmetic error Negative sign dropped Example mirroring (56¼7x was from the example)

Using a wrong number Transcription error Performing different operations on each side

Using different numbers on each side Operating on terms rather than sides Reciprocal confusion
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3.2. The generated error corpus

To build a test corpus of problem-solving examples that
included instances of errors, we chose the five most
common errors students made from the types of student
errors in the Lab Learning Study. These five types were:
‘‘arithmetic error,’’ ‘‘negative sign dropped,’’ ‘‘example
mirroring,’’ ‘‘using a wrong number,’’ and ‘‘performing a
different operation on each side.’’ We included both a
correct and incorrect version of the problem solution for
each test case in order to reveal how recognition noise
might interfere with recognition of correct problems. The
first five test cases involved just one of the five chosen error
types, and the sixth one was a more challenging incorrect
problem involving two of the errors: the ‘‘negative sign
dropped’’ and the ‘‘using a wrong number’’ error types. All
of the test cases were examples of a real student’s error on
a specific problem from the Lab Learning dataset. Because
we did not have an example of every problem solution with
the same error from every student writer, we created
additional test cases ourselves by randomly selecting
samples from each student from the algebra learner corpus
to fit each test case and laying them out spatially on a
virtual canvas. This method ensured we would have a
breadth of handwriting samples from different students to
test the recognition thoroughly. In total, 4800 sample
instances of these problems were created from the algebra
learner corpus: 10 examples per each of 40 students per
each of six problems both with and without the problem-
solving error: 10� 40� 6� 2¼4800 total test problem
instances.

3.3. Results of the evaluation of the improved

recognizerþ tutor

In this section we describe the results of our evaluation
of the improved recognizer when using context informa-
tion from the tutoring system. We compare the accuracy of



Table 4

Error types which were deemed out of scope for this work from the Lab Learning Study data, their frequencies and rates in the 73 problems with errors,

and a description of the error. Note that a problem solution can have more than one error.

‘‘Error’’ type Freq. Rate

(%)

Description

Not showing work 37 51 The student simply writes the final answer without showing the process

Incomplete solution 25 34 The student submits a partial solution without the line ‘‘x¼X’’ (e.g., cannot determine their final answer)

Expressed answer via ‘‘plug

and chug’’

12 16 The student writes the original equation with the value of x in the place of the variable, for example, writing

5� 3þ3� 3¼24 as the solution to 5xþ3x¼24

Off-task writing 18 25 The student scribbles or writes messages unrelated to the problem-solving process in the input space
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this improved recognizer against the default recognizer
without using tutor knowledge. Recall the two-pronged
approach we use to minimize the impact of recognition
errors on the student’s learning experience. First, task
pragmatics are used: the student types the final answer and
the system determines whether there’s been a student error
or not. This information helps the system choose whether
or not to launch the ‘‘Recognition Phase’’ of the interac-
tion paradigm. Then, if recognition is launched, it uses
context from the tutor itself. We describe in the next
section what types of tutor information are available and
how they help to refine the recognizer’s hypotheses and
improve recognition overall, enabling the tutor to more
confidently identify the student’s error and intervene
appropriately. Because we focus on identifying student
errors rather than the complete recognition of student
problem-solving solutions, the raw recognition accuracy
itself is less critical. We then describe how the use of task
pragmatics contributes to the success of our tutoring
paradigm.

3.3.1. Improving recognition accuracy via context

To improve handwriting recognition accuracy and
decrease the negative impact of recognition errors on the
student, we incorporate domain-specific context informa-
tion into the recognition process, thereby constraining the
recognition hypotheses to contextually-relevant ones and
yielding higher accuracies. As Koerich et al. (2003) noted,
smaller vocabularies (lexicons) tend to be more accurately
recognized than open lexicons. Domain-specific recogni-
tion typically uses smaller vocabulary sizes and specific
grammar rules, yielding higher accuracies in its particular
context, and so it can be used in cases where domain-
general recognition may not yet be suitably accurate.

In the tutoring domain, much context is available for free.
For instance, the tutoring program assigns the problems for
the student to solve, so it knows what the student should be
writing (the correct answer). From the model of student
knowledge, it knows the probability that this student will get
the correct answer, i.e., based on prior opportunities to
practice the same skill(s) applicable to the current step. From
years of learning science research into difficulty factors
assessment (Tabachneck et al., 1995), the system knows the
most common misconceptions (known in intelligent tutoring
literature as ‘‘bugs’’) that students might demonstrate. For the
prototype work presented in this paper, we used the informa-
tion from the tutor about all possible problem-solving steps
that would be correct for the next step.
The tutor context information was used to further refine

the recognition hypothesis once the strokes had already
been fed into the stroke grouper and character recognizer,
rather than as a top-down constraint on what the recog-
nizer would consider as potential hypotheses. The method
we used to incorporate the tutor’s context information into
the recognition process comes from collaborative informa-
tional retrieval and is known as ‘‘ranking fusion’’ (Renda
and Straccia, 2003). The recognition hypothesis n-best list
can just as easily be considered as a rank-list, and the
tutor’s context information provides a list of potential
correct problem-solving results for the current step, each of
which is treated as equally likely by our prototype. For
simplicity, because the recognizer recognizes one character
at a time and its n-best lists include the hypotheses for only
one symbol at a time, we put each element of the set of
correct next problem-solving steps into a ‘‘bag of words’’
(Buscaldi and Rosso, 2007) (actually, characters in our
case) and sort them by symbol frequency to obtain ranks
for each potential symbol that might be in the recognizer’s
n-best list. We then use a technique called ‘‘average-rank
sort’’ (Borda, 1781) to sort the tutor rank-list and the
recognizer rank-list into one list. This list replaces the
recognizer’s n-best list for the current symbol it is recognizing;
by considering the tutor information, the position of various
symbols may be changed in the list, altering the recognizer’s
top hypothesis. For example, if the recognizer’s n-best list’s top
two elements are ‘‘s’’ and ‘‘5’’ but the tutor’s bag of symbols
did not include ‘‘s’’, the average-rank sort will drop ‘‘s’’ to
much lower in the list, bubbling up ‘‘5’’. For further details on
this process, see (Anthony, 2008).
The combined tutorþrecognizer was tested on the

generated error corpus, using writer-independent five-fold
cross-validation so that each student’s samples were part
of the test set once and the training set four times. We
repeated this experiment iteratively with 11 different
weights for the tutor ranks (WT) and the recognizer ranks
(WR), ranging from 0.00 to 1.00, which affects the average-
rank sort step of the combination tutor, to find the best
settings. (The recognizer weight WR was always equal to
1�WT.) The best improvement over the recognizer alone
was seen for the (WT¼0.40, WR¼0.60) pair, with an
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accuracy of 72.5% (error¼27.5%), although results for
several of the nearby weights were quite similar. Perfor-
mance of the recognizer alone (WT¼0.00, WR¼1.00) is
66.3% (error¼33.7%). These results, summarized in
Table 5, show an 18% reduction in recognition error when
the system is augmented with the tutor’s context informa-
tion provided by our prototype, a difference found to be
significant using a paired-samples t-test (t(18,720)¼27.997,
po0.0001). (Note that values of WT in the range of
0.20 to 0.60 also produce accuracy results that are better
than the recognizer alone (Anthony, 2008).) Recall that
we used a normalized (Levenshtein’s, 1966) string distance,
a measure of the number of edits (insertions, deletions,
and substitutions) required to transform one string into
another, to compute accuracy on equations rather than a
binary yes/no score. Use of context also increases the
number of equations gotten 100% correct by the recogni-
zer, from 26% to 39%, or a 50% increase in fully correct
equations in the generated error corpus.

The without-context equation accuracy on the generated
error corpus (66.3%) is lower than that on the algebra
learner corpus cited in Section 1.4.2 (71.3%), most likely
due to the characteristics of the test set. The average length
of the equations and expressions from the generated
error corpus was shorter than in the algebra learner
corpus, and although the accuracy is normalized by
equation length, shorter expressions do tend to have higher
error rates. For other comments, see (Anthony, 2008).
3.3.2. Identifying student errors

With the recognizer more finely-tuned to the target
population and domain, we next focus on using this
improved recognizer to identify the step on which the
student made an error, as specified by our interaction
paradigm.

When a student has entered a final answer that does not
match the tutor’s expected answer (or is not mathemati-
cally equivalent to it), the tutoring system launches the
Recognition Phase (Section 2.4) with the goal of identifying
the first step on which the student made an error. To
determine on what step(s) the student made an error, the
recognizer can use the string distance between the recognition
hypothesis of what the student actually wrote and the tutor’s
information about what the step should say if it is correctly
Table 5

Average recognition accuracy of FFES for this target domain and p

used during recognition. This table shows data for the best-perform

Number of users in corpus

Writer-independent, no context Accuracy per equ

Equations 100%

Writer-independent, with context Accuracy per equ

Equations 100%
solved. If the string distance is greater than a chosen threshold,
the step is likely incorrect.
We tested the combined recognizerþ tutor’s ability to

perform this task on the generated error corpus. The
performance on this task is imperfect: the performance
achieved on identifying the first error at (WT¼0.40,
WR¼0.60) was about 42%. A challenge to this task is
that, once a student makes an error, the error will tend to
propagate through the problem, causing the subsequent
steps to diverge more sharply from the expected input.
Still, we show an improvement over chance; since the
problems have between three to five steps, chance at
identifying the error step correctly on the first try is 25%.
If the system gets the error step identification wrong, the

process can repeat. Through a combination of verifying
the system’s hypothesis in the Error Feedback Phase
(Section 2.6) and soliciting explicit unambiguous input
from the student in the Ambiguous Step Typing Phase
(Section 2.7), we enable the system to provide tutoring at
the step where it is most likely needed by the student. In
the next section we discuss the anticipated impact these
interruptions will have on the student’s learning experi-
ence, based on the frequency and types of errors
students make.
As we have seen, there is room for improvement in the

system’s ability to identify the student’s error step on the
first try. However, even with the system’s current perfor-
mance, the anticipated impact on the student’s learning
experience is low, as we discuss in the next section.

3.3.3. Anticipated impact on student experience

To guage the success of our approach in realizing the
interaction paradigm we defined, it is not sufficient to
simply compute the handwriting recognition accuracy,
even with context. Instead, we stress the anticipated impact
on the student’s experience. How often is the student asked
to confirm a step that he or she actually made correctly,
because the system did not successfully identify the error
step on the first try? We consider the important factors in
this section.
As described in the previous section, when the student’s

final answer is incorrect and tutoring commences, the
system may not find the first step on which the student
made an error in the problem on its first try. Each time the
system gets the identification wrong, it launches an
opulation on the generated error corpus when tutor context is

ing weights for tutor and recognizer of (WT¼0.40, WR¼0.60).

Generated error corpus

40

ation (string distance) 66%

correct 26%

ation (string distance) 73%

correct 39%
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Ambiguous Step Typing Phase, and the student types his
or her step so the system can eliminate ambiguity. These
steps are unnecessary and extraneous, possibly reducing
the benefits for learning of using the handwriting input in
the first place. We can use the error identification perfor-
mance results to estimate how often the system will have to
unnecessarily intervene with the student in this way.

The expected average number of unnecessary steps per
problem that a student will have to type on error problems
(E(n)) is given by the following equation:

EðnÞ ¼
X1

n ¼ 0

neðnþ1Þ

In this equation, n is the number of unnecessary steps per
problem and e is the probability of the system incorrectly
identifying the proper step where the student error is (error
rate), given by one minus the success rate. For the value
0.50 of e, the sum converges to 1.0, meaning that with a
50% success rate (50% error rate) at identifying which step
the student error is on, the student will have to do an
average of one extra step per problem. In other words, the
student would correct the system unnecessarily once per
problem on which an error occurs. Furthermore, the worst
case is that the system chooses the first error last when
intervening with the student, meaning that the maximum
number of unnecessary interventions will be equal to the
number of steps in the problem. (Recall that the student
does not have to do any extra steps on problems without
errors, because he or she would have typed in the final
answer correctly and would have been allowed to move on
without the system needing to perform any recognition.)

In the corpus of student problem-solving solutions from
the Lab Learning Study, there were 73 problems out of 500
that the students did not solve correctly on the first try,
which corresponds to a 14% problem error rate in the
corpus (i.e., corrections needed on 1 out of 7 problems).
Therefore, the overall expected number of extra steps is the
product of this rate and the expected number of extra steps
on error problems alone. For the error identification
success rate of 42% at (WT¼0.40, WR¼0.60) from the
results reported in the previous section, the sum (with
e¼0.58¼1.0�0.42) converges to 1.907, meaning that
almost twice per problem on which there was an error

students would have to enter an unnecessary step. Given
that only 14% of problems have errors in our data,
multiplying 1.907� 0.14 yields approximately 0.267, mean-
ing that approximately one out of every four problems

overall would require unnecessary extra steps over the
course of a lesson.

We have established that handwriting of equations is
faster than typing, twice as fast in one study (Anthony
et al., 2007a) and 20% faster in another (Anthony, 2008).
Having to correct the system’s recognition errors on one
out of four problems (on average) would cut into that time
benefit, at least by 25%. Even assuming conservatively that
the added overhead of correcting recognition errors via
typing costs the students twice as much time, one can
expect to cut into the time benefit only by 50%. Thus, in
the case in which students in handwriting were twice as
fast, the students in handwriting would still be over 50%
faster than students in typing for the same problems.
Taken concretely, if a student takes two hours to complete
a lesson in the typing modality, she would take one hour to
complete it in handwriting, with no tutoring feedback or
system error correction. With the addition of automatic
recognition in the paradigm we have defined, and the need
to sometimes correct the system’s errors, students would
still be able to complete the lesson successfully in 1 h and
30 min on average. Over many lessons, this time savings
allows the students to move on to much more advanced
material than their typing counterparts.
Furthermore, the timing benefits are present even if the

student error rate is higher. For example, we might expect
to see an increase in the proportion of student errors as the
instructional domain becomes more complex, such as in a
university math course rather than the high school course
studied in this work. With the same e of 0.58 (error
identification success rate of 42%), if students’ rate of
errors doubled to 28% of the problems, we expect students
would be interrupted about every other problem; if student
errors increased to 50% of the problems, we expect
students would be interrupted on almost every problem.
If we can improve error identification success rate up to
61% (e¼0.39), students can make errors on up to 50% of
the problems and still be interrupted on only one out of every
four problems. Finally, even with the original student error
rate of 14%, as long as the system’s success rate for error
identification is at least 35% (e¼0.65), there is still an
estimated time savings for the students in handwriting.

3.4. Remarks on evaluation of the paradigm

The baseline student experience to which we are com-
paring is a typing and menu-based interaction, which is
cumbersome for performing math and creates cognitive
load, fluency and transfer problems. With the improve-
ments to recognition accuracy, including the use of context
and training to the target domain and population, and the
focus of the interaction on tutoring student errors rather
than full knowledge of the student’s solution, we can raise
the performance of the handwriting interface to minimize
the need for students to correct recognition errors. Even

with the occasional recognition correction, the benefits of
handwriting input for math (over typing) are still present:
usability, speed, user preference, and transfer to paper.

4. Related work

4.1. Other alternative interfaces for intelligent tutoring

systems

Besides the work presented in this paper, other tutoring
systems have explored more natural interfaces, such as natural
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language processing of typed input (Aleven et al., 2003;
Freedman, 1999), spoken dialogs with conversational agents
(Beal et al., 2005; Graesser et al., 2003; Litman and Silliman,
2004), and animated characters with gesture-based interfaces
(Oviatt and Adams, 2000). However, most systems do still rely
on standard WIMP interfaces. The prevalence of WIMP
interfaces is due in part to the fact that the technology
available to most students in the classroom has been limited
to keyboard-and-mouse — this situation is changing however,
as students receive PDAs, Tablet PCs or iPads in the
classroom (Jackson, 2004; Valentino-Devries, 2010; Wood,
2002). In addition, research into handwriting recognition
technology has not emphasized making recognizers easy to
use and adapt for new domains by non-experts, and recogni-
tion systems are often inaccessible or opaque to anyone but
the system’s own developers.

4.2. Other handwriting interfaces for mathematics

Standard interfaces for entering mathematical equations
into computers have focused heavily on keyboard- and mouse-
based interfaces, especially on the desktop. Mathematics tools
that use a typing interface often require the user to become an
expert at a new programming language (e.g., Microsoft
Mathematics, MapleSoft’s Maple, The MathWorks’ Matlab,
and Wolfram Research’s Mathematica). These programs have
a large learning curve, even for mathematics experts, and
therefore are not only difficult or inaccessible for many novices
but also slow for experts to use. These computer interfaces are
optimized for entering linear text (Smithies et al., 2001). Linear
input methods might inhibit mathematical thinking and
visualization, especially for some learning tasks, since mathe-
matics often appears in higher dimensional layouts, enabling
the representation of fractions, superscripts, subscripts, and
other notations.

Mathematics interfaces that do not require users to
linearize their input are called template-based editors,
which force users to select pre-defined mathematical
structure templates (e.g., fractions, superscripts, subscripts)
from a menu or toolbar and then to fill in the templates
with numbers and operators by typing on the keyboard.
Users can construct a representation of higher-dimensional
mathematics, but must do so in a top-down manner,
making later structural changes difficult (Smithies et al.,
2001). The most common such tool is the equation editor
included in Microsoft Office (the equation editor is a
simplified version of Design Science’s MathType tool).
Worthy of note is that Microsoft (2005) has an extension
to the equation editor for the Tablet PC version of
Windows that allows handwritten input. However, because
it is not customizable by the end-user or an application
developer, it cannot be easily adapted to new domains such
as math learning, making it suboptimal for use in research
into new handwriting recognition applications.

Unlike typing, writing math allows the use of paper-
based mathematical notations simply and directly. It is
therefore natural and convenient for users to communicate
with computers via pen input (Blostein and Grbavec,
1996). Several research and commercial systems do exist
that allow users to input and/or edit mathematical expres-
sions via handwriting input. We have already discussed
MathPad2 (LaViola and Zeleznik, 2004), which is among
the most robust and complex. In MathPad2, users can
write out mathematics or physics equations and the system
animates the physical relationships given by these equa-
tions, for example, to animate a pendulum or oscillating
sine curve. Another relevant example is the PenProof
system (Jiang et al., 2010), which allows users to sketch
and write geometry proofs (not necessarily equations) that
the system automatically validates. Other systems such as
MathPaper (Zeleznik et al., 2008), Algo-Sketch (Li et al.,
2008) and xThink’s MathJournal (2003) allow the sketch-
ing and writing of mathematics, but rely on in-context
menus to allow users to perform manipulations. Littin’s
(1995) recognition and parsing system, the Natural Log
system (Matsakis, 1999), FFES (Smithies et al., 2001),
PenCalc (Chan and Yeung, 2001), inftyEditor (Suzuki
et al., 2004), and JMathNotes and the related E-Chalk
system (Tapia and Rojas, 2003, 2005) are simple equation
entry and editing programs without the added benefit of
sketching or graphing. Many of the earlier systems on this
list are out of date and not maintained.
Most of the mentioned handwriting-based interfaces for

math focus only on letting users input mathematics. They
do not provide a structured approach to learning how to
perform mathematical operations. There is at least one
commercial software program that does use pen input for
math for educational goals, albeit very simply: the
AlphaCount iPhone app (2010), based on the $N multi-
stroke pen gesture recognizer (Anthony and Wobbrock,
2010). Students practice entering numbers and counting
objects onscreen via finger writing. Oviatt et al. (2006) have
investigated the use of pen-based input for geometry
learning, focusing on the cognitive load imposed by less
familiar interfaces such as tablet computers vs. digital
paper. MathBrush (Labahn et al., 2008) adds a pen-input
layer onto an existing computer algebra system (CAS),
motivated by educational pedagogy research into the best
ways to introduce technology into the classroom. New-
ton’s Pen (Lee et al., 2007) is a pen-top computer tutor for
physics statics problems in which students fill out template
worksheets on digital paper. However, in none of this
work is there scaffolded, tailored feedback or a model of
student learning, both of which are significant contributors
to the advantage of using Cognitive Tutors (cf. Koedinger
and Corbett, 2006).

4.3. Other recognition error recovery strategies

In systems with potential for errors, it often falls to the
user to repair such errors. Mankoff and Abowd (1999)
identified five approaches to error handling in recognition-
based interfaces: (1) error reduction, (2) error discovery,
(3) error correction, (4) validation of techniques, and (5)
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toolkit-level support. Error repair has been studied exten-
sively in speech recognition interfaces, but less so in
handwriting interfaces. The approaches to error repair
taken in this work are (1) error reduction – avoid making
errors in the first place as much as possible (e.g., use of
context), and (2) error discovery – attempt to find or
reduce the system’s errors before they are presented to the
student (e.g., use of task pragmatics). Error correction
techniques and their validation can be taken into account
in future work. Many types of error correction techniques
exist, and some work has been done in exploring their
suitability for use with children. Read et al. (2003a)
showed that students spend more time correcting errors
when recognition is real-time (i.e., displayed as characters
are being written) than when it occurs at the end of a
discrete unit, such as a sentence or equation; however, the
total number of errors made does not differ. The extra time
spent repairing errors is extraneous to learning, so delaying
recognition feedback until later seems wise in this domain
with this target population, and is consistent with our
paradigm.

A system developer may choose to provide explicit error
recovery techniques, and may find it useful to know what
types of errors one can expect from this population and in
this domain. Besides domain-specific errors such as the
algebra problem-solving errors we presented in Section 3.1,
specific error types that are likely to occur in handwriting
interfaces have been studied (Schomaker, 1994): one can
expect to find (1) discrete noise, (2) badly formed shapes,
(3) input that is legible by the human but not by the
recognizer, (4) misspelled words, (5) canceled material, and
(6) device-generated errors. Types of repair strategies
undertaken by users when these errors occur are deletion,
completion, insertion and overwriting (Hürst et al., 1998).
Error types for children using handwriting input also
include (Read et al., 2001b) spelling errors, construction
errors (e.g., penmanship errors), and execution errors in
using the handwriting device, on top of recognition errors.
In the learning domain, of course, the possibility of the
student making math errors is very real and must also be
taken into account. Additionally, observational studies of
children using pen-based input and handwriting recogni-
zers have been undertaken which have helped to identify
specific types of device-generated errors, including posi-
tion-based errors such as when the stylus and pointer
onscreen are not properly calibrated, or when the student
writing goes off the page (Read et al., 2002).

5. Conclusions

We have presented the theoretical and practical aspects
of an interaction paradigm for handwriting-based intelli-
gent tutoring systems for mathematics. We based our
design recommendations on foundational work establish-
ing the affordances and benefits of handwriting input for
mathematics (Anthony et al., 2005, 2007a, 2007b, 2008),
and expect that these benefits will hold for a variety of
domains. A key component to this expectation is the idea
that a student in a learning environment should be able to
separate the concepts he or she is learning from the
interface he or she is using to perform the learning tasks.
Robust and transferrable learning is a critical goal for
education research (Koedinger et al., in press) and the
interaction can help or hinder it. Fluent and natural
interaction is the first step, and the second step is to
ensure that correcting system recognition errors does
not become central to the interaction, allowing students
to focus on correcting their own learning errors and
misconceptions.

5.1. Limitations and future directions

While we have presented compelling evidence that a
handwriting-based intelligent tutor could be effective in
enhancing the student learning experience, even with
imperfect recognition, we have not yet tested the full
prototype that realizes the presented interaction paradigm
with students. Such a test seems worthwhile, especially
given that newer recognition technologies may be available
that would improve the results presented here even further.
Another avenue for improvement is to use more of the
context information that Cognitive Tutors provide, includ-
ing knowledge of the specific student’s likelihood of
making an error on specific steps involving certain skills.
The generalization of the work presented here beyond

algebra to other domains would be enlightening. So would
a concrete realization of the anticipated impact of the
presented interaction paradigm on the student’s learning
experience, namely, quantifying the degree to which
students really do move on to new material faster as a
result of using handwriting-based ITSs vs. typing ones, and
measuring the long-term learning benefits of doing so.
Some of the components of the technical approach could be

further investigated through explicit comparisons to other
methods. For example, using a different baseline recognition
engine, more of the tutor’s context, and other ways to weight
and combine the tutor’s and recognizer’s hypotheses during
recognition all have potential to yield improvements. We have
used average-rank sort here, but more sophisticated techniques
such as Bayesian networks or Markov chaining might be
promising. We have also incorporated the tutor’s context
information by merging it with the independently-calculated
recognition result for a specific step, but using the context to
prune the recognition space before the recognizer begins may
be a viable alternative. Simplifying the tutor’s context into a
bag of words removes some of the information present in the
tutor’s context, such as bi-grams and tri-grams, and so options
might be considered which retain this information and allow it
to be used to improve results.

5.2. Implications for design of pen-based ITSs

This paper presented several techniques to improve
handwriting recognition accuracy for use in the math
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tutoring domain, including training on a set of hand-
writing data from the target population (e.g., junior high
students rather than users in general) in order to enhance
writer-independent accuracy and to reduce or remove the
need for students to take classroom time to train the
system before they begin learning. In addition, we used
domain-context information to refine recognition results,
by adding information from the tutoring system about the
set of correct possible answers at each step of the problem-
solving process. The domain-context information, though
very simple in scope, significantly reduced recognition
error by 18%. The use of task pragmatics, namely, that
exact recognition is not needed when students are correct
or once the system has identified the error step, is a further
advantage. Taken together, the impact on the student was
quantified and expressed in a general formula yielding an
estimation, given current recognition performance, that
students will have to correct the recognizer’s errors on
average on one out of every four problems. This formula
can be used to estimate the impact on the student when
better recognizers become available as technology and
algorithms continue to advance.

Finally, based on all these results, we structured a
tutoring interaction paradigm that we have outlined via
mock-ups of the stages of interaction. Designers of
intelligent tutoring systems for mathematics can use this
interaction scenario to build on our proof-of-concept
prototype and implement a tutoring system that can take
advantage of the benefits of handwriting input, in spite of
imperfect recognition.

A key implication for the design of such future systems
is that allowing students to type their final answer removes
all impact of recognition errors on correct problems.
The system may well make several recognition errors on
a correct solution, but these errors never propagate to the
student and therefore do not interfere with student learn-
ing. In essence these recognition errors do not ‘‘count’’ and
the expected recognition accuracy will be much higher than
raw estimates, depending on the prevalence of student
errors in the real-world. We have termed this concept task

pragmatics and have illustrated a particular strategy for
capitalizing upon this idea in this application; however,
other strategies may help in this or other ambiguous
situations. For example, an automated telephone system
with speech recognition may not need to resolve all
ambiguity in recognition in order to match the user’s input
to one of the accepted grammar strings (e.g.,
‘‘Representative!’’).

Finally we close this article with an illustrative example
of how this handwriting-based interaction paradigm for
ITSs could work in another tutoring domain, for example,
chemistry. Chemistry includes its own type of ‘‘equation
solving’’ known as stoichiometry, a method of balancing
the relative quantities of reactants and products in chemi-
cal reactions (see Fig. 10).

The interaction paradigm we presented could transfer
remarkably well to such problem-solving activities. The
recognition engine should be trained on the expanded symbol
set that chemistry uses as compared to the simplified algebra
symbol set covered by the algebra learner corpus, and the
recognition accuracy might therefore decrease to some extent.
However, a tutoring system that understands chemistry
problems (such as the Cognitive Tutor for Stoichiometry,
McLaren et al., 2008) would be able to provide the same
context to the recognizer to improve accuracy and decrease the
requirement for the student to correct many of the system’s
recognition errors. Typing the final answer (e.g., ‘‘0.458 g/ml’’
in the given example) is still possible, and easier than typing
the entire problem due to the fractions and equation balancing
operations that are performed in stoichiometry.
This example is meant to illustrate concretely the

considerations that are applicable when extending our
proposed interaction paradigm to other domains. The
most direct extensions involve domains such as chemistry
in which the final answer consists of type-able text, but we
expect that sketch-based recognition can be augmented as
well by similar methods to build on this paradigm for
domains such as geometry or physics in which solutions
partially or wholly consist of diagrams. We look forward
to the future of natural and usable ITSs that use hand-
writing input, spoken input, and even sketch, to allow
students to work directly within their domain and experi-
ence deeper, robust learning that can transfer to learning
and practice environments in the real world.

Acknowledgments

The authors thank Mark D. Gross, Jennifer Mankoff, and
Tom M. Mitchell for comments on the dissertation that
informed this paper, and the anonymous reviewers of this



L. Anthony et al. / Int. J. Human-Computer Studies 70 (2012) 866–887 885
article for helpful comments. The authors acknowledge
Carnegie Learning, Inc., for permission to reproduce the
screenshot of their algebra tutor software for this paper, and
Paul Karol for permission to reproduce his stoichiometry
answer key in this paper. The work presented in this paper was
supported by grants from the National Science Foundation
(NSF Award SBE-0354420) and the Pittsburgh Science of
Learning Center. The first author was partially supported by
an NSF Graduate Research Fellowship during the period of
this work. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect those of the NSF or PSLC.

References

Abowd, G.D., 1999. Software engineering issues for ubiquitous computing.

In: Proceedings of International Conference on Software Engineering,

ISCE’99. ACM, NY, pp. 75–84.

Aleven, V.A.W.M.M., Koedinger, K.R., Popescu, O.A., 2003. A tutorial

dialog system to support self-explanation: evaluation and open questions.

In: Proceedings of the International Conference on Artificial Intelligence in

Education, pp. 39–46. IOS Press, Amsterdam, the Netherlands.

AlphaCount, 2010. AlphaCount. /http://alphacount.wordpress.com/S,

(accessed September 10, 2011).

Anderson, R.H., 1968. Syntax-directed Recognition of Hand-printed

Two-dimensional Mathematics. PhD Thesis, Department of Engineer-

ing and Applied Mathematics, Harvard University.

Anthony, L., Yang, J., Koedinger, K.R., 2005. Evaluation of multimodal

input for entering mathematical equations on the computer. In:

Proceedings of the ACM Conference on Human Factors in Computing

(CHI), pp. 1184–1187. ACM Press, NY, USA.

Anthony, L., Yang, J., Koedinger, K.R., 2007a. Benefits of handwritten

input for students learning algebra equation solving. In: Proceedings

of the International Conference on Artificial Intelligence in Education

(AIEd), pp. 521–523. IOS Press, Amsterdamn, the Netherlands.

Anthony, L., Yang, J., Koedinger, K.R., 2007b. Adapting handwriting

recognition for applications in algebra learning. In: Proceedings of the

ACM Workshop on Educational Multimedia and Multimedia Education,

pp. 47–56. ACM Press, NY, USA.

Anthony, L., Yang, J., Koedinger, K.R., 2008. Toward next-generation,

intelligent tutors: Adding natural handwriting input. IEEE Multi-

media 15 (3), 64–68.

Anthony, L. 2008. Developing Handwriting-based Intelligent Tutors to

Enhance Mathematics Learning. PhD Thesis, Carnegie Mellon University,

CMU-HCII-08-105.

Anthony, L., Wobbrock, J.O., 2010. A lightweight multistroke recognizer

for user interface prototypes. In: Proceedings of Graphics Interface

2010, Gi ’10. Canadian Information Processing Society, Toronto,

Ont., Canada, pp. 245–252.

Awal, A.-M., Mouchere, H., Viard-Gaudin, C., 2010. The problem of

handwritten mathematical expression recognition evaluation. In: 2010

12th International Conference on Frontiers in Handwriting Recognition.

Kolkata, India, pp. 646–651.

Beal, C., Johnson, W.L., Rabrowski, R., Wu, S., 2005. Individualized

feedback and simulation-based practice in the tactical language

training system: an experimental evaluation. In: Proceedings of the

Artificial Intelligence in Education Conference (AIEd), pp. 749–749.

IOS Press, Amsterdam, the Netherlands.

Belaid, A., Haton, J.P., 1984. A syntactic approach for handwritten

mathematical formula recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence 6 (1), 105–111.

Blostein, D., Grbavec, A., 1996. Recognition of mathematical notation.

In: Wang, P.S.P., Bunke, H. (Eds.), Handbook on Optical Character

Recognition and Document Analysis. World Scientific Publishing

Company, pp. 557–582.
Blostein, D., Lank, E., Rose, A., Zanibbi, R., 2002. User interfaces for

on-line diagram recognition. In: Blostein, D., Kwon, Y.-B. (Eds.),

Graphics Recognition Algorithms and Applications. Springer, Berlin

Heidelberg, Berlin, pp. 92–103.

Borda, J.C., 1781. Memoire sur les elections au scrutin. In: Histoire de

l’Academie Royal des Sciences.

Brown, R.M., 1964. On-line computer recognition of handprinted characters.

IEEE Transactions on Electronic Computing 13, 750–752.

Buscaldi, D., Rosso, P., 2007. A bag-of-words based ranking method for

the wikipedia question answering task. In: Peters, C., Clough, P.,

Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M.,

Stempfhuber, M. (Eds.), Evaluation of Multilingual and Multi-modal

Information Retrieval: Seventh Workshop of the Cross-Language

Evaluation Forum, Revised Selected Papers; Lecture Notes in Com-

puter Science 4730, pp. 550–553. Springer Berlin, Heidelberg.

Chan, K.-F., Yeung, D.-Y., 2000. Mathematical expression recognition: a

survey. International Journal on Document Analysis and Recognition 3,

375–384.

Chan, K.-F., Yeung, D.-Y., 2001. PenCalc: a novel application of on-line

mathematical expression recognition technology. In: Proceedings of Sixth

International Conference on Document Analysis and Recognition. Seattle,

WA, USA, pp. 774–778.

Cheema, S., LaViola J., 2010. Towards intelligent motion inferencing in

mathematical sketching. In: Proceedings of the 2010 International

Conference on Intelligent User Interfaces, pp. 289–292.

Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P., Glaser, R., 1989.

Self-explanations: how students study and use examples in learning to

solve problems. Cognitive Science 13, 145–182.

Clark, R.C., Nguyen, F., Sweller, J., 2006. Efficiency in Learning:

Evidence-Based Guidelines to Manage Cognitive Load. Pfeiffer, San

Francisco, CA, USA.

Corbett, A.T., Koedinger, K.R., Anderson, J.R., 1997. Intelligent tutoring

systems. In: Helander, M.G., Landauer, T.K., Prabhu, P.V. (Eds.),

Handbook of Human-Computer Interaction. Elsevier Science B.V,

Amsterdam, The Netherlands, pp. 849–874.

Dimitriadis, Y.A., Coronado, J.L., 1995. Towards an art based mathe-

matical editor that uses online handwritten symbol recognition.

Pattern Recognition 28 (6), 807–822.

Dimond, T.L., 1957. Devices for reading handwritten characters. In: Proceed-

ings of the Eastern Joint Computing Conferences, pp. 232–237.

Elliott, E.S., Dweck, C.S., 1988. Goals: an approach to motivation and

achievement. Journal of Personality and Social Psychology 54 (1),

5–12.

Fateman, R., Tokuyasu, T., Berman, B.P., Mitchell, N., 1996. Optical

character recognition and parsing of typeset mathematics. Journal of

Visual Communication and Image Representation 7 (1), 2–15.

Frankish, C., Hull, R., Morgan, P., 1995. Recognition accuracy and user

acceptance of pen interfaces. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI), pp.

503–510.

Freedman, R., 1999. Atlas: a plan manager for mixed-initiative, multi-

modal dialogue. In: AAAI Workshop on Mixed-initiative Intelligence.

Goldberg, D., Goodisman, A., 1991. Stylus user interfaces for manipulating

text. In: Proceedings of ACM Symposium on User Interface Software and

Technology (UIST), pp. 127–135.

Glaser, R., 1976. Components of a psychology of instruction: toward a

science of design. Review of Educational Research 46, 1–24.

Graesser, A., Moreno, K.N., Marineau, J.C., Adcock, A.B., Olney, A.M.,

Person, N.K., 2003. Autotutor improves deep learning of computer

literacy: is it the dialog or the talking head? In: Proceedings of the

International Conference on Artificial Intelligence in Education, pp. 47–54.

Guyon, I., Warwick, C., 1998. Handwriting as computer interface. In: Cole,

R.A., Mariani, J., Uszkoreit, H., Varile, G.B., Zaenen, A., Zampolli, A.

(Eds.), Survey of the State of the Art in Human Language Technology.

Cambridge University Press, Boston, MA, pp. 78–83.

Hürst, W., Yang, J., Waibel, A., 1998. Error repair in human hand-

writing: an intelligent user interface for automatic on-line handwriting

http://alphacount.wordpress.com/


L. Anthony et al. / Int. J. Human-Computer Studies 70 (2012) 866–887886
recognition. In: Proceedings of the IEEE International Joint Symposia

on Intelligence and Systems, pp. 389–395. IEEE.

Jackson, L., 2004. Laptops, handhelds,or tabletpcs? Education World.

/http://www.education-world.com/a_tech/tech/tech198.shtmlSS
(accessed 09.09.2011).

Jiang, Y., Tian, F., Wang, H., Zhang, X., Wang, X., Dai, G., 2010.

Intelligent understanding of handwritten geometry theorem proving.

In: Proceedings of the 15th International Conference on Intelligent

User Interfaces, IUI ’10. ACM, NY, USA, pp. 119–128.

LaLomia, M.J., 1994. User acceptance of handwritten recognition

accuracy. In: Proceedings of the ACM Conference on Human Factors

in Computing Systems (CHI), p. 107.

Landay, J.A., Myers, B.A., 1995. Interactive sketching for the early stages

of user interface design. In: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ’95). ACM Press/

Addison-Wesley Publishing Co., NY, USA, pp. 43–50.

Koedinger, K.R., Corbett, A.T., 2006. Cognitive tutors: technology

bringing learning science to the classroom. In: Sawyer, K. (Ed.), The

Cambridge Handbook of the Learning Sciences. Cambridge Univer-

sity Press, pp. 61–78.

Koedinger, K.R., Corbett, A.C., Perfetti, C., accepted. The knowledge-

learning-instruction (KLI) framework: bridging the science-practice

chasm to enhance robust student learning. Cognitive Science. http://

dx.doi.org/10.1111/j.1551-6709.2012.01245.x, in press.

Koerich, A.L., Sabourin, R., Suen, C.Y., 2003. Large vocabulary off-line

handwriting recognition: a survey. Pattern Analysis and Applications

6, 97–121.

Labahn, G., Lank, E., Marzouk, M.S., Bunt, A., MacLean, S., Tausky,

D., 2008. MathBrush: a case study for pen-based interactive mathe-

matics. In: Proceedings of the Fifth Eurographics Symposium on

Sketch-Based Interfaces and Modeling, SBIM ’08. Annecy, France,

pp. 143–150.

Lapointe, A., Blostein, D., 2009. Issues in performance evaluation: a case

study of math recognition. In: 10th International Conference on Document

Analysis and Recognition. Barcelona, Spain, pp. 1355–1359.

LaViola, J.J., 2006. An initial evaluation of a pen-based tool for creating

dynamic mathematical illustrations. In: Proceedings of Eurographics

Workshop on Sketch-Based Interfaces and Modeling, EG Workshop

Series, pp. 157–164.

LaViola, J.J., Zeleznik, R., 2004. MathPad2: a system for the creation and

exploration of mathematical sketches. ACM Transactions on Gra-

phics (Proceedings of SIGGRAPH 2004) 23 (3), 432–440.

Lee, W., de Silva, R., Peterson, E.J., Calfee, R.C., Stahovich, T.F., 2007.

Newton’s pen: a pen-based tutoring system for statics. In: Proceedings

of the Fourth Eurographics Workshop on Sketch-based Interfaces and

Modeling, SBIM ’07. ACM, NY, USA, pp. 59–66.

Levenshtein, V.I., 1966. Binary codes capable of correcting deletions,

insertions, and reversals. Soviet Physics Doklady 10 (8), 707–710.

Li, C., Miller, T.S., Zeleznik, R.C., Jr, J.J.L., 2008. AlgoSketch: algorithm

sketching and interactive computation. In: Proceedings of the Fifth

Eurographics Symposium on Sketch-based Interfaces and Modeling,

SBIM ’08. Annecy, France, pp. 175–182.

Lin, J., Newman, M.W., Hong, J.I., Landay, J.A., 2000. DENIM: finding

a tighter fit between tools and practice for web site design. In:

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI ’00). ACM, NY, USA, pp. 510–517.

Litman, D.J., Silliman, S., 2004. Itspoke: an intelligent tutoring spoken

dialogue system. In: Proceedings of the Human Language Technology

Conference: Fourth Meeting of the North American Chapter of the

Association for Computational Linguistics (HLT/NAACL) (Compa-

nion Proceedings), pp. 233–236.

Littin, R.H., 1995. Mathematical Expression Recognition: Parsing Pen/

Tablet Input in Real-Time Using LR Techniques. Master’s Thesis,

University of Waikato, Hamilton, New Zealand.

Liu, C.-L., Yin, F., Wang, D.-H., Wang, Q.-F., 2010. Chinese hand-

writing recognition contest 2010. In: 2010 Chinese Conference on

Pattern Recognition (CCPR). IEEE, p. 5.
MacKenzie, I.S., Chang, L., 1999. A performance comparison of two

handwriting recognizers. Interacting with Computers 11, 283–297.

Mankoff, J., Abowd, G., 1999. Error Correction Techniques for Hand-

writing, Speech, and Other Ambiguous or Error Prone Systems.

Technical Report GIT-GVU-99-18. Georgia Institute of Technology.

Märgner, V., Abed, H.E., 2010. ICFHR 2010 — Arabic handwriting

recognition competition. In: 2010 12th International Conference

on Frontiers in Handwriting Recognition. Kolkata, India, pp.

709–714.

Matsakis, N.E., 1999. Recognition of Handwritten Mathematical Expressions.

Master’s Thesis, Massachusetts Institute of Technology.

McLaren, B.M., Lim, S.-J., Koedinger, K.R., 2008. When is assistance

helpful to learning? Results in combining worked examples and

intelligent tutoring. In: Woolf, B.P., Aı̈meur, E., Nkambou, R.,

Lajoie, S. (Eds.), Proceedings of the Ninth International Conference

on Intelligent Tutoring Systems (ITS-08), Lecture Notes in Computer

Science, 5091. Springer Berlin Heidelberg, Berlin, pp. 677–680.

Microsoft, 2005. Equation Pack for Windows XP Tablet PC Edition.

/http://www.microsoft.com/windowsxp/downloads/tabletpc/educa

tionpack/overview4.mspxS, (accessed September 10, 2011).

Miller, E.G., Viola, P.A., 1998. Ambiguity and constraint in mathematical

expression recognition. In: Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI), pp. 784–789. AAAI Press.

O’Connell, T., Li, C., Miller, T.S., Zeleznik, R.C., LaViola, J.J., 2009.

A usability evaluation of AlgoSketch. In: Proceedings of the Sixth

Eurographics Symposium on Sketch-based Interfaces and Modeling,

SBIM ’09. New Orleans, Louisiana, p. 149.

Oviatt, S., Adams, B., 2000. Designing and evaluating conversational

interfaces with animated characters. In: Cassell, J., Sullivan, J.,

Prevost, S., Churchill, E. (Eds.), Embodied Conversational Agents.

MIT Press, Cambridge, MA, USA, pp. 319–343.

Oviatt, S., Arthur, A., Cohen, J., 2006. Quiet interfaces that help students

think. In: Proceedings of the ACM Symposium on User Interface

Software and Technology, pp. 191–200.

Oviatt, S., MacEachern, M., Levow, G.-A., 1998. Predicting hyperarticulate

speech during human-computer error resolution. Speech Communication

24 (2), 87–110 May 1998.

Pashler, H., Bain, P., Bottge, B., Graesser, A., Koedinger, K., McDaniel,

M., Metcalfe, J., 2007. Organizing Instruction and Study to Improve

Student Learning (NCER 2007–2004). National Center for Education

Research, Institute of Education Sciences, U.S. Department of

Education, Washington, DC.

Purcell, S.C., 1977. Understanding Hand-Printed Algebra for Computer

Tutoring. Master’s Thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology.

Read, J.C., MacFarlane, S.J., Casey, C., 2000. Where’s the ‘m’ on the

keyboard, mummy? In Womens’. Engineering Society.

Read, J.C., MacFarlane, S.J., Casey, C., 2001a. Can natural language

recognition technologies be used to enhance the learning experience of

young children? Computers and Learning.

Read, J.C., MacFarlane, S.J., Casey, C., 2001b. Measuring the usability

of text input methods for children. In: Proceedings of BCS British-

HCI, pp. 559–572. Springer Verlag.

Read, J.C., 2002. Optimising text input for young children using

computers for creative writing tasks. In: Proceedings of BCS British-

HCI, pp. 503-519. Springer Verlag.

Read, J.C., MacFarlane, S.J., Casey, C., 2002. Pens behaving badly —

usability of pens and graphics tablets for text entry with children. In:

Adjunct Proceedings of the ACM Symposium on User Interface

Software and Technology, pp. 21–22. ACM Press.

Read, J.C., MacFarlane, S.J., Casey, C., 2003a. A comparison of two on-

line handwriting recognition methods for unconstrained text entry by

children. In: Proceedings of BCS British-HCI, pp. 29–32. Research

Press International, Bristol, UK.

Read, J.C., MacFarlane, S.J., Casey, C., 2003b. Good enough for what?:

acceptance of handwriting recognition errors by child users. In:

Proceedings of the 2003 conference on Interaction design and children,

pp. 155–155, NY, USA. ACM Press.

http://www.education-world.com/a_tech/tech/tech198.shtmlS
http://www.microsoft.com/windowsxp/downloads/tabletpc/educationpack/overview4.mspx
http://www.microsoft.com/windowsxp/downloads/tabletpc/educationpack/overview4.mspx


L. Anthony et al. / Int. J. Human-Computer Studies 70 (2012) 866–887 887
Read, J., 2007. A study of the usability of handwriting recognition for text

entry by children. Interacting with Computers 19, 57–69.

Renda, M.E., Straccia, U., 2003. Web metasearch: rank vs. score based

rank aggregation methods. In: Proceedings of the ACM symposium

on Applied computing, pp. 841–846, NY, USA. ACM.

Roschelle, J., Tatar, D., Chaudbury, S.R., Dimitriadis, Y., Patton, C.,

DiGiano, C., 2007. Ink, improvisation, and interactive engagement:

learning with tablets. Computer 40, 42–48.

Salden, R.J.C.M., Koedinger, K.R., Renkl, A., Aleven, V., McLaren, B.M.,

2010. Accounting for beneficial effects of worked examples in tutored

problem solving. Educational Psychology Review 22 (4), 379–392.

Santos, P.J., Baltzer, A.J., Badre, A.N., Henneman, R.L., Miller, M.S.,

1992. On handwriting recognition performance: some experimental

results. In: Proceedings of the Human Factors Society 36th Annual

Meeting, pp. 283–287.

Schomaker, L., 1994. User-interface aspects in recognizing connected-

cursive handwriting. In: Proceedings of the IEE Colloquium on

Handwriting and Pen-based Input, 8/1–8/3.

Smithies, S., Novins, K., Arvo, J., 2001. Equation entry and editing via

handwriting and gesture recognition. Behaviour and Information

Technology 20, 53–67.

Suzuki, M., Kanahori, T., Ohtake, N., Yamaguchi, K., 2004. An

integrated OCR software for mathematical documents and its output

with accessibility. In: Miesenberger, K., Klaus, J., Zagler, W.L.,

Burger, D. (Eds.), Computers Helping People with Special Needs.

Springer, Berlin Heidelberg, Berlin, Heidelberg, pp. 648–655.

Sweller, J., 1988. Cognitive load during problem solving: effects on

learning. Cognitive Science 12, 257–285.

Tabachneck, H.J.M., Koedinger, K.R., Nathan, M.J., 1995. A cognitive

analysis of the task demands of early algebra. In: Proceedings of the 17th

Annual Conference of the Cognitive Science Society, pp. 397–402.
Tapia, E., Rojas, R., 2003. Recognition of on-line handwritten mathe-

matical formulas in the e-chalk system. In: Proceedings of the

International Conference on Document Analysis and Recognition

(ICDAR), pp. 980–984. IEEE.

Tapia, E., Rojas, R., 2005. Recognition of on-line handwritten mathe-

matical expressions in the e-chalk system — an extension. In:

Proceedings of the Eighth International Conference on Document

Analysis and Recognition (ICDAR’05). Seoul, South Korea, pp.

1206–1210 Vol. 2.

Valentino-Devries, J., 2010. Using the ipad to connect:parents,

therapists use apple tablet to communicate with special needs

kids. Wall Street Journal /http://online.wsj.com/article/

SB10001424052748703440004575547971877769154.htmlSS(accessed

09.09.11).

Wood, C., 2002. Technologyandeducation. PC Magazine. /http://www.
pcmag.com/article2/0,4149,15154,00.aspSS (accessed 09.09.11).

xThink, 2003. MathJournal. /http://www.xthink.com/MathJournal.

htmlS, (accessed 10.09.11).

Zanibbi, R., Blostein, D., Cordy, J.R., 2002. Recognizing mathematical

expressions using tree transformation. IEEE Transactions on Pattern

Analysis and Machine Intelligence 24, 1455–1467.

Zanibbi, R., Pillay, A., Mouchere, H., Viard-Gaudin, C., Blostein, D.,

2011. Stroke-based performance metrics for handwritten mathematical

expressions. In: Proceedings of the 2011 International Conference on

Document Analysis and Recognition (ICDAR’11), Beijing, China,

pp. 334–338.

Zeleznik, R., Miller, T., Li, C., LaViola, J.J., 2008. MathPaper: mathe-

matical sketching with fluid support for interactive computation. In:
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