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Abstract. Some students, when working in interactive learning environments, attempt to 

“game the system”, attempting to succeed in the environment by exploiting properties of 

the system rather than by learning the material and trying to use that knowledge to 

answer correctly.  In this paper, we present a system that can accurately detect whether a 

student is gaming the system, within a Cognitive Tutor mathematics curricula. Our 

detector also distinguishes between two distinct types of gaming which are associated 

with different learning outcomes. We explore this detector’s generalizability, and find 

that it transfers successfully to both new students and new tutor lessons.   
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1. Introduction 

Developing systems that can reliably identify differences in how students choose to use 

interactive learning environments, and the attitudes and goals which underlie these 

decisions, is an interesting and challenging problem which has received considerable 

attention in recent years (Aleven, McLaren, Roll, & Koedinger, 2004; Arroyo and Woolf, 

2005; Beck, 2005; Conati & McLaren, 2005; D’Mello, Craig, Witherspoon, McDaniel, & 

Graesser, in press; de Vicente & Pain, 2002; Johns & Woolf, 2006; Walonoski & 

Heffernan, 2006a).  

One behavior that has been the subject of particular interest in recent years is 

“gaming the system”, defined as “attempting to succeed in an educational environment 

by exploiting properties of the system rather than by learning the material and trying to 

use that knowledge to answer correctly” (Baker et al, 2006). Gaming behaviors have been 

observed in a variety of types of learning environments, from educational games 

(Magnussen & Misfeldt, 2004) to online course discussion forums (Cheng & Vassileva, 

2005). Though gaming behavior had been documented in computer-assisted instruction 

as early as the early 1970s (Tait, Hartley, & Anderson, 1973) and again in the 1990s 

(Schofield, 1995; Wood and Wood, 1999), the topic has seen a burst of attention in the 

last four years within the context of intelligent tutoring systems (cf. Schofield, 1995; 

Wood & Wood, 1999; Aleven, 2001; Mostow et al., 2002; Baker et al., 2004; Beck, 



Detecting When Students Game the System 

2 

2005; Murray & vanLehn, 2005; Beal, Qu, & Lee, 2006; Johns & Woolf, 2006; 

Walonoski & Heffernan, 2006a), after it was demonstrated that gaming behavior is 

associated with significantly poorer learning in Cognitive Tutor classes (Baker, Corbett, 

Koedinger, & Wagner, 2004) and after the first systems that could accurately detect 

gaming behavior were reported, Baker et al’s (2004) Gaming Detector, and Aleven et al’s 

(2004) Help-Seeking Tutor Agent. In the three years since those two systems were 

simultaneously reported at Intelligent Tutoring Systems 2004, at least four other 

independently developed systems which detect gaming behavior have been reported at 

scientific conferences (Beck, 2005; Walonoski & Heffernan, 2006a; Johns & Woolf, 

2006; Beal, Qu, & Lee, 2006).  

In this paper, we will discuss one of the first two gaming detectors developed, 

Baker et al’s (2004) Gaming Detector, presenting it in its most current form.  We will 

discuss the data used to develop the Gaming Detector, and evidence that the Gaming 

Detector can effectively detect gaming, distinguish between types of gaming, and 

generalize to new tutor lessons. We will conclude with a comparison between our 

research group’s Gaming Detector, and systems that detect gaming behavior which were 

developed by other research groups.  

 

 

2. Gaming the System in Cognitive Tutors 

In this paper, we will discuss work on detecting gaming within Cognitive Tutors. 

Cognitive Tutor learning environments are designed to promote learning by doing. 

Within the Cognitive Tutor environments discussed within this paper, each student 

individually completes mathematics problems. The Cognitive Tutor environment breaks 

down each mathematics problem into the steps of the process used to solve the problem, 

making the student’s thinking visible. As a student works through a problem, a running 

cognitive model assesses whether the student’s answers map to correct understanding or 

to a known misconception (cf. Anderson, Corbett, Koedinger, & Pelletier, 1995). If the 

student’s answer is incorrect, the answer turns red; if the student’s answers are indicative 

of a known misconception, the student is given a “buggy message” indicating how their 

current knowledge differs from correct understanding. Cognitive Tutors also have multi-

step hint features; a student who is struggling can ask for a hint. He or she first receives a 

conceptual hint, and can then request further hints, which become more and more specific 

until the student is given the answer (see Figure 2). The hints are context-sensitive and 

tailored to the exact problem step the student is working on. As the student works through 

the problems in a specific curricular area, the system uses Bayesian knowledge-tracing 

(Corbett & Anderson, 1995) to determine which skills that student is having difficulty 

with, calculating the probability that the student knows each skill based on that student’s 

history of responses within the tutor. Using these estimates of student knowledge, the 

tutoring system gives each student problems which are relevant to the skills which he or 

she is having difficulty with. 

Cognitive Tutor material is typically structured into independent lessons, each of 

which covers a set of related skills and concepts. Year-long courses are composed of 

sequences of lessons, where the knowledge in later lessons generally builds upon the 
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knowledge in previous lessons.  Year-long Cognitive Tutor courses were used in over 

1,000 U.S. high schools as of the 2005-2006 school year, for a variety of mathematical 

subjects such as Algebra, Pre-Algebra, and Geometry. 

Within Cognitive Tutors, gaming the system consists of the following behaviors:  

 

1. quickly and repeatedly asking for help until the tutor gives the student the correct 

answer  (cf. Aleven, 2001) 

2. inputting answers quickly and systematically. For instance, systematically 

guessing numbers in order (1,2,3,4…) or clicking every checkbox within a set of 

multiple-choice answers, until the tutor identifies a correct answer and allows the 

student to advance.   

 

These categories of behavior appear to be common to other intelligent tutoring 

systems as well (Beck, 2005; Murray & vanLehn, 2005; Walonoski & Heffernan, 2006a; 

Johns & Woolf, 2006). Other examples of gaming the system include choosing to work 

on material which the student has already memorized (Mostow et al, 2002), and 

intentionally posting irrelevant material to online course discussion forums where 

participation is automatically graded (Cheng & Vassileva, 2005). 

 



Detecting When Students Game the System 

4 

Figure 1. The last stage of a multi-stage hint in the tutor lesson on scatterplots: The 

student labels the graph’s axes and plots points in the upper window; the tutor’s estimates 

of the student’s skills are shown in the lower window; the hint window (superimposed on 

the upper window) allows the tutor to give the student feedback. 

 

 
 

 

In our early work to develop a gaming detector (Baker, Corbett, & Koedinger 

2004), using only a single tutor lesson from a middle school mathematics curriculum (cf. 

Koedinger, 2002), we serendipitously found evidence suggesting that gaming divides into 

two distinct categories of behavior. A detector trained to detect all gaming students only 

succeeded in detecting gaming in about half of the students observed gaming in the study. 

Further investigation produced evidence that the detector was only detecting students 

who both gamed and had low post-test scores. The detector was not detecting the students 

who gamed but had high post-test scores (regardless of whether they had low pre-test 

scores, suggesting that they learned from the tutor, or high pre-test scores, suggesting that 

they already knew the material) (cf. Baker, Corbett, & Koedinger, 2004). 
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Follow-up analysis, using a broader data set, produced further evidence 

suggesting that students who gamed and had low post-test scores differ considerably from 

students who gamed and had high post-test scores. A detector trained on either of the two 

groups of gaming students accurately captured that group (using leave-out-one-cross-

validation, where a detector is trained on every student except one, and then used to make 

a prediction about the student left-out), but generally did not capture students from the 

other gaming group, suggesting that these two categories of behavior are indeed 

differentiable within students using Cognitive Tutors. We will present some of this 

evidence later in the paper. 

In this paper we focus on the detector that captures the behavior of the group of 

students who gamed the system in the fashion associated with poorer learning, as this 

“harmful” type of gaming
1
 is associated with a concrete difference in learning outcomes 

while other gaming behavior does not appear to be. This does not imply that it is not 

important to understand why some gaming behaviors are not associated with lower 

learning gains. However, developing an accurate and generalizable detector of harmful 

gaming behavior has considerably more potential to increase intelligent tutors’ 

educational effectiveness (since such a detector can be used to respond to such behavior 

and potentially help harmfully gaming students learn better) than the development of an 

accurate and generalizable detector of other types of gaming behavior does.  

 

3. Data 

The first detector of gaming (presented in Baker, Corbett, & Koedinger, 2004) was 

developed using data from a intelligent tutor lesson on scatterplots, drawn from a 

Cognitive Tutor curriculum on middle school mathematics (Koedinger, 2002).  

In order to study issues of generalizability in gaming detection, we collected data 

from three additional lessons from the same tutoring curriculum, lessons in the domains 

of geometry, percents, and probability, giving us data from four tutor lessons in total. All 

data came from classrooms (4-6 classrooms per year) in two school districts in suburban 

Pittsburgh. 

The scatterplot lesson data was drawn from classes in 2003, 2004, and 2005. The 

geometry and probability lesson data was drawn from classes in 2004. The data for the 

geometry, probability, and scatterplot lesson (2004 cohort) involved the same group of 

students, with some non-overlap due to absence. The data for the percents lesson was 

drawn from classes in 2005, but in a fashion that did not result in any overlap between the 

students in the scatterplot and percents data. In total, data was collected from 436 

student/lesson pairs. Each student completed an average of 297 actions in the tutor 

(SD=132) per lesson, with extremes at 35 and 752 actions, for a total of 129,341 actions. 

The number of students and number of tutor actions logged for each lesson is given in 

Table 1. 

 

For each of these lessons, we had the following data: 

                                                 
1 The word “harmful” is used for brevity and simplicity in discussion; there is still not conclusive evidence as to 

whether the relationship between harmful gaming and learning is causal or correlational. 
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- Quantitative field observations, in order to estimate what percentage of time 

each student gamed the system. In quantitative field observations, one or more 

observers make repeated 20-second observations of the behavior of a set of 

students as the students use tutoring software, coding each student’s behavior 

during an observation according to a pre-determined set of categories (in this 

case, including gaming the system, off-task behavior, talking on-task, and 

working in the tutor). Observations were conducted using peripheral vision, 

and achieved acceptable inter-rater reliability (κ = 0.74). Full detail on the 

method used is given in (Baker, Corbett, Koedinger, & Wagner 2004). 

- Pre-tests and post-tests for each lesson, to determine how much each student 

learned while using the tutor – in all cases, test items were counterbalanced 

across the pre-test and post-test. 

- Detailed log-files of the students’ interactions with the tutor (see below). 

 

Data on learning gains was used to distinguish between the two types of gaming 

behavior, both during training and when evaluating goodness-of-fit. Specifically, among 

the students observed gaming, a student was labeled GAMED-NOT-HURT (i.e., gaming 

in the non-harmful fashion) if he or she had a sizeable pre-post gain (at least two more 

skills demonstrated correctly on the post-test than on the pre-test), or a pre-test score high 

enough to make it impossible to gain two skills (i.e. perfect or only one error). Gaming 

students who had low scores on both the pre-test and post-test were labeled GAMED-

HURT (i.e., gaming in the fashion associated with poorer learning). 

 

Table 1. Data obtained for each tutor lesson. 

Lesson Number of students Number of actions Pct. of students 

GAMED-HURT 

Pct. of students 

GAMED-NOT-HURT 

SCATTERPLOT  237 71,232 8% 25% 

PROBABILITY 50 15,858 10% 6% 

GEOMETRY  111 30,991 27% 3% 

PERCENTS 38 10,135 8% 5% 

 

 

Log files of each student’s actions within the tutor were used in order to develop a 

model relating specific features of student actions to the overall construct of harmful 

gaming. For each student action recorded in the log files, a set of 26 features describing 

that student action were distilled. These features consisted of 
 

• Details about the action 

o The tutoring software’s assessment of the action – was the action correct, 

incorrect and indicating a known bug (procedural misconception), incorrect 

but not indicating a known bug, or a help request?  

o The type of interface widget involved in the action – was the student choosing 

from a pull-down menu, typing in a string, typing in a number, plotting a 

point, or selecting a checkbox? 
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o Was this the student’s first attempt to answer (or obtain help) on this problem 

step? 

• Knowledge assessment 

o The tutor’s assessment, after the action, of the probability that the student  

knows the skill involved in this action, called “pknow”, derived using the 

Bayesian knowledge tracing algorithm in (Corbett and Anderson, 1995). 

o “Pknow-direct”, a fairly complicated feature found in its final form in the 

tutor log files. If the current action is the student’s first attempt on this 

problem step, then pknow-direct is equal to pknow, but if the student has 

already made an attempt on this problem step, then pknow-direct is -1. 

Pknow-direct allows a contrast between a student’s first attempt on a skill 

he/she knows very well and a student’s later attempts.  

o Whether the action involved a skill which students, on the whole, knew before 

starting the tutor lesson, or failed to learn during the tutor lesson. (two 

variables) 

• Time 

o How many seconds the action took. 

o The time taken for the action, expressed in terms of the number of standard 

deviations this action’s time was faster or slower than the mean time taken by 

all students on this problem step, across problems. 

o The time taken in the last 3, or 5, actions, expressed as the sum of the numbers 

of standard deviations each action’s time was faster or slower than the mean 

time taken by all students on that problem step, across problems. (two 

variables) 

o How many seconds the student spent on each opportunity to practice the 

primary skill involved in this action, averaged across problems. 

• Previous interaction 

o The total number of times the student has gotten this specific problem step 

wrong, across all problems. (includes multiple attempts within one problem)  

o What percentage of past problems the student made errors on this problem 

step in 

o The number of times the student asked for help or made errors at this skill, 

including previous problems. 

o How many of the last 5 actions involved this problem step. 

o How many times the student asked for help in the last 8 actions. 

o How many errors the student made in the last 5 actions. 

 

Due to logging errors, the log data from 2003 and 2004 lacked information on 

internal steps of hint requests. Features on internal steps of hint requests were distilled for 

the 2005 data, but did not significantly improve fit, and are not included in the analyses 

presented here.  

 

 

4. The Gaming Detector 
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4.1 Detector Structure 

Latent Response Models (Maris, 1995) were used as the statistical basis for the detector 

of harmful gaming. Latent Response Models have the advantage of easily and naturally 

integrating multiple data sources, at different grain sizes, into a single model.  

 

 

 

Figure 2. The architecture of the gaming detector. 

 

 
 

 

 

 A detector of gaming, in the framework used here, has one observable level and 

two hidden (“latent”) levels. The model’s overall structure is shown in Figure 2. In a 

gaming detector’s outermost/observable layer, the gaming detector assesses how 

frequently each of n students is gaming the system; those assessments are labeled 

G'0…G'n . The gaming detector’s assessments for each student can then be compared to 

the observed proportions of time each student spent gaming the system, G0…Gn (the 

metrics used will be discussed within the model selection section). In order to develop a 

detector which only detects harmful gaming (as opposed to attempting to detect both 

types of gaming within a single detector), students labeled GAMED-NOT-HURT 

(because of high pre-post gain or a high pre-test score) were assigned a value of 0 for 

their proportion of time spent gaming harmfully. 

The proportion of time each student spends gaming is assessed as follows: First, 

the detector makes a (binary) assessment as to whether each individual student action 

(denoted P'm) is an instance of gaming. From these assessments, G'0…G'n  are derived by 
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taking the percentage of actions which are assessed to be instances of gaming, for each 

student.  

An action is assessed to be gaming or not, by a function on parameters composed 

of the features drawn from each action’s characteristics. Each parameter in a candidate 

model of gaming is either a linear effect on one feature (a parameter value αi multiplied 

by the corresponding feature value Xi : αi Xi), a quadratic effect on one feature 

(parameter value αi multiplied by feature value Xi, squared : αiXi
2
), or an interaction 

effect on two features (parameter value αi multiplied by feature value Xi, multiplied by 

feature value Xj : αiXiXj).  

An assessment Hm as to whether action m is an instance of gaming is computed as 

Hm = α0 X0 + α1 X1 + α2 X2 + … + αn Xn, where αi is a parameter value and Xi is the data 

value for the corresponding parameter (a single feature, that feature squared, or two 

features multiplied by each other), for this action, in the log files. The value given by the 

linear combination is the first hidden level and top layer in Figure 2. Each assessment Hm 

is then thresholded using a step function, such that if  Hm ≤ 0.5, H'm = 0, otherwise H'm = 

1.  The set of thresholded values makes up the second hidden level and middle layer in 

Figure 2. This gives us a set of classifications H'm for each action within the tutor, which 

are then used to create the assessments of each student’s proportion of gaming,  G'0…G'n . 

These assessments of each student’s proportion of gaming, which make up  the 

observable level of the model (the bottom layer in Figure 2), are compared to the 

observed values of gaming during model fitting and validation. 

 

4.2 Detector Selection 

There is a very large space of potential models describing gaming behavior (if any model 

with 1-7 parameters is permitted, approximately 10
13 

models are possible – this number is 

computed by taking the number of potential parameters and computing the number of 

combinations of 1-7 parameters).  

A combination of Fast Correlation-Based Filtering (Yu & Liu, 2003)
2
 and 

Forward Selection (Ramsey & Schafer, 1997) was used in order to efficiently search this 

space of models, as follows:  

First, we conducted Fast Correlation-Based Filtering. The full set of possible 

single-parameter detectors was selected, using Iterative Gradient Descent (Boyd & 

Vandenberghe, 2004) to find the best value for each parameter. From the full set of 

possible single-parameters, we selected a subset that fit the following two criteria:  

  

1. Each single-parameter gaming detector was at least 60% as good as the 

best single-parameter detector found (in terms of linear correlation to the 

observed data).  

2. If two parameters had a closer correlation than 0.7 to each other, only the 

better-fitting single-parameter detector was used.  

                                                 
2
 In the implementation of Fast Correlation-Based Filtering used within the research 

presented here, linear correlation is used as the goodness-of-fit measure rather than 

entropy, as the overall model architecture is based on linear correlation.  
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Using Fast-Correlation Based Filtering enabled us to cut down search time 

considerably, since we were able to search a limited sub-set of the space while having 

reasonably high confidence that we were covering a representative sample of the entire 

space. 

Once a set of single-parameter detectors was obtained, we expanded each 

detector, using Forward Selection. Using a simple Forward Selection procedure enabled 

us to search each path selected (which were together a representative sample of the entire 

space) in an exhaustive fashion. To each model, we tried adding each potential additional 

parameter, and selected the parameter that most improved the linear correlation between 

the detector’s assessments and the original data. The process was repeated on each 

candidate detector until each candidate detector had seven parameters. In early work, 

Leave-One-Out-Cross-Validation (LOOCV) was used to determine the optimal model 

size, but this method became intractable when training many detectors with data from 

hundreds of students. We chose seven as a maximum model size, because many models 

had 4-7 parameters when cross validation was used, but 8 or more parameters were quite 

rare. Pseudo-code of the algorithm used for model selection is given in Appendix I. 

This process resulted in a set of detectors, from which the model with the best A' 

was selected. A' is the probability that if the detector is comparing two students, with one 

student drawn from each of the two groups being classified, it will correctly identify 

which student is from which group (by determining which student has a higher predicted 

gaming percentage). A' is computed by considering all possible thresholds between two 

categories of students and looking at the proportion of true and false positives and 

negatives at each threshold. A' is equivalent to both the area under the ROC curve in 

signal detection theory, and to W, the Wilcoxon statistic (Hanley & McNeil, 1982). A 

model with an A' of 0.5 performs at chance, and a model with an A' of 1.0 performs 

perfectly – a model with a reasonably good A' of 0.75 at distinguishing GAMED-HURT 

students from non-gaming students would, when given a GAMED-HURT student and a 

non-gaming student, be able to correctly select the GAMED-HURT student 75% of the 

time. A' was averaged across the model’s ability to distinguish GAMED-HURT students 

from non-gaming students, and the model’s ability to distinguish GAMED-HURT 

students from GAMED-NOT-HURT students. 

Using linear correlation during the process of finding candidate models, and then 

using A' to select between candidate models, made it possible to find a model that was 

excellent on both metrics without needing to repeatedly calculate A' (at considerable 

time-cost) during the process of finding candidate models.  

 

5 Validation 

In this section of the paper, we will investigate how accurate the gaming detectors are at 

identifying those students who game the system in a way associated with poorer learning. 

Accuracy, in this case, is assessed in terms of generalizability. Two forms of 

generalizability are of interest: whether a detector trained on a population of students 

within a specific lesson effectively detects harmful gaming in new students using that 
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lesson, and whether a detector trained within a specific lesson (or set of lessons) 

effectively detects harmful gaming in new lessons. Within this section, both types of 

generalizability are assessed.  

 

5.1 Generalization to New Students 

We assessed the detector’s ability to generalize to new students by conducting a Leave-

One-Out-Cross-Validation (LOOCV) using data from the lesson that we had the most 

data for, the Scatterplot lesson. We took a gaming detector that had been fit using data 

from all 237 students who used the Scatterplot lesson (2003-2005), and re-fit the 

parameter values for each set of 236 students. In each case, we then used the re-fit 

parameter values to calculate the gaming frequency of the left-out 237
th

 student. This 

gave us a set of 237 cross-validated predictions, one per student. 

 We will first consider the detector’s performance without cross-validation, i.e. 

testing on the training set. We will assess the detector’s performance in terms of its A'
 

values. The difference between two A' values, or the difference between an A' value and 

chance, can be computed using the standard formula for the Z statistical test in 

combination with Hanley and McNeil’s (1982) technique for estimating the standard 

error of an A' value. The Z distribution is very similar to the distribution used in the t 

statistical test for sample sizes over 30, and like the t value given by the t-test, a Z value 

can be converted to a two-tailed p-value; a Z value of 1.96 corresponds to a two-tailed p-

value of 0.05. 

 When tested on the training set (all 237 students who used the Scatterplot lesson), 

the gaming detector achieved an A'
 
value of 0.80 at distinguishing students who gamed 

the system and had poorer learning, from non-gaming students. This result was 

statistically significantly better than chance, Z=5.00, two-tailed p<0.001. The gaming 

detector also achieved an A'
 
value of 0.71 at distinguishing between the two types of 

gaming behavior. This result was also significantly better than chance, Z=3.03, two-tailed 

p<0.01. It is worth noting, incidentally, that the gaming detector is not simply catching 

students who learn poorly, because it only achieves an A' of 0.53 at distinguishing 

students who have poorer learning but who do not game the system, a result which is not 

statistically significantly different than chance, Z=0.57, two-tailed p=0.57. 

 When the gaming detector’s generalizability was tested using Leave-One-Out-

Cross-Validation, the detector achieved an A'
 
value of 0.73 at distinguishing students who 

gamed the system and had poorer learning, from non-gaming students. This result was 

significantly better than chance, Z=3.39, p<0.001. The drop in performance from the 

training set to cross-validation, 0.80 to 0.73, was not statistically significant, Z=0.85, 

two-tailed p=0.39. Under LOOCV, the gaming detector also achieved an A'
 
value of 0.68 

at distinguishing between the two types of gaming behavior. This result was also 

significantly better than chance, Z=2.43, two-tailed p=0.02. The drop in performance 

from the training set to cross-validation, 0.71 to 0.68, was again not statistically 

significant, Z=0.37, two-tailed p=0.71. 

 Hence, the gaming detector is significantly better than chance, both when tested 

on the original training set, and when Leave-One-Out-Cross-Validation is used to test the 

detector’s ability to transfer to new students. In addition, though there is some appearance 
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of a degradation in performance when the detector is transferred to new students, that 

degradation is not statistically significant. 

 

5.2 Generalization Across Tutor Lessons 

A detector that transfers to new populations of students, within a single tutor lesson, can 

be used as the basis for a system that responds to gaming the system, within that lesson. 

(cf. Baker et al, 2006; Walonoski & Heffernan, 2006b). However, in order to be useful 

across large-scale, year-long tutor curricula (cf. Corbett, Koedinger, & Hadley, 2001; cf. 

van Lehn et al, 2005), a detector must be able to generalize across tutor lessons.  

To determine whether our approach to gaming detection can generalize across 

multiple tutor lessons, we train the detector on three tutor lessons and then evaluate its 

performance when transferred to a fourth, left-out tutor lesson – doing so across each 

potential split of three training lessons and one test lesson. We will compare the accuracy 

of the detectors, when transferred to a new lesson, to the detectors’ accuracy within the 

three lessons each detector was trained on. 

In doing this, we will need to rely upon more complicated statistics than in the 

previous section, because the data from the different tutor lessons is partially, but not 

fully, independent (because in many cases, some but not all of the students used two of 

the tutor lessons studied). We use a meta-analytical technique, Strube’s Adjusted Z 

(1985), in order to avoid overemphasizing the information from the students who used 

multiple tutor lessons. Strube’s Adjusted Z explicitly incorporates inter-correlation 

between dependent measures (in this case, each student’s observed gaming frequency in 

each lesson) into calculations of statistical significance, in order to avoid either making 

an overly-conservative estimate of statistical significance (such as in the mean Z 

technique, which assumes a correlation of 1 between dependent measures), or making an 

under-conservative estimate (such as in Stouffer’s Z – Rosenthal and Rosnow, 1991 – 

which assumes a correlation of 0 between dependent measures). Z-scores calculated 

using Strube’s Adjusted Z are denoted Za,, and can be treated statistically in the same 

fashion as any Z-score (i.e. values of Z greater than 1.96 correspond to p<0.05). Full 

detail on Strube’s adjusted Z is given in Appendix II.  

The gaming detectors trained on three lessons achieve an average A' of 0.85 at 

distinguishing GAMED-HURT students from non-gamers, in the training lessons, and an 

average A' of 0.80 at making the same distinction in the test lessons, as shown in Table 2. 

Hence, the detectors seem to do a little better in the training lessons than in the test 

lessons, but the difference between the performance of these detectors, from training 

lessons to test lessons, was not statistically significant, Za = 1.17, p=0.24.  

These detectors achieve an average A' of 0.86 at distinguishing GAMED-HURT 

students from GAMED-NOT-HURT students, in the training lessons, and an average A' 

of 0.80 at making the same distinction in the test lessons, as shown in Table 3. Again, the 

detectors seem to do a little better in the training lessons than in the test lessons, but the 

difference between the performance of these detectors, from training lessons to test 

lessons, was not significant, Za = 1.37, p=0.17. 

It is worth noting, however, that the effects are somewhat unstable across different 

combinations of lessons, as shown in Tables 2 and 3. In some cases, transfer is almost 
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perfect – but in other cases, it is poorer. On the whole, transfer is successful inasmuch as 

there is not statistically significant degradation, but transfer does not appear completely 

even. It is likely that some characteristics which lessons may share are more likely to 

promote successful transfer, and that if lessons do not share these characteristics, transfer 

will be less successful. Determining which characteristics of a lesson are particularly 

important for transfer of behavior detectors, such as the gaming detector, is an important 

area for future research.  

Overall, then, training on three lessons appears to result in a detector which transfers 

effectively to a new tutor lesson with at most a mild degradation in performance – 

suggesting that this detector is not capturing properties specific to gaming in individual 

lessons, but properties which are general to the overall Cognitive Tutor that these lessons 

were drawn from. The overall pattern of results is shown in Tables 2 and 3. 

 

Table 2. The performance of detectors trained on three of the four lessons, on training 

and test lessons. All values in this table are statistically significantly higher than chance. 

Values applying to a detector’s performance in a lesson it was not trained on are in bold. 

Lessons 

detector 

trained on 

A' (GAMED-HURT vs NON-GAMING) when 

detector tested on lesson. 

 Scatterplot Percents Geometry Probability 

Percents, 

Geometry, 

Probability 

 

0.67 

 

 

0.91 

 

 

0.77 

 

0.96 

Scatterplot, 

Geometry, 

Probability 

 

0.75 

 

 

0.86 

 

 

0.76 

 

0.99 

Scatterplot, 

Percents, 

Probability 

 

0.81 

 

0.93 

 

0.69 

 

0.92 

Scatterplot, 

Percents, 

Geometry 

 

0.75 

 

0.92 

 

0.77 

 

0.99 
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Table 3. The performance of detectors trained on three of the four lessons, on training 

and test lessons. All values in this table are statistically significantly higher than chance. 

Values applying to a detector’s performance in a lesson it was not trained on are in bold. 

 

Lessons 

detector 

trained on 

A' (GAMED-HURT vs GAMED-NOT-HURT) 

when detector tested on lesson. 

 Scatterplot Percents Geometry Probability 

Percents, 

Geometry, 

Probability 

 

0.6 

 

 

0.8 

 

 

0.92 

 

0.99 

Scatterplot, 

Geometry, 

Probability 

 

0.69 

 

 

0.75 

 

 

0.94 

 

0.99 

Scatterplot, 

Percents, 

Probability 

 

0.74 

 

0.9 

 

0.84 

 

0.99 

Scatterplot, 

Percents, 

Geometry 

 

0.68 

 

0.8 

 

0.89 

 

0.99 

 

5.3 Is the Detector Accurate Enough to Use to Drive Interventions? 

In the preceding sections, we have demonstrated that the detector can accurately 

predict the frequency of gaming for students that it was not trained on, and can even 

accurately predict performance within new lessons when trained on three lessons. 

However, the fact that the detector is statistically significantly more accurate than 

chance does not immediately indicate that it will be sufficiently accurate to drive 

interventions within a learning environment. 

It is open to debate exactly how effective a detector should be to drive appropriate 

interactions within an interactive system; in particular, less reliable detection can be 

managed by an interactive system through using “fail-soft” interventions (cf. Liu & 

Singh, 2002) which do not lead to highly negative consequences if the detector is 

inaccurate. 

Thus, the question of how effective a detector must be depends in part on the 

intervention it is used with; and therefore the best evidence that a detector is sufficiently 

accurate to drive interventions is the existence of a learning system which uses that 

detector to drive interventions, and where the interventions have positive consequences.  

Such evidence exists for the gaming detector reported here in the form of Scooter 

the Tutor (Baker et al, 2006), an interactive agent incorporated into the Cognitive Tutor. 

Scooter responds to gaming in two fashions: through expressions of negative emotion 

when students game the system, and through offering supplementary exercises on steps 

which a student has gamed several times. Scooter significantly reduced the frequency of 

gaming, and significantly improved gaming students’ learning. The success of this 
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system suggests that the gaming detector, when used with an appropriate intervention 

(both of these interventions were relatively fail-soft, having relatively minimal 

consequences if the detector was inaccurate), is – if not perfect – sufficiently accurate to 

drive interventions. 

While a full discussion of Scooter and the study evaluating its effectiveness are 

outside of the scope of this paper, interested readers are referred to (Baker et al, 2006). 

 

6 Behavioral Analysis 

In this section, we will discuss what behaviors are captured by a detector of harmful 

gaming. Specifically, we will discuss the parameters that make up a detector of harmful 

gaming trained on all four tutor lessons. This detector’s parameters are shown in Table 4. 

Within the detector, multiple parameters rely upon the same behavioral features, in 

different combinations, and thus some of the relationships between individual features 

and gaming are fairly complex. Hence, rather than discussing the detector’s parameters 

one-by-one, we will discuss the relationships between student behavior and gaming that 

emerge from the detectors’ parameters.  

In the detector’s characterization of harmful gaming, harmful gaming is 

associated with consistently making many errors on a specific problem step, across 

problems (Feature GH1 in Table 4). The evidence for harmful gaming is even stronger if 

the student gets the step right on the first try in some problems and makes a large number 

of errors in other problems (Feature GH2). However, not all errors are evidence of 

harmful gaming – for instance, errors made while point-plotting (an activity where slips 

are common – i.e. making an error despite knowing the skill well) are not associated with 

harmful gaming (Feature GH3).  

Specific types of help use are also associated with harmful gaming; specifically, 

requesting help on several steps in short succession is considered gaming, once the 

student has achieved a high probability of knowing at least some steps (i.e. once the 

student has completed at least a couple of problems) (Feature GH4). 

The relationship between the time taken to perform an action and harmful gaming 

is somewhat complex. Quick actions are evidence of gaming, but only if the student has 

already made an error on the current step (Feature GH5). However, extremely quick 

errors or help requests (more than 2 SD faster than normal – in many cases taking place 

in less than a fifth of a second) are not seen as evidence of gaming; this is because in 

many cases, actions at this speed consist of identical rapid actions such as accidental 

double-clicks on help or hitting enter twice (Features GH6 and GH7). 

Overall, these behaviors appear at face-value to be a reasonable match to the types 

of behaviors the human observers were looking for.  However, a number of behaviors 

could plausibly have seemed to match to a common-sense definition of gaming. The 

specific set of behaviors within the detector have met a stronger standard – in 

combination, these behaviors are a good statistical match to concrete observations of 

which students game and fail to learn.  
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Table 4. The detector of harmful gaming (GH). In all cases, param1  

is multiplied by param2, and then multiplied by value. 

 

 param 1 param 2 value description 

GH1 howmanywrong wrongpct 0.08 GH: Many errors across problems 

GH2 pknow-direct wrongpct 1.25 

GH: History of many errors and yet a high 
probability the student knows the skill (ie lots of 
errors on some problems, other times correct on 
the first try) 

GH3 point wrongpct -2.22 Not GH: Lots of errors while plotting points 

GH4 pknow recent8help 0.66 
GH: Asking for a lot of help, and then reaching a 
step which the system knows the student knows 

GH5 punchange timelast3SD -0.72 
GH: Very fast actions after making at least one 
error 

GH6 timelast3SD timelast3SD -0.34 Not GH: Very fast answers or very slow answers 

GH7 timelast3SD wrongpct 0.37 
Not GH: Very fast answers on steps with a high 
frequency of errors across problems 

 

 

7 Comparing the Gaming Detector to Related Systems 

In this section, we compare the Gaming Detector our group has developed to systems 

developed by other research groups which also detect gaming behavior. We will first 

advance a list of criteria for an ideal detector of gaming behavior, and then consider both 

our Gaming Detector and other systems according  to these criteria. 

 

7.1 Criteria For an Ideal Detector of Gaming Behavior 

A detector of gaming behavior can be developed with many goals in mind. In this 

section, we consider a set of potential criteria for evaluating a detector of gaming 

behavior, or detectors of student usage behavior in general. 

First, we propose that an ideal detector should accurately identify a category (or 

categories) of behavior which is known to be associated with a meaningful difference in 

student experience or outcomes. Detecting a behavior which is associated with negative 

outcomes in the student’s experiences or learning may make it possible to develop 

systems which can respond to student behavior in a way that concretely improves 

students’ learning and/or experiences. Since gaming the system is known to be associated 

with poorer learning (Baker et al, 2004), any system that accurately identifies gaming 

behavior will satisfy this goal. If a system can go on to distinguish gaming behaviors that 

have relatively greater or lesser impact on learning, the system will have succeeded 

strongly at this goal. 

Second, an ideal detector can predict not only which students engage in the 

behavior, but when they do so. If a system can effectively predict when a student is 

engaging in a relevant behavior, the system can present interventions just-in-time, 

making more types of interventions (and potentially more effective interventions) 

possible. Hence, any system that can predict when students game will satisfy this goal. A 



Detecting When Students Game the System 

17 

system succeeds strongly at this goal if those predictions are validated, either directly 

through comparing the predictions to knowledge about exactly when a student was 

gaming, or by showing that a system that uses the predictions to respond to gaming 

behavior does in fact reduce gaming behavior. 

Third, an ideal detector not only detects student behaviors but can help 

researchers understand those behaviors better. Despite an increasingly rich history of 

research into learner-computer interaction, our understanding of why students choose 

certain behaviors when using learning environments is still quite limited. A detector 

which indicates exactly when students engage in a behavior can potentially help us 

understand why students engage in that behavior. Hence, a system which has been used 

to understand gaming behavior better will satisfy this goal.  

Fourth, an ideal detector can generalize. While a detector developed within the 

context of a small system may provide insights into detector development and student 

behavior, it will have less impact than a detector which can be applied more broadly. 

Thus far, most detectors of student behaviors have been developed using data from fairly 

small-scale learning environments, or using individual lessons from a larger curriculum. 

However, interactive learning environments such as intelligent tutors are increasingly 

being used as major components in semester or year-long curricula (Corbett, Koedinger, 

& Hadley, 2001; van Lehn et al, 2005). Therefore, to be widely useful – and used – 

detectors of behaviors and motivation will need to be generalizable beyond a single tutor 

lesson or small-scale system. A system which can generalize to new tutor lessons, or 

better yet, entirely new tutors, will satisfy this goal.  

 

7.2 Other Detectors of Gaming Behavior 

Beyond the Gaming Detector which was the principal subject of this paper, at least five 

other systems can be considered detectors of gaming behavior. 

 The first of these systems, Aleven et al’s (2004) Help-Seeking Tutor Agent, was 

first presented at the same conference that the Gaming Detector was first presented at 

(Intelligent Tutoring Systems 2004, in Brazil). The Help-Seeking Tutor Agent models a 

set of behaviors related to student help-seeking within Cognitive Tutors. Two of those 

behaviors, try-step abuse and hint abuse, correspond to the broader category of gaming 

the system. The Help-Seeking Tutor Agent was developed using knowledge engineering 

to develop the functional form of a mathematical model, and then automated parameter-

fitting to find values for the parameters of that model. The Help-Seeking Tutor Agent has 

been validated to transfer to at least one new tutor lesson, after re-fitting parameter values 

on new data (Roll et al, 2005), and has been used as the basis of a learning system which 

gave students feedback on their metacognitive errors (Roll et al, 2007). This system 

improved students’ metacognitive behavior during their use of the system, but did not 

affect students’ domain learning or their metacognitive behavior in other contexts.  

 The second system is Beck’s (2005) Disengagement Tracing. Disengagement 

Tracing models whether a student is responding faster on quiz items than would be 

possible if the student was sincerely attempting to answer the item using their knowledge, 

within Project LISTEN, an intelligent tutor teaching reading skills. Disengagement 

Tracing was developed using knowledge engineering to develop an item-response theory 
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model, and then by using automated parameter-fitting to find values for the parameters of 

that model. Disengagement Tracing was applied to an entire year of data, and was found 

to be accurate at predicting student knowledge on a post-test.  

 The third system is Johns and Woolf’s (2006) system to detect student motivation 

and proficiency. This system detects whether students are abusing hints or guessing, the 

same behaviors identified by the Gaming Detector and the Help-Seeking Tutor Agent, 

but within a different math tutoring system, Wayang Outpost. Johns and Woolf’s system 

was developed using knowledge engineering to develop the functional form of a 

mathematical model, and then automated parameter-fitting to find values for the 

parameters of that model. Their system was used to decide whether to present 

interventions to gaming students, and the interventions were associated both with reduced 

gaming behavior and improved learning (Arroyo et al, 2007). 

 The fourth system is Walonoski and Heffernan’s (2006a) Off-Task Gaming 

Behavior Detector. This system detects whether a student is gaming the system while 

using ASSISTments, an intelligent tutor which both tutors students on mathematics topics 

and informs their teacher as to which parts of the state mathematics exams may be giving 

the student particular difficulty. Walonoski and Heffernan’s system, like the Gaming 

Detector, was developed using machine learning on human observations of the frequency 

of gaming behavior, and accurately correlated to the observations. The Off-Task Gaming 

Behavior Detector was used as the basis of visualization-based interventions which 

significantly reduced the frequency of gaming behavior as well as reducing students’ 

gaming in future tutor lessons (Walonoski & Heffernan, 2006b). 

 Finally, the fifth system is Beal et al’s (2006) model of student strategies. This 

system can predict whether students are engaging in either help abuse or guessing, while 

using Wayang Outpost, the same system studied by Johns and Woolf. Beal et al’s model 

was developed by knowledge engineering, with parameters set in advance rather than 

through parameter-fitting. Beal and her colleagues clustered students by their adoption of 

a variety of strategies, including the gaming strategies, and found that including estimates 

of gaming frequency improved the accuracy of learner modeling (Beal, Mitra, & Cohen, 

2007). 

 

 

7.3 Comparing Detectors of Gaming Behavior 

7.3.1 Accurately Identifying Which Students Game 

 Each of the six detectors of gaming behavior appear to satisfy the first criterion, 

accurately identifying gaming the system, a category of behavior known to be associated 

with significantly poorer learning – though one system is only indirectly validated. 

Interestingly, the six detectors are validated in fairly different ways. Two systems, the 

Gaming Detector and the Off-Task Gaming Behavior Detector, validate by comparing 

detector predictions to labels created by researchers. Three systems, Disengagement 

Tracing, Johns and Woolf’s system, and Beal et al’s system, attempt to validate by 

showing that incorporating their detectors improves prediction of student problem-

solving performance within their system. In Disengagement Tracing and Beal et al’s 
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system, the validation is successful – in the case of Johns and Woolf’s system, the 

validation is not a success; their system does not significantly improve prediction of 

student correctness. Four systems, the Gaming Detector, Disengagement Tracing, the 

Help-Seeking Tutor Agent, and the Off-Task Gaming Behavior Detector, also validate 

through correlating the predictions of gaming behavior to the student’s performance on 

knowledge measures external to the learning system (either pre-tests or post-tests).  

 Five of six systems have thus been successfully validated in some fashion – the 

sixth, Johns and Woolf’s system – has not yet been directly validated. However, its 

predictions about gaming behavior have been used to drive interventions that appear both 

to reduce gaming behavior (as measured by the system) and improve learning. Therefore, 

we can consider Johns and Woolf’s system indirectly validated. 

 Each of these systems detects gaming behavior. The Gaming Detector, alone 

among the six systems, goes a step further and distinguishes between types of gaming 

behavior associated with different learning outcomes. It is not immediately clear why 

only the Gaming Detector makes this division. Since the Gaming Detector’s division 

between harmful and non-harmful gaming was made due to serendipity in early stages of 

machine learning, one possibility is that the four efforts that used knowledge engineering 

instead of machine learning did not find a separation in gaming behavior because they 

never looked for it, nor created the possibility that it could be found through serendipity. 

This does not explain, however, why Walonoski and Heffernan, who also used machine 

learning in developing the Off-Task Gaming Behavior Detector, did not also 

serendipitously discover the split in gaming behaviors as was found in the development 

of the Gaming Detector. Since none of the other five research groups explicitly looked 

for a split in gaming behavior (or at least did not report doing so), it remains an open 

question whether this split, replicated across lessons for the Gaming Detector, is unique 

to Cognitive Tutors or is a more widely generalizable finding. Nonetheless, at least at this 

point, the Gaming Detector may satisfy this first criterion more strongly than the other 

systems, by not just detecting gaming behavior but by distinguishing between types of 

gaming behavior. 

 

 

 

7.3.2 Accurately Identifying When Students Game 

 

 All six detectors of gaming behavior also satisfy the second criterion, predicting 

not only which students engage in gaming but when they do so. Four of the six systems – 

the Gaming Detector, the Help-Seeking Tutor Agent, Johns and Woolf’s system, and the 

Off-Task Gaming Behavior Detector – go a step further and use these predictions to drive 

interventions that respond to gaming behavior. In all four cases, the interventions change 

the frequency of gaming behavior within the system. Varying effects are seen on student 

learning, but this is quite likely due to the differences between the interventions rather 

than the detection systems. In the specific case of the Gaming Detector, interventions 

driven by the Gaming Detector’s predictions both significantly reduced the degree of 

gaming behavior (measured by live observations) and improved gaming students’ 
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learning (Baker et al, 2006). Walonoski and Heffernan’s (2006a) Off-Task Gaming 

Behavior Detector goes a step further still – they probabilistically match the times of their 

observations to the actions in their tutor log files, and find that their detector’s predictions 

match (in time) to the observations. As not all of the observations used to train the 

Gaming Detector in various contexts are synchronized with the tutor logs as well as 

Walonoksi and Heffernan’s observations were, this direct validation is not currently 

possible for the Gaming Detector.  Hence, three systems have indirect validation of this 

criterion; Walonoski and Heffernan’s system is the only one to directly validate it.  

 

7.3.3 Increasing our Knowledge About Gaming 

 Four of the six detectors of gaming behavior satisfy the third criterion, having 

been used to increase our knowledge of the construct of gaming. The Gaming Detector 

suggests that gaming may have different effects on learning depending on when students 

engage in gaming. In addition, the Gaming Detector tells us that gaming occurs in 

clusters, but that those clusters are not solely temporal; instead, those clusters take place 

both in specific pockets of time and also across time, linked to a specific problem step. 

This suggests that gaming may be a specific response to specific material rather than an 

overall response to the interactive learning environment. Thirdly, the Gaming Detector 

has been used to identify which student attitudes and motivations are associated with 

gaming, by comparing its predictions to student questionnaire responses (Baker et al, 

2005, in press).  

The Off-Task Gaming Behavior Detector and Beal et al’s model have also been 

used in this fashion, to identify which student attitudes and motivations are associated 

with gaming, by comparing its predictions to student questionnaire responses (Baker et 

al, in press; Beal et al, 2006). Beck’s Disengagement Tracing has been applied to an 

entire year of data, and shows that gaming behavior increases during the course of the 

year, and that gaming occurs in temporal clusters, confirming the Gaming Detector’s 

finding of temporal clusters. Hence, four of the six systems have been used to increase 

our knowledge of the construct of gaming. It is likely that the other two systems could be 

used to understand more about gaming – however, the fact that they have not yet been 

used in this fashion (to the best of our knowledge), restricts them for now from having 

fulfilled this criterion.  

 

7.3.4 Generalizing Across Students and Contexts 

 Finally, all of the detectors of gaming behavior satisfy the fourth criterion, 

generalizability, but to different degrees. All six systems work when transferred to new 

students, using cross-validation or a new test set.  

Beyond this, Disengagement Tracing, the Off-Task Gaming Behavior Detector, 

Johns and Woolf’s system, and Beal et al’s system, all successfully work within fairly 

large-scale learning environments. However, none of these four systems have been 

validated to transfer to new tutor contexts (i.e. new units/lessons with even moderately 

different interfaces or pedagogy). The Help-Seeking Tutor Agent has been shown to 

effectively transfer to a new tutor lesson without changing the functional form, but with 
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re-fitting of parameter values (Roll et al, 2005). Only the Gaming Detector has been 

validated to successfully generalize to new lessons within the tutor curriculum, with no 

re-training.  

 

7.3.5 Summary 

 

 In the previous four sections, we have discussed six systems that attempt to detect 

gaming behavior in terms of four criteria, accurately identifying which students game, 

accurately identifying when students game, increasing our knowledge about gaming, and 

generalizing beyond the original training context. 

All six systems are at least acceptable on at least three of the four criteria. The 

Gaming Detector achieves the highest mark (alone, or in a tie) on three of the four 

criteria. Only in one case – the second criterion – does another system achieve the highest 

mark, and in that case the Gaming Detector is tied for second place. Hence, the approach 

used to develop the Gaming Detector appears to be capable of producing behavior 

detection systems which provide excellent performance on each of the four criteria of 

interest. A summary of the systems’ performance is given in Table 5. 
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Table 5. Assessing all six systems which detect gaming behavior, across four criteria. 

Boldface indicates that a given system is best (or tied for best) on a given criterion. 

 
System 

(First report of 

system) 

Identifies which 

students game 

Predicts when 

students game 

Has increased 

knowledge about 

gaming construct 

Has been shown to 

generalize 

Gaming Detector 

(2004) 

Yes – correlates to 

both observations 

and external 

knowledge test. 

Plus, identified 

sub-categories 

within overall 

construct 

Yes, and those 

predictions have 

been used to drive 

interventions 

Yes Yes, successfully 

transfers to new 

contexts with no 

re-training 

Help-Seeking  

Tutor Agent 

(2004) 

Yes, correlates to 

external test of 

knowledge 

Yes, and those 

predictions have 

been used to drive 

interventions 

Not yet Yes, successfully 

transfers to new 

contexts with only 

parameter re-

fitting 

Disengagement 

Tracing 

(2005) 

Yes, predicts 

behavior within 

system and 

correlates to 

external test of 

knowledge 

Yes Yes Perhaps – works 

within large-scale 

system 

Johns & Woolf 

(2006) 

Failed to improve 

predict of student 

behavior within 

system; however, 

used in effective 

intervention 

Yes, and those 

predictions have 

been used to drive 

interventions 

Not yet Perhaps – works 

within large-scale 

system 

Off-Task Gaming 

Behavior Detector 

(2006) 

Yes, correlates to 

both observations 

and external 

knowledge test 

Yes, and those 

predictions have 

been validated and 

used to drive 

interventions 

Yes Perhaps – works 

within large-scale 

system 

Beal et al 

(2006) 

Yes, accurately 

predicts student 

behavior within 

system 

Yes Yes Perhaps – works 

within large-scale 

system 

 

 

8 Conclusions 

In this paper, we have presented a system that can detect when students “game the 

system”, in a fashion associated with poor learning. We have shown that this detector  

• accurately detects which students game the system 
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• makes predictions about when students game the system, which are difficult to 

directly validate, but which have been used to drive learning interventions which 

improve student learning 

• expands our knowledge about the behavioral construct of “gaming the system” 

• can generalize between contexts 

 

Since the advent of this detector, multiple systems have been produced which also 

attempt to detect gaming behavior. These systems use a variety of techniques, and have 

largely been successful at achieving many of the same goals as our system. The Help-

Seeking Tutor Agent and Gaming Detector have even been applied to the same data set, 

and the two detectors have been found to correlate well to one another (Roll et al, 2005).  

On the whole, the existence of several different systems which can detect gaming 

behavior indicates that gaming is a fairly robust construct, present across many intelligent 

tutoring systems. However, it is not yet clear to what degree some features of gaming 

behavior which we have discovered – such as the split between harmful and non-harmful 

gaming – are general across intelligent tutoring systems. 

Though gaming has been documented in many interactive learning contexts beyond 

intelligent tutors (cf. Magnussen & Misfeldt, 2004; Cheng & Vassileva, 2005), thus far 

all gaming detectors have been developed within the context of intelligent tutoring 

systems. An interesting and valuable area of future work will be to study the development 

of gaming detectors for these contexts, and how lessons learned in the development of 

gaming detectors within intelligent tutoring systems can transfer to these domains. 

Beyond the future development of gaming detectors in other domains, the work to 

develop detectors of gaming behavior may facilitate the development of detectors of 

other types of behavior. Recently, the first author of this paper developed a system which 

can automatically detect whether a student who is idle when using an intelligent tutoring 

system is off-task or asking the teacher or another student for help (Baker, 2007). This 

detector was developed using the exact same model framework as the system presented 

in this paper, and uses a model selection algorithm very similar to the one used here. 

Hence, the tools used within this paper – Latent Response Models and Fast Correlation-

Based Filtering – seem to be tools which can be applied to modeling a variety of user 

behaviors in interactive learning environments. Meta-analysis, though not yet widely 

used for analyzing user models, is another type of technique with considerable potential 

for our community. Meta-analysis provides a relatively easy-to-use pool of techniques for 

comparing models across different contexts, or aggregating measures of model accuracy 

across contexts.  

As detectors of behavior categories such as gaming the system are developed for 

more systems, they may also provide leverage for developing detectors of other 

constructs, such as affect (cf. D’Mello et al, in press). Recent research has suggested that 

gaming the system co-occurs with some affective states (frustration, boredom, confusion) 

and that students who game the system are more likely to be bored in the future (Rodrigo 

et al, 2007).  Hence, accurate gaming detection may support more accurate detection of 

student affect; correspondingly, the development of accurate detectors of student affect 

may increase the accuracy of future systems which detect gaming the system.  
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We close with a final thought on the broader generalizability not of this detector, or 

even the methods used to develop or evaluate it, but of the ideas it represents. Though the 

domain of this paper has fallen within the area of educational interactions, it is worth 

noting that many of the same issues apply in general to the problems of modeling user 

behavior and strategies. Detectors of user behavior and strategies should focus on 

behaviors which are associated with differences in user experience and outcomes. A 

detector of a category of user behavior should not just identify that a behavior has 

occurred, but when it occurs – as in the example presented within this paper, this task 

may be facilitated by using hierarchical modeling frameworks that make predictions at 

multiple grain-sizes. Detectors of user behavior and strategies will be more useful if they 

can help identify why users engage in the studied behaviors and strategies. Finally, 

detectors of user behaviors and strategies will be more useful if they can effectively 

generalize to different sub-domains within an overall system; and as in our example, 

training on broadly sampled data may result in a detector which can be applied more 

widely. Ultimately, a detector of behavior will be useful if it captures important 

behaviors, identifies when they occur, promotes understanding of the behaviors, and is 

general – regardless of what domain the behavior occurs within.   
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Appendix I 

Gaming Detector Training Algorithm 

 
Goal: Find model with good correlation to observed data, and good A’ 
 

Preset values:  

π − The percentage of the best path’s goodness-of-fit that is acceptable  
as an alternate path during fast correlation-based filtering (value used = 
60%) 

µ − The maximum acceptable correlation between a potential path’s most 
recently added parameter and any alternate parameter with a better 
goodness-of-fit. (value used = 0.7) 

ζ − The maximum size for a potential model (-1 if LOOCV is used to set 
model size). (value used = 7) 

 
 Data format: 

A candidate model is expressed as two arrays: one giving the list of  
parameters used, and the second giving each parameter’s coefficient. 

 
Prior Calculation Task: Find correlations between different parameters 

 For each pair of parameters, 
Compute linear correlation between the pair of parameters,  
across all actions, and store in an array 

 
Main Training Algorithm: 
Set the number of parameters currently in model to 0 
Set the list of candidate models to empty 
MODEL-STEP (empty model) 
For each candidate model (list populated by MODEL-STEP) 

Calculate that model’s A’ value (for both GAMED-HURT versus NON-GAMING, 
and GAMED-HURT versus GAMED-NOT-HURT) 

 Average the two A’ values together 
Output the candidate model with the best average A’. 
 
Recursive Routine MODEL-STEP: Conduct a step of model search 
 Input: current model 

 If there is at least one parameter already in the model, 
Subgoal: Complete exploration down the current path 

Create variable PREV-GOODNESS; initalize to -1. 
Create variable CURRENT-GOODNESS; initialize to -1 
Create array BEST-RECENT-MODEL 
Repeat  

For each parameter not already in the model 
Use iterative gradient descent to find best model that includes both  

the current model and the potential parameter (using linear 
correlation to the observed data as the goodness of fit metric). 

Store the correlation between that model and the data 
Add the potential parameter with the best correlation to the model 

If ζ = −1  (i.e. we should use cross-validation to determine model size) 
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Create an blank array A of predictions (of each student’s game freq) 
For each student S in the data set 

Use iterative gradient descent to find best parameter values for  
the current model, without student S 

Put prediction for student S, using new parameter values, into 
array A 

Put the linear correlation between array A and the observed data into  
variable CURRENT-GOODNESS 

If CURRENT-GOODNESS > PREV_GOODNESS 
 PREV_GOODNESS = CURRENT-GOODNESS 
 Put the current model into BEST-RECENT-MODEL 

  Else 
Put the current model into BEST-RECENT-MODEL 

Until (the model size = ζ  OR PREV_GOODNESS > CURRENT-  
GOODNESS) 

Add BEST-RECENT-MODEL to the list of candidate models 
 Else 
 Subgoal: Select a set of paths 

Mark each parameter as POTENTIAL 
For each model parameter  

Use iterative gradient descent to find best model consisting only of this 
potential parameter (using linear correlation to the observed data as 
the goodness of fit metric). 

Store the correlation between that model and the data 
Repeat 

Find the parameter P whose associated candidate model has the highest 
linear correlation to the observed data (among the set POTENTIAL) 

Mark parameter P as SEARCH-FURTHER 
For all potential parameters Q marked POTENTIAL 
 If the linear correlation between parameter Q and parameter P  

 is greater than µ, mark parameter Q as NO-SEARCH 
 If the linear correlation between the model with parameter Q and the  

observed data, divided by the linear correlation between the 
model with parameter P and the observed data, is less than 

π, mark parameter Q as NO-SEARCH 
Until no more parameters are marked POTENTIAL 
For each parameter R marked as SEARCH-FURTHER 

 Set N to the best model that has only parameter R (this has already 
been computed) 
Recurse MODEL-STEP (N)  
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Appendix II 

Strube’s (1985) Adjusted Z 

 

Strube’s adjusted Z (1985) is a technique used when data in different data sets is 

partially, but not fully, independent. In this paper, this condition is true because some but 

not all of the students used two of the tutor lessons studied (scatterplot and geometry). 

  Strube’s Adjusted Z explicitly accounts for the intercorrelation between data sets 

with overlapping participants. Strube’s Adjusted Z is recommended in Rosenthal and 

Rosnow (1991) for precisely this statistical situation, and has been used in at least 20 

papers in published scientific literature (Google Scholar, visited September 3, 2007). In 

this section, we provide a brief discussion of Strube’s formula, adapted from Strube’s 

text. 

Strube’s Adjusted Z generalizes Stouffer’s formula for computing Z scores (cf. 

Rosenthal and Rosnow, 1991) for the case where there is non-independence between 

samples. As Strube (1985) discusses, Stouffer’s formula for Z corresponds to a linear 

combination of Z values, divided by the linear combination’s standard deviation. The 

variance of a linear combination (the standard deviation squared) can be written as the 

sum of the variances of the individual terms plus their covariances. Stouffer’s formula 

assumes independence and thus eliminates the covariance terms; Strube’s formula 

explicitly includes the covariance terms – the covariances between the measures which 

we have Z values for. In addition, where there is only partial overlap in population, the 

covariance terms can be treated as a combination of the inter-dataset correlation where 

individual variable values are taken from the overlapping students, but the total number 

of students in both data sets is treated as the N (this is not strictly Strube’s formula, but is 

a clear extension of the formula, as non-overlapping students are independent of one 

another).  

 

To give a brief example (using simplified numbers rather than the exact numbers 

from the data in this paper): 

 

Let us say that we are combining two tests of whether a detector is statistically 

significantly better than chance, involving two overlapping data sets (which we will call 

the Lesson-X and Lesson-Y 2004 data sets). The significance of the detector’s 

effectiveness in Lesson-X is A'=0.80, Z=2.00, and the significance of the detector’s 

effectiveness in Lesson-Y is A'=0.85, Z=2.50. 75% of the students in the two lessons are 

represented in both lessons, and the other 25% only contributed data to one of the two 

lessons. Within the 75% of students represented in both lessons, the correlation between 

the observed gaming frequency in the two lessons is 0.25. 

Stouffer’s Z would calculate the combined Z as (2.00+2.50)/sqrt(num-tests)= 3.18 

(there are two statistical tests here, hence num-tests = 2). However, this assumes full 

independence, which is in this case an overly liberal estimation (i.e. there is an overly 

high chance of Type II error).  

Assuming full non-independence (the average Z method) would calculate the 

combined Z as (2.00+2.50)/(num-tests) =2.25. However, since there is only partial non-
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independence, this estimate is overly conservative (i.e. there is an overly high chance of 

Type I error).  

Using Strube’s method, and treating non-overlapping students as independent 

from one another, we calculate Z as 2.00+2.50/sqrt(num-tests+0.25*0.75+0.25*0.75) = 

2.92. This gives us a value between these two estimates, which is not biased towards 

either Type I or Type II error. 
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