
Detecting When Students Game the System

1

Developing a Generalizable Detector of When Students

Game the System

Ryan S.J.d. Baker (rsbaker@cmu.edu), Albert T. Corbett (corbett@cmu.edu),

Ido Roll (idoroll@cmu.edu), Kenneth R. Koedinger (koedinger@cmu.edu),

Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA,

USA.

Abstract. Some students, when working in interactive learning environments, attempt to

“game the system”, attempting to succeed in the environment by exploiting properties of

the system rather than by learning the material and trying to use that knowledge to

answer correctly. In this paper, we present a system that can accurately detect whether a

student is gaming the system, within a Cognitive Tutor mathematics curricula. Our

detector also distinguishes between two distinct types of gaming which are associated

with different learning outcomes. We explore this detector’s generalizability, and find

that it transfers successfully to both new students and new tutor lessons.

Key words: Gaming the System, Latent Response models, Cognitive Tutors, behavior

detection, machine learning, generalizable models, student modeling, interactive learning

environments

1. Introduction

Developing systems that can reliably identify differences in how students choose to use

interactive learning environments, and the attitudes and goals which underlie these

decisions, is an interesting and challenging problem which has received considerable

attention in recent years (Aleven, McLaren, Roll, & Koedinger, 2004; Arroyo and Woolf,

2005; Beck, 2005; Conati & McLaren, 2005; D’Mello, Craig, Witherspoon, McDaniel, &

Graesser, in press; de Vicente & Pain, 2002; Johns & Woolf, 2006; Walonoski &

Heffernan, 2006a).

One behavior that has been the subject of particular interest in recent years is

“gaming the system”, defined as “attempting to succeed in an educational environment

by exploiting properties of the system rather than by learning the material and trying to

use that knowledge to answer correctly” (Baker et al, 2006). Gaming behaviors have been

observed in a variety of types of learning environments, from educational games

(Magnussen & Misfeldt, 2004) to online course discussion forums (Cheng & Vassileva,

2005). Though gaming behavior had been documented in computer-assisted instruction

as early as the early 1970s (Tait, Hartley, & Anderson, 1973) and again in the 1990s

(Schofield, 1995; Wood and Wood, 1999), the topic has seen a burst of attention in the

last four years within the context of intelligent tutoring systems (cf. Schofield, 1995;

Wood & Wood, 1999; Aleven, 2001; Mostow et al., 2002; Baker et al., 2004; Beck,

Detecting When Students Game the System

2

2005; Murray & vanLehn, 2005; Beal, Qu, & Lee, 2006; Johns & Woolf, 2006;

Walonoski & Heffernan, 2006a), after it was demonstrated that gaming behavior is

associated with significantly poorer learning in Cognitive Tutor classes (Baker, Corbett,

Koedinger, & Wagner, 2004) and after the first systems that could accurately detect

gaming behavior were reported, Baker et al’s (2004) Gaming Detector, and Aleven et al’s

(2004) Help-Seeking Tutor Agent. In the three years since those two systems were

simultaneously reported at Intelligent Tutoring Systems 2004, at least four other

independently developed systems which detect gaming behavior have been reported at

scientific conferences (Beck, 2005; Walonoski & Heffernan, 2006a; Johns & Woolf,

2006; Beal, Qu, & Lee, 2006).

In this paper, we will discuss one of the first two gaming detectors developed,

Baker et al’s (2004) Gaming Detector, presenting it in its most current form. We will

discuss the data used to develop the Gaming Detector, and evidence that the Gaming

Detector can effectively detect gaming, distinguish between types of gaming, and

generalize to new tutor lessons. We will conclude with a comparison between our

research group’s Gaming Detector, and systems that detect gaming behavior which were

developed by other research groups.

2. Gaming the System in Cognitive Tutors

In this paper, we will discuss work on detecting gaming within Cognitive Tutors.

Cognitive Tutor learning environments are designed to promote learning by doing.

Within the Cognitive Tutor environments discussed within this paper, each student

individually completes mathematics problems. The Cognitive Tutor environment breaks

down each mathematics problem into the steps of the process used to solve the problem,

making the student’s thinking visible. As a student works through a problem, a running

cognitive model assesses whether the student’s answers map to correct understanding or

to a known misconception (cf. Anderson, Corbett, Koedinger, & Pelletier, 1995). If the

student’s answer is incorrect, the answer turns red; if the student’s answers are indicative

of a known misconception, the student is given a “buggy message” indicating how their

current knowledge differs from correct understanding. Cognitive Tutors also have multi-

step hint features; a student who is struggling can ask for a hint. He or she first receives a

conceptual hint, and can then request further hints, which become more and more specific

until the student is given the answer (see Figure 2). The hints are context-sensitive and

tailored to the exact problem step the student is working on. As the student works through

the problems in a specific curricular area, the system uses Bayesian knowledge-tracing

(Corbett & Anderson, 1995) to determine which skills that student is having difficulty

with, calculating the probability that the student knows each skill based on that student’s

history of responses within the tutor. Using these estimates of student knowledge, the

tutoring system gives each student problems which are relevant to the skills which he or

she is having difficulty with.

Cognitive Tutor material is typically structured into independent lessons, each of

which covers a set of related skills and concepts. Year-long courses are composed of

sequences of lessons, where the knowledge in later lessons generally builds upon the

Detecting When Students Game the System

3

knowledge in previous lessons. Year-long Cognitive Tutor courses were used in over

1,000 U.S. high schools as of the 2005-2006 school year, for a variety of mathematical

subjects such as Algebra, Pre-Algebra, and Geometry.

Within Cognitive Tutors, gaming the system consists of the following behaviors:

1. quickly and repeatedly asking for help until the tutor gives the student the correct

answer (cf. Aleven, 2001)

2. inputting answers quickly and systematically. For instance, systematically

guessing numbers in order (1,2,3,4…) or clicking every checkbox within a set of

multiple-choice answers, until the tutor identifies a correct answer and allows the

student to advance.

These categories of behavior appear to be common to other intelligent tutoring

systems as well (Beck, 2005; Murray & vanLehn, 2005; Walonoski & Heffernan, 2006a;

Johns & Woolf, 2006). Other examples of gaming the system include choosing to work

on material which the student has already memorized (Mostow et al, 2002), and

intentionally posting irrelevant material to online course discussion forums where

participation is automatically graded (Cheng & Vassileva, 2005).

Detecting When Students Game the System

4

Figure 1. The last stage of a multi-stage hint in the tutor lesson on scatterplots: The

student labels the graph’s axes and plots points in the upper window; the tutor’s estimates

of the student’s skills are shown in the lower window; the hint window (superimposed on

the upper window) allows the tutor to give the student feedback.

In our early work to develop a gaming detector (Baker, Corbett, & Koedinger

2004), using only a single tutor lesson from a middle school mathematics curriculum (cf.

Koedinger, 2002), we serendipitously found evidence suggesting that gaming divides into

two distinct categories of behavior. A detector trained to detect all gaming students only

succeeded in detecting gaming in about half of the students observed gaming in the study.

Further investigation produced evidence that the detector was only detecting students

who both gamed and had low post-test scores. The detector was not detecting the students

who gamed but had high post-test scores (regardless of whether they had low pre-test

scores, suggesting that they learned from the tutor, or high pre-test scores, suggesting that

they already knew the material) (cf. Baker, Corbett, & Koedinger, 2004).

Detecting When Students Game the System

5

Follow-up analysis, using a broader data set, produced further evidence

suggesting that students who gamed and had low post-test scores differ considerably from

students who gamed and had high post-test scores. A detector trained on either of the two

groups of gaming students accurately captured that group (using leave-out-one-cross-

validation, where a detector is trained on every student except one, and then used to make

a prediction about the student left-out), but generally did not capture students from the

other gaming group, suggesting that these two categories of behavior are indeed

differentiable within students using Cognitive Tutors. We will present some of this

evidence later in the paper.

In this paper we focus on the detector that captures the behavior of the group of

students who gamed the system in the fashion associated with poorer learning, as this

“harmful” type of gaming
1
 is associated with a concrete difference in learning outcomes

while other gaming behavior does not appear to be. This does not imply that it is not

important to understand why some gaming behaviors are not associated with lower

learning gains. However, developing an accurate and generalizable detector of harmful

gaming behavior has considerably more potential to increase intelligent tutors’

educational effectiveness (since such a detector can be used to respond to such behavior

and potentially help harmfully gaming students learn better) than the development of an

accurate and generalizable detector of other types of gaming behavior does.

3. Data

The first detector of gaming (presented in Baker, Corbett, & Koedinger, 2004) was

developed using data from a intelligent tutor lesson on scatterplots, drawn from a

Cognitive Tutor curriculum on middle school mathematics (Koedinger, 2002).

In order to study issues of generalizability in gaming detection, we collected data

from three additional lessons from the same tutoring curriculum, lessons in the domains

of geometry, percents, and probability, giving us data from four tutor lessons in total. All

data came from classrooms (4-6 classrooms per year) in two school districts in suburban

Pittsburgh.

The scatterplot lesson data was drawn from classes in 2003, 2004, and 2005. The

geometry and probability lesson data was drawn from classes in 2004. The data for the

geometry, probability, and scatterplot lesson (2004 cohort) involved the same group of

students, with some non-overlap due to absence. The data for the percents lesson was

drawn from classes in 2005, but in a fashion that did not result in any overlap between the

students in the scatterplot and percents data. In total, data was collected from 436

student/lesson pairs. Each student completed an average of 297 actions in the tutor

(SD=132) per lesson, with extremes at 35 and 752 actions, for a total of 129,341 actions.

The number of students and number of tutor actions logged for each lesson is given in

Table 1.

For each of these lessons, we had the following data:

1 The word “harmful” is used for brevity and simplicity in discussion; there is still not conclusive evidence as to

whether the relationship between harmful gaming and learning is causal or correlational.

Detecting When Students Game the System

6

- Quantitative field observations, in order to estimate what percentage of time

each student gamed the system. In quantitative field observations, one or more

observers make repeated 20-second observations of the behavior of a set of

students as the students use tutoring software, coding each student’s behavior

during an observation according to a pre-determined set of categories (in this

case, including gaming the system, off-task behavior, talking on-task, and

working in the tutor). Observations were conducted using peripheral vision,

and achieved acceptable inter-rater reliability (κ = 0.74). Full detail on the

method used is given in (Baker, Corbett, Koedinger, & Wagner 2004).

- Pre-tests and post-tests for each lesson, to determine how much each student

learned while using the tutor – in all cases, test items were counterbalanced

across the pre-test and post-test.

- Detailed log-files of the students’ interactions with the tutor (see below).

Data on learning gains was used to distinguish between the two types of gaming

behavior, both during training and when evaluating goodness-of-fit. Specifically, among

the students observed gaming, a student was labeled GAMED-NOT-HURT (i.e., gaming

in the non-harmful fashion) if he or she had a sizeable pre-post gain (at least two more

skills demonstrated correctly on the post-test than on the pre-test), or a pre-test score high

enough to make it impossible to gain two skills (i.e. perfect or only one error). Gaming

students who had low scores on both the pre-test and post-test were labeled GAMED-

HURT (i.e., gaming in the fashion associated with poorer learning).

Table 1. Data obtained for each tutor lesson.

Lesson Number of students Number of actions Pct. of students

GAMED-HURT

Pct. of students

GAMED-NOT-HURT

SCATTERPLOT 237 71,232 8% 25%

PROBABILITY 50 15,858 10% 6%

GEOMETRY 111 30,991 27% 3%

PERCENTS 38 10,135 8% 5%

Log files of each student’s actions within the tutor were used in order to develop a

model relating specific features of student actions to the overall construct of harmful

gaming. For each student action recorded in the log files, a set of 26 features describing

that student action were distilled. These features consisted of

• Details about the action

o The tutoring software’s assessment of the action – was the action correct,

incorrect and indicating a known bug (procedural misconception), incorrect

but not indicating a known bug, or a help request?

o The type of interface widget involved in the action – was the student choosing

from a pull-down menu, typing in a string, typing in a number, plotting a

point, or selecting a checkbox?

Detecting When Students Game the System

7

o Was this the student’s first attempt to answer (or obtain help) on this problem

step?

• Knowledge assessment

o The tutor’s assessment, after the action, of the probability that the student

knows the skill involved in this action, called “pknow”, derived using the

Bayesian knowledge tracing algorithm in (Corbett and Anderson, 1995).

o “Pknow-direct”, a fairly complicated feature found in its final form in the

tutor log files. If the current action is the student’s first attempt on this

problem step, then pknow-direct is equal to pknow, but if the student has

already made an attempt on this problem step, then pknow-direct is -1.

Pknow-direct allows a contrast between a student’s first attempt on a skill

he/she knows very well and a student’s later attempts.

o Whether the action involved a skill which students, on the whole, knew before

starting the tutor lesson, or failed to learn during the tutor lesson. (two

variables)

• Time

o How many seconds the action took.

o The time taken for the action, expressed in terms of the number of standard

deviations this action’s time was faster or slower than the mean time taken by

all students on this problem step, across problems.

o The time taken in the last 3, or 5, actions, expressed as the sum of the numbers

of standard deviations each action’s time was faster or slower than the mean

time taken by all students on that problem step, across problems. (two

variables)

o How many seconds the student spent on each opportunity to practice the

primary skill involved in this action, averaged across problems.

• Previous interaction

o The total number of times the student has gotten this specific problem step

wrong, across all problems. (includes multiple attempts within one problem)

o What percentage of past problems the student made errors on this problem

step in

o The number of times the student asked for help or made errors at this skill,

including previous problems.

o How many of the last 5 actions involved this problem step.

o How many times the student asked for help in the last 8 actions.

o How many errors the student made in the last 5 actions.

Due to logging errors, the log data from 2003 and 2004 lacked information on

internal steps of hint requests. Features on internal steps of hint requests were distilled for

the 2005 data, but did not significantly improve fit, and are not included in the analyses

presented here.

4. The Gaming Detector

Detecting When Students Game the System

8

4.1 Detector Structure

Latent Response Models (Maris, 1995) were used as the statistical basis for the detector

of harmful gaming. Latent Response Models have the advantage of easily and naturally

integrating multiple data sources, at different grain sizes, into a single model.

Figure 2. The architecture of the gaming detector.

 A detector of gaming, in the framework used here, has one observable level and

two hidden (“latent”) levels. The model’s overall structure is shown in Figure 2. In a

gaming detector’s outermost/observable layer, the gaming detector assesses how

frequently each of n students is gaming the system; those assessments are labeled

G'0…G'n . The gaming detector’s assessments for each student can then be compared to

the observed proportions of time each student spent gaming the system, G0…Gn (the

metrics used will be discussed within the model selection section). In order to develop a

detector which only detects harmful gaming (as opposed to attempting to detect both

types of gaming within a single detector), students labeled GAMED-NOT-HURT

(because of high pre-post gain or a high pre-test score) were assigned a value of 0 for

their proportion of time spent gaming harmfully.

The proportion of time each student spends gaming is assessed as follows: First,

the detector makes a (binary) assessment as to whether each individual student action

(denoted P'm) is an instance of gaming. From these assessments, G'0…G'n are derived by

Detecting When Students Game the System

9

taking the percentage of actions which are assessed to be instances of gaming, for each

student.

An action is assessed to be gaming or not, by a function on parameters composed

of the features drawn from each action’s characteristics. Each parameter in a candidate

model of gaming is either a linear effect on one feature (a parameter value αi multiplied

by the corresponding feature value Xi : αi Xi), a quadratic effect on one feature

(parameter value αi multiplied by feature value Xi, squared : αiXi
2
), or an interaction

effect on two features (parameter value αi multiplied by feature value Xi, multiplied by

feature value Xj : αiXiXj).

An assessment Hm as to whether action m is an instance of gaming is computed as

Hm = α0 X0 + α1 X1 + α2 X2 + … + αn Xn, where αi is a parameter value and Xi is the data

value for the corresponding parameter (a single feature, that feature squared, or two

features multiplied by each other), for this action, in the log files. The value given by the

linear combination is the first hidden level and top layer in Figure 2. Each assessment Hm

is then thresholded using a step function, such that if Hm ≤ 0.5, H'm = 0, otherwise H'm =

1. The set of thresholded values makes up the second hidden level and middle layer in

Figure 2. This gives us a set of classifications H'm for each action within the tutor, which

are then used to create the assessments of each student’s proportion of gaming, G'0…G'n .

These assessments of each student’s proportion of gaming, which make up the

observable level of the model (the bottom layer in Figure 2), are compared to the

observed values of gaming during model fitting and validation.

4.2 Detector Selection

There is a very large space of potential models describing gaming behavior (if any model

with 1-7 parameters is permitted, approximately 10
13

models are possible – this number is

computed by taking the number of potential parameters and computing the number of

combinations of 1-7 parameters).

A combination of Fast Correlation-Based Filtering (Yu & Liu, 2003)
2
 and

Forward Selection (Ramsey & Schafer, 1997) was used in order to efficiently search this

space of models, as follows:

First, we conducted Fast Correlation-Based Filtering. The full set of possible

single-parameter detectors was selected, using Iterative Gradient Descent (Boyd &

Vandenberghe, 2004) to find the best value for each parameter. From the full set of

possible single-parameters, we selected a subset that fit the following two criteria:

1. Each single-parameter gaming detector was at least 60% as good as the

best single-parameter detector found (in terms of linear correlation to the

observed data).

2. If two parameters had a closer correlation than 0.7 to each other, only the

better-fitting single-parameter detector was used.

2
 In the implementation of Fast Correlation-Based Filtering used within the research

presented here, linear correlation is used as the goodness-of-fit measure rather than

entropy, as the overall model architecture is based on linear correlation.

Detecting When Students Game the System

10

Using Fast-Correlation Based Filtering enabled us to cut down search time

considerably, since we were able to search a limited sub-set of the space while having

reasonably high confidence that we were covering a representative sample of the entire

space.

Once a set of single-parameter detectors was obtained, we expanded each

detector, using Forward Selection. Using a simple Forward Selection procedure enabled

us to search each path selected (which were together a representative sample of the entire

space) in an exhaustive fashion. To each model, we tried adding each potential additional

parameter, and selected the parameter that most improved the linear correlation between

the detector’s assessments and the original data. The process was repeated on each

candidate detector until each candidate detector had seven parameters. In early work,

Leave-One-Out-Cross-Validation (LOOCV) was used to determine the optimal model

size, but this method became intractable when training many detectors with data from

hundreds of students. We chose seven as a maximum model size, because many models

had 4-7 parameters when cross validation was used, but 8 or more parameters were quite

rare. Pseudo-code of the algorithm used for model selection is given in Appendix I.

This process resulted in a set of detectors, from which the model with the best A'

was selected. A' is the probability that if the detector is comparing two students, with one

student drawn from each of the two groups being classified, it will correctly identify

which student is from which group (by determining which student has a higher predicted

gaming percentage). A' is computed by considering all possible thresholds between two

categories of students and looking at the proportion of true and false positives and

negatives at each threshold. A' is equivalent to both the area under the ROC curve in

signal detection theory, and to W, the Wilcoxon statistic (Hanley & McNeil, 1982). A

model with an A' of 0.5 performs at chance, and a model with an A' of 1.0 performs

perfectly – a model with a reasonably good A' of 0.75 at distinguishing GAMED-HURT

students from non-gaming students would, when given a GAMED-HURT student and a

non-gaming student, be able to correctly select the GAMED-HURT student 75% of the

time. A' was averaged across the model’s ability to distinguish GAMED-HURT students

from non-gaming students, and the model’s ability to distinguish GAMED-HURT

students from GAMED-NOT-HURT students.

Using linear correlation during the process of finding candidate models, and then

using A' to select between candidate models, made it possible to find a model that was

excellent on both metrics without needing to repeatedly calculate A' (at considerable

time-cost) during the process of finding candidate models.

5 Validation

In this section of the paper, we will investigate how accurate the gaming detectors are at

identifying those students who game the system in a way associated with poorer learning.

Accuracy, in this case, is assessed in terms of generalizability. Two forms of

generalizability are of interest: whether a detector trained on a population of students

within a specific lesson effectively detects harmful gaming in new students using that

Detecting When Students Game the System

11

lesson, and whether a detector trained within a specific lesson (or set of lessons)

effectively detects harmful gaming in new lessons. Within this section, both types of

generalizability are assessed.

5.1 Generalization to New Students

We assessed the detector’s ability to generalize to new students by conducting a Leave-

One-Out-Cross-Validation (LOOCV) using data from the lesson that we had the most

data for, the Scatterplot lesson. We took a gaming detector that had been fit using data

from all 237 students who used the Scatterplot lesson (2003-2005), and re-fit the

parameter values for each set of 236 students. In each case, we then used the re-fit

parameter values to calculate the gaming frequency of the left-out 237
th

 student. This

gave us a set of 237 cross-validated predictions, one per student.

 We will first consider the detector’s performance without cross-validation, i.e.

testing on the training set. We will assess the detector’s performance in terms of its A'

values. The difference between two A' values, or the difference between an A' value and

chance, can be computed using the standard formula for the Z statistical test in

combination with Hanley and McNeil’s (1982) technique for estimating the standard

error of an A' value. The Z distribution is very similar to the distribution used in the t

statistical test for sample sizes over 30, and like the t value given by the t-test, a Z value

can be converted to a two-tailed p-value; a Z value of 1.96 corresponds to a two-tailed p-

value of 0.05.

 When tested on the training set (all 237 students who used the Scatterplot lesson),

the gaming detector achieved an A'

value of 0.80 at distinguishing students who gamed

the system and had poorer learning, from non-gaming students. This result was

statistically significantly better than chance, Z=5.00, two-tailed p<0.001. The gaming

detector also achieved an A'

value of 0.71 at distinguishing between the two types of

gaming behavior. This result was also significantly better than chance, Z=3.03, two-tailed

p<0.01. It is worth noting, incidentally, that the gaming detector is not simply catching

students who learn poorly, because it only achieves an A' of 0.53 at distinguishing

students who have poorer learning but who do not game the system, a result which is not

statistically significantly different than chance, Z=0.57, two-tailed p=0.57.

 When the gaming detector’s generalizability was tested using Leave-One-Out-

Cross-Validation, the detector achieved an A'

value of 0.73 at distinguishing students who

gamed the system and had poorer learning, from non-gaming students. This result was

significantly better than chance, Z=3.39, p<0.001. The drop in performance from the

training set to cross-validation, 0.80 to 0.73, was not statistically significant, Z=0.85,

two-tailed p=0.39. Under LOOCV, the gaming detector also achieved an A'

value of 0.68

at distinguishing between the two types of gaming behavior. This result was also

significantly better than chance, Z=2.43, two-tailed p=0.02. The drop in performance

from the training set to cross-validation, 0.71 to 0.68, was again not statistically

significant, Z=0.37, two-tailed p=0.71.

 Hence, the gaming detector is significantly better than chance, both when tested

on the original training set, and when Leave-One-Out-Cross-Validation is used to test the

detector’s ability to transfer to new students. In addition, though there is some appearance

Detecting When Students Game the System

12

of a degradation in performance when the detector is transferred to new students, that

degradation is not statistically significant.

5.2 Generalization Across Tutor Lessons

A detector that transfers to new populations of students, within a single tutor lesson, can

be used as the basis for a system that responds to gaming the system, within that lesson.

(cf. Baker et al, 2006; Walonoski & Heffernan, 2006b). However, in order to be useful

across large-scale, year-long tutor curricula (cf. Corbett, Koedinger, & Hadley, 2001; cf.

van Lehn et al, 2005), a detector must be able to generalize across tutor lessons.

To determine whether our approach to gaming detection can generalize across

multiple tutor lessons, we train the detector on three tutor lessons and then evaluate its

performance when transferred to a fourth, left-out tutor lesson – doing so across each

potential split of three training lessons and one test lesson. We will compare the accuracy

of the detectors, when transferred to a new lesson, to the detectors’ accuracy within the

three lessons each detector was trained on.

In doing this, we will need to rely upon more complicated statistics than in the

previous section, because the data from the different tutor lessons is partially, but not

fully, independent (because in many cases, some but not all of the students used two of

the tutor lessons studied). We use a meta-analytical technique, Strube’s Adjusted Z

(1985), in order to avoid overemphasizing the information from the students who used

multiple tutor lessons. Strube’s Adjusted Z explicitly incorporates inter-correlation

between dependent measures (in this case, each student’s observed gaming frequency in

each lesson) into calculations of statistical significance, in order to avoid either making

an overly-conservative estimate of statistical significance (such as in the mean Z

technique, which assumes a correlation of 1 between dependent measures), or making an

under-conservative estimate (such as in Stouffer’s Z – Rosenthal and Rosnow, 1991 –

which assumes a correlation of 0 between dependent measures). Z-scores calculated

using Strube’s Adjusted Z are denoted Za,, and can be treated statistically in the same

fashion as any Z-score (i.e. values of Z greater than 1.96 correspond to p<0.05). Full

detail on Strube’s adjusted Z is given in Appendix II.

The gaming detectors trained on three lessons achieve an average A' of 0.85 at

distinguishing GAMED-HURT students from non-gamers, in the training lessons, and an

average A' of 0.80 at making the same distinction in the test lessons, as shown in Table 2.

Hence, the detectors seem to do a little better in the training lessons than in the test

lessons, but the difference between the performance of these detectors, from training

lessons to test lessons, was not statistically significant, Za = 1.17, p=0.24.

These detectors achieve an average A' of 0.86 at distinguishing GAMED-HURT

students from GAMED-NOT-HURT students, in the training lessons, and an average A'

of 0.80 at making the same distinction in the test lessons, as shown in Table 3. Again, the

detectors seem to do a little better in the training lessons than in the test lessons, but the

difference between the performance of these detectors, from training lessons to test

lessons, was not significant, Za = 1.37, p=0.17.

It is worth noting, however, that the effects are somewhat unstable across different

combinations of lessons, as shown in Tables 2 and 3. In some cases, transfer is almost

Detecting When Students Game the System

13

perfect – but in other cases, it is poorer. On the whole, transfer is successful inasmuch as

there is not statistically significant degradation, but transfer does not appear completely

even. It is likely that some characteristics which lessons may share are more likely to

promote successful transfer, and that if lessons do not share these characteristics, transfer

will be less successful. Determining which characteristics of a lesson are particularly

important for transfer of behavior detectors, such as the gaming detector, is an important

area for future research.

Overall, then, training on three lessons appears to result in a detector which transfers

effectively to a new tutor lesson with at most a mild degradation in performance –

suggesting that this detector is not capturing properties specific to gaming in individual

lessons, but properties which are general to the overall Cognitive Tutor that these lessons

were drawn from. The overall pattern of results is shown in Tables 2 and 3.

Table 2. The performance of detectors trained on three of the four lessons, on training

and test lessons. All values in this table are statistically significantly higher than chance.

Values applying to a detector’s performance in a lesson it was not trained on are in bold.

Lessons

detector

trained on

A' (GAMED-HURT vs NON-GAMING) when

detector tested on lesson.

 Scatterplot Percents Geometry Probability

Percents,

Geometry,

Probability

0.67

0.91

0.77

0.96

Scatterplot,

Geometry,

Probability

0.75

0.86

0.76

0.99

Scatterplot,

Percents,

Probability

0.81

0.93

0.69

0.92

Scatterplot,

Percents,

Geometry

0.75

0.92

0.77

0.99

Detecting When Students Game the System

14

Table 3. The performance of detectors trained on three of the four lessons, on training

and test lessons. All values in this table are statistically significantly higher than chance.

Values applying to a detector’s performance in a lesson it was not trained on are in bold.

Lessons

detector

trained on

A' (GAMED-HURT vs GAMED-NOT-HURT)

when detector tested on lesson.

 Scatterplot Percents Geometry Probability

Percents,

Geometry,

Probability

0.6

0.8

0.92

0.99

Scatterplot,

Geometry,

Probability

0.69

0.75

0.94

0.99

Scatterplot,

Percents,

Probability

0.74

0.9

0.84

0.99

Scatterplot,

Percents,

Geometry

0.68

0.8

0.89

0.99

5.3 Is the Detector Accurate Enough to Use to Drive Interventions?

In the preceding sections, we have demonstrated that the detector can accurately

predict the frequency of gaming for students that it was not trained on, and can even

accurately predict performance within new lessons when trained on three lessons.

However, the fact that the detector is statistically significantly more accurate than

chance does not immediately indicate that it will be sufficiently accurate to drive

interventions within a learning environment.

It is open to debate exactly how effective a detector should be to drive appropriate

interactions within an interactive system; in particular, less reliable detection can be

managed by an interactive system through using “fail-soft” interventions (cf. Liu &

Singh, 2002) which do not lead to highly negative consequences if the detector is

inaccurate.

Thus, the question of how effective a detector must be depends in part on the

intervention it is used with; and therefore the best evidence that a detector is sufficiently

accurate to drive interventions is the existence of a learning system which uses that

detector to drive interventions, and where the interventions have positive consequences.

Such evidence exists for the gaming detector reported here in the form of Scooter

the Tutor (Baker et al, 2006), an interactive agent incorporated into the Cognitive Tutor.

Scooter responds to gaming in two fashions: through expressions of negative emotion

when students game the system, and through offering supplementary exercises on steps

which a student has gamed several times. Scooter significantly reduced the frequency of

gaming, and significantly improved gaming students’ learning. The success of this

Detecting When Students Game the System

15

system suggests that the gaming detector, when used with an appropriate intervention

(both of these interventions were relatively fail-soft, having relatively minimal

consequences if the detector was inaccurate), is – if not perfect – sufficiently accurate to

drive interventions.

While a full discussion of Scooter and the study evaluating its effectiveness are

outside of the scope of this paper, interested readers are referred to (Baker et al, 2006).

6 Behavioral Analysis

In this section, we will discuss what behaviors are captured by a detector of harmful

gaming. Specifically, we will discuss the parameters that make up a detector of harmful

gaming trained on all four tutor lessons. This detector’s parameters are shown in Table 4.

Within the detector, multiple parameters rely upon the same behavioral features, in

different combinations, and thus some of the relationships between individual features

and gaming are fairly complex. Hence, rather than discussing the detector’s parameters

one-by-one, we will discuss the relationships between student behavior and gaming that

emerge from the detectors’ parameters.

In the detector’s characterization of harmful gaming, harmful gaming is

associated with consistently making many errors on a specific problem step, across

problems (Feature GH1 in Table 4). The evidence for harmful gaming is even stronger if

the student gets the step right on the first try in some problems and makes a large number

of errors in other problems (Feature GH2). However, not all errors are evidence of

harmful gaming – for instance, errors made while point-plotting (an activity where slips

are common – i.e. making an error despite knowing the skill well) are not associated with

harmful gaming (Feature GH3).

Specific types of help use are also associated with harmful gaming; specifically,

requesting help on several steps in short succession is considered gaming, once the

student has achieved a high probability of knowing at least some steps (i.e. once the

student has completed at least a couple of problems) (Feature GH4).

The relationship between the time taken to perform an action and harmful gaming

is somewhat complex. Quick actions are evidence of gaming, but only if the student has

already made an error on the current step (Feature GH5). However, extremely quick

errors or help requests (more than 2 SD faster than normal – in many cases taking place

in less than a fifth of a second) are not seen as evidence of gaming; this is because in

many cases, actions at this speed consist of identical rapid actions such as accidental

double-clicks on help or hitting enter twice (Features GH6 and GH7).

Overall, these behaviors appear at face-value to be a reasonable match to the types

of behaviors the human observers were looking for. However, a number of behaviors

could plausibly have seemed to match to a common-sense definition of gaming. The

specific set of behaviors within the detector have met a stronger standard – in

combination, these behaviors are a good statistical match to concrete observations of

which students game and fail to learn.

Detecting When Students Game the System

16

Table 4. The detector of harmful gaming (GH). In all cases, param1

is multiplied by param2, and then multiplied by value.

 param 1 param 2 value description

GH1 howmanywrong wrongpct 0.08 GH: Many errors across problems

GH2 pknow-direct wrongpct 1.25

GH: History of many errors and yet a high
probability the student knows the skill (ie lots of
errors on some problems, other times correct on
the first try)

GH3 point wrongpct -2.22 Not GH: Lots of errors while plotting points

GH4 pknow recent8help 0.66
GH: Asking for a lot of help, and then reaching a
step which the system knows the student knows

GH5 punchange timelast3SD -0.72
GH: Very fast actions after making at least one
error

GH6 timelast3SD timelast3SD -0.34 Not GH: Very fast answers or very slow answers

GH7 timelast3SD wrongpct 0.37
Not GH: Very fast answers on steps with a high
frequency of errors across problems

7 Comparing the Gaming Detector to Related Systems

In this section, we compare the Gaming Detector our group has developed to systems

developed by other research groups which also detect gaming behavior. We will first

advance a list of criteria for an ideal detector of gaming behavior, and then consider both

our Gaming Detector and other systems according to these criteria.

7.1 Criteria For an Ideal Detector of Gaming Behavior

A detector of gaming behavior can be developed with many goals in mind. In this

section, we consider a set of potential criteria for evaluating a detector of gaming

behavior, or detectors of student usage behavior in general.

First, we propose that an ideal detector should accurately identify a category (or

categories) of behavior which is known to be associated with a meaningful difference in

student experience or outcomes. Detecting a behavior which is associated with negative

outcomes in the student’s experiences or learning may make it possible to develop

systems which can respond to student behavior in a way that concretely improves

students’ learning and/or experiences. Since gaming the system is known to be associated

with poorer learning (Baker et al, 2004), any system that accurately identifies gaming

behavior will satisfy this goal. If a system can go on to distinguish gaming behaviors that

have relatively greater or lesser impact on learning, the system will have succeeded

strongly at this goal.

Second, an ideal detector can predict not only which students engage in the

behavior, but when they do so. If a system can effectively predict when a student is

engaging in a relevant behavior, the system can present interventions just-in-time,

making more types of interventions (and potentially more effective interventions)

possible. Hence, any system that can predict when students game will satisfy this goal. A

Detecting When Students Game the System

17

system succeeds strongly at this goal if those predictions are validated, either directly

through comparing the predictions to knowledge about exactly when a student was

gaming, or by showing that a system that uses the predictions to respond to gaming

behavior does in fact reduce gaming behavior.

Third, an ideal detector not only detects student behaviors but can help

researchers understand those behaviors better. Despite an increasingly rich history of

research into learner-computer interaction, our understanding of why students choose

certain behaviors when using learning environments is still quite limited. A detector

which indicates exactly when students engage in a behavior can potentially help us

understand why students engage in that behavior. Hence, a system which has been used

to understand gaming behavior better will satisfy this goal.

Fourth, an ideal detector can generalize. While a detector developed within the

context of a small system may provide insights into detector development and student

behavior, it will have less impact than a detector which can be applied more broadly.

Thus far, most detectors of student behaviors have been developed using data from fairly

small-scale learning environments, or using individual lessons from a larger curriculum.

However, interactive learning environments such as intelligent tutors are increasingly

being used as major components in semester or year-long curricula (Corbett, Koedinger,

& Hadley, 2001; van Lehn et al, 2005). Therefore, to be widely useful – and used –

detectors of behaviors and motivation will need to be generalizable beyond a single tutor

lesson or small-scale system. A system which can generalize to new tutor lessons, or

better yet, entirely new tutors, will satisfy this goal.

7.2 Other Detectors of Gaming Behavior

Beyond the Gaming Detector which was the principal subject of this paper, at least five

other systems can be considered detectors of gaming behavior.

 The first of these systems, Aleven et al’s (2004) Help-Seeking Tutor Agent, was

first presented at the same conference that the Gaming Detector was first presented at

(Intelligent Tutoring Systems 2004, in Brazil). The Help-Seeking Tutor Agent models a

set of behaviors related to student help-seeking within Cognitive Tutors. Two of those

behaviors, try-step abuse and hint abuse, correspond to the broader category of gaming

the system. The Help-Seeking Tutor Agent was developed using knowledge engineering

to develop the functional form of a mathematical model, and then automated parameter-

fitting to find values for the parameters of that model. The Help-Seeking Tutor Agent has

been validated to transfer to at least one new tutor lesson, after re-fitting parameter values

on new data (Roll et al, 2005), and has been used as the basis of a learning system which

gave students feedback on their metacognitive errors (Roll et al, 2007). This system

improved students’ metacognitive behavior during their use of the system, but did not

affect students’ domain learning or their metacognitive behavior in other contexts.

 The second system is Beck’s (2005) Disengagement Tracing. Disengagement

Tracing models whether a student is responding faster on quiz items than would be

possible if the student was sincerely attempting to answer the item using their knowledge,

within Project LISTEN, an intelligent tutor teaching reading skills. Disengagement

Tracing was developed using knowledge engineering to develop an item-response theory

Detecting When Students Game the System

18

model, and then by using automated parameter-fitting to find values for the parameters of

that model. Disengagement Tracing was applied to an entire year of data, and was found

to be accurate at predicting student knowledge on a post-test.

 The third system is Johns and Woolf’s (2006) system to detect student motivation

and proficiency. This system detects whether students are abusing hints or guessing, the

same behaviors identified by the Gaming Detector and the Help-Seeking Tutor Agent,

but within a different math tutoring system, Wayang Outpost. Johns and Woolf’s system

was developed using knowledge engineering to develop the functional form of a

mathematical model, and then automated parameter-fitting to find values for the

parameters of that model. Their system was used to decide whether to present

interventions to gaming students, and the interventions were associated both with reduced

gaming behavior and improved learning (Arroyo et al, 2007).

 The fourth system is Walonoski and Heffernan’s (2006a) Off-Task Gaming

Behavior Detector. This system detects whether a student is gaming the system while

using ASSISTments, an intelligent tutor which both tutors students on mathematics topics

and informs their teacher as to which parts of the state mathematics exams may be giving

the student particular difficulty. Walonoski and Heffernan’s system, like the Gaming

Detector, was developed using machine learning on human observations of the frequency

of gaming behavior, and accurately correlated to the observations. The Off-Task Gaming

Behavior Detector was used as the basis of visualization-based interventions which

significantly reduced the frequency of gaming behavior as well as reducing students’

gaming in future tutor lessons (Walonoski & Heffernan, 2006b).

 Finally, the fifth system is Beal et al’s (2006) model of student strategies. This

system can predict whether students are engaging in either help abuse or guessing, while

using Wayang Outpost, the same system studied by Johns and Woolf. Beal et al’s model

was developed by knowledge engineering, with parameters set in advance rather than

through parameter-fitting. Beal and her colleagues clustered students by their adoption of

a variety of strategies, including the gaming strategies, and found that including estimates

of gaming frequency improved the accuracy of learner modeling (Beal, Mitra, & Cohen,

2007).

7.3 Comparing Detectors of Gaming Behavior

7.3.1 Accurately Identifying Which Students Game

 Each of the six detectors of gaming behavior appear to satisfy the first criterion,

accurately identifying gaming the system, a category of behavior known to be associated

with significantly poorer learning – though one system is only indirectly validated.

Interestingly, the six detectors are validated in fairly different ways. Two systems, the

Gaming Detector and the Off-Task Gaming Behavior Detector, validate by comparing

detector predictions to labels created by researchers. Three systems, Disengagement

Tracing, Johns and Woolf’s system, and Beal et al’s system, attempt to validate by

showing that incorporating their detectors improves prediction of student problem-

solving performance within their system. In Disengagement Tracing and Beal et al’s

Detecting When Students Game the System

19

system, the validation is successful – in the case of Johns and Woolf’s system, the

validation is not a success; their system does not significantly improve prediction of

student correctness. Four systems, the Gaming Detector, Disengagement Tracing, the

Help-Seeking Tutor Agent, and the Off-Task Gaming Behavior Detector, also validate

through correlating the predictions of gaming behavior to the student’s performance on

knowledge measures external to the learning system (either pre-tests or post-tests).

 Five of six systems have thus been successfully validated in some fashion – the

sixth, Johns and Woolf’s system – has not yet been directly validated. However, its

predictions about gaming behavior have been used to drive interventions that appear both

to reduce gaming behavior (as measured by the system) and improve learning. Therefore,

we can consider Johns and Woolf’s system indirectly validated.

 Each of these systems detects gaming behavior. The Gaming Detector, alone

among the six systems, goes a step further and distinguishes between types of gaming

behavior associated with different learning outcomes. It is not immediately clear why

only the Gaming Detector makes this division. Since the Gaming Detector’s division

between harmful and non-harmful gaming was made due to serendipity in early stages of

machine learning, one possibility is that the four efforts that used knowledge engineering

instead of machine learning did not find a separation in gaming behavior because they

never looked for it, nor created the possibility that it could be found through serendipity.

This does not explain, however, why Walonoski and Heffernan, who also used machine

learning in developing the Off-Task Gaming Behavior Detector, did not also

serendipitously discover the split in gaming behaviors as was found in the development

of the Gaming Detector. Since none of the other five research groups explicitly looked

for a split in gaming behavior (or at least did not report doing so), it remains an open

question whether this split, replicated across lessons for the Gaming Detector, is unique

to Cognitive Tutors or is a more widely generalizable finding. Nonetheless, at least at this

point, the Gaming Detector may satisfy this first criterion more strongly than the other

systems, by not just detecting gaming behavior but by distinguishing between types of

gaming behavior.

7.3.2 Accurately Identifying When Students Game

 All six detectors of gaming behavior also satisfy the second criterion, predicting

not only which students engage in gaming but when they do so. Four of the six systems –

the Gaming Detector, the Help-Seeking Tutor Agent, Johns and Woolf’s system, and the

Off-Task Gaming Behavior Detector – go a step further and use these predictions to drive

interventions that respond to gaming behavior. In all four cases, the interventions change

the frequency of gaming behavior within the system. Varying effects are seen on student

learning, but this is quite likely due to the differences between the interventions rather

than the detection systems. In the specific case of the Gaming Detector, interventions

driven by the Gaming Detector’s predictions both significantly reduced the degree of

gaming behavior (measured by live observations) and improved gaming students’

Detecting When Students Game the System

20

learning (Baker et al, 2006). Walonoski and Heffernan’s (2006a) Off-Task Gaming

Behavior Detector goes a step further still – they probabilistically match the times of their

observations to the actions in their tutor log files, and find that their detector’s predictions

match (in time) to the observations. As not all of the observations used to train the

Gaming Detector in various contexts are synchronized with the tutor logs as well as

Walonoksi and Heffernan’s observations were, this direct validation is not currently

possible for the Gaming Detector. Hence, three systems have indirect validation of this

criterion; Walonoski and Heffernan’s system is the only one to directly validate it.

7.3.3 Increasing our Knowledge About Gaming

 Four of the six detectors of gaming behavior satisfy the third criterion, having

been used to increase our knowledge of the construct of gaming. The Gaming Detector

suggests that gaming may have different effects on learning depending on when students

engage in gaming. In addition, the Gaming Detector tells us that gaming occurs in

clusters, but that those clusters are not solely temporal; instead, those clusters take place

both in specific pockets of time and also across time, linked to a specific problem step.

This suggests that gaming may be a specific response to specific material rather than an

overall response to the interactive learning environment. Thirdly, the Gaming Detector

has been used to identify which student attitudes and motivations are associated with

gaming, by comparing its predictions to student questionnaire responses (Baker et al,

2005, in press).

The Off-Task Gaming Behavior Detector and Beal et al’s model have also been

used in this fashion, to identify which student attitudes and motivations are associated

with gaming, by comparing its predictions to student questionnaire responses (Baker et

al, in press; Beal et al, 2006). Beck’s Disengagement Tracing has been applied to an

entire year of data, and shows that gaming behavior increases during the course of the

year, and that gaming occurs in temporal clusters, confirming the Gaming Detector’s

finding of temporal clusters. Hence, four of the six systems have been used to increase

our knowledge of the construct of gaming. It is likely that the other two systems could be

used to understand more about gaming – however, the fact that they have not yet been

used in this fashion (to the best of our knowledge), restricts them for now from having

fulfilled this criterion.

7.3.4 Generalizing Across Students and Contexts

 Finally, all of the detectors of gaming behavior satisfy the fourth criterion,

generalizability, but to different degrees. All six systems work when transferred to new

students, using cross-validation or a new test set.

Beyond this, Disengagement Tracing, the Off-Task Gaming Behavior Detector,

Johns and Woolf’s system, and Beal et al’s system, all successfully work within fairly

large-scale learning environments. However, none of these four systems have been

validated to transfer to new tutor contexts (i.e. new units/lessons with even moderately

different interfaces or pedagogy). The Help-Seeking Tutor Agent has been shown to

effectively transfer to a new tutor lesson without changing the functional form, but with

Detecting When Students Game the System

21

re-fitting of parameter values (Roll et al, 2005). Only the Gaming Detector has been

validated to successfully generalize to new lessons within the tutor curriculum, with no

re-training.

7.3.5 Summary

 In the previous four sections, we have discussed six systems that attempt to detect

gaming behavior in terms of four criteria, accurately identifying which students game,

accurately identifying when students game, increasing our knowledge about gaming, and

generalizing beyond the original training context.

All six systems are at least acceptable on at least three of the four criteria. The

Gaming Detector achieves the highest mark (alone, or in a tie) on three of the four

criteria. Only in one case – the second criterion – does another system achieve the highest

mark, and in that case the Gaming Detector is tied for second place. Hence, the approach

used to develop the Gaming Detector appears to be capable of producing behavior

detection systems which provide excellent performance on each of the four criteria of

interest. A summary of the systems’ performance is given in Table 5.

Detecting When Students Game the System

22

Table 5. Assessing all six systems which detect gaming behavior, across four criteria.

Boldface indicates that a given system is best (or tied for best) on a given criterion.

System

(First report of

system)

Identifies which

students game

Predicts when

students game

Has increased

knowledge about

gaming construct

Has been shown to

generalize

Gaming Detector

(2004)

Yes – correlates to

both observations

and external

knowledge test.

Plus, identified

sub-categories

within overall

construct

Yes, and those

predictions have

been used to drive

interventions

Yes Yes, successfully

transfers to new

contexts with no

re-training

Help-Seeking

Tutor Agent

(2004)

Yes, correlates to

external test of

knowledge

Yes, and those

predictions have

been used to drive

interventions

Not yet Yes, successfully

transfers to new

contexts with only

parameter re-

fitting

Disengagement

Tracing

(2005)

Yes, predicts

behavior within

system and

correlates to

external test of

knowledge

Yes Yes Perhaps – works

within large-scale

system

Johns & Woolf

(2006)

Failed to improve

predict of student

behavior within

system; however,

used in effective

intervention

Yes, and those

predictions have

been used to drive

interventions

Not yet Perhaps – works

within large-scale

system

Off-Task Gaming

Behavior Detector

(2006)

Yes, correlates to

both observations

and external

knowledge test

Yes, and those

predictions have

been validated and

used to drive

interventions

Yes Perhaps – works

within large-scale

system

Beal et al

(2006)

Yes, accurately

predicts student

behavior within

system

Yes Yes Perhaps – works

within large-scale

system

8 Conclusions

In this paper, we have presented a system that can detect when students “game the

system”, in a fashion associated with poor learning. We have shown that this detector

• accurately detects which students game the system

Detecting When Students Game the System

23

• makes predictions about when students game the system, which are difficult to

directly validate, but which have been used to drive learning interventions which

improve student learning

• expands our knowledge about the behavioral construct of “gaming the system”

• can generalize between contexts

Since the advent of this detector, multiple systems have been produced which also

attempt to detect gaming behavior. These systems use a variety of techniques, and have

largely been successful at achieving many of the same goals as our system. The Help-

Seeking Tutor Agent and Gaming Detector have even been applied to the same data set,

and the two detectors have been found to correlate well to one another (Roll et al, 2005).

On the whole, the existence of several different systems which can detect gaming

behavior indicates that gaming is a fairly robust construct, present across many intelligent

tutoring systems. However, it is not yet clear to what degree some features of gaming

behavior which we have discovered – such as the split between harmful and non-harmful

gaming – are general across intelligent tutoring systems.

Though gaming has been documented in many interactive learning contexts beyond

intelligent tutors (cf. Magnussen & Misfeldt, 2004; Cheng & Vassileva, 2005), thus far

all gaming detectors have been developed within the context of intelligent tutoring

systems. An interesting and valuable area of future work will be to study the development

of gaming detectors for these contexts, and how lessons learned in the development of

gaming detectors within intelligent tutoring systems can transfer to these domains.

Beyond the future development of gaming detectors in other domains, the work to

develop detectors of gaming behavior may facilitate the development of detectors of

other types of behavior. Recently, the first author of this paper developed a system which

can automatically detect whether a student who is idle when using an intelligent tutoring

system is off-task or asking the teacher or another student for help (Baker, 2007). This

detector was developed using the exact same model framework as the system presented

in this paper, and uses a model selection algorithm very similar to the one used here.

Hence, the tools used within this paper – Latent Response Models and Fast Correlation-

Based Filtering – seem to be tools which can be applied to modeling a variety of user

behaviors in interactive learning environments. Meta-analysis, though not yet widely

used for analyzing user models, is another type of technique with considerable potential

for our community. Meta-analysis provides a relatively easy-to-use pool of techniques for

comparing models across different contexts, or aggregating measures of model accuracy

across contexts.

As detectors of behavior categories such as gaming the system are developed for

more systems, they may also provide leverage for developing detectors of other

constructs, such as affect (cf. D’Mello et al, in press). Recent research has suggested that

gaming the system co-occurs with some affective states (frustration, boredom, confusion)

and that students who game the system are more likely to be bored in the future (Rodrigo

et al, 2007). Hence, accurate gaming detection may support more accurate detection of

student affect; correspondingly, the development of accurate detectors of student affect

may increase the accuracy of future systems which detect gaming the system.

Detecting When Students Game the System

24

We close with a final thought on the broader generalizability not of this detector, or

even the methods used to develop or evaluate it, but of the ideas it represents. Though the

domain of this paper has fallen within the area of educational interactions, it is worth

noting that many of the same issues apply in general to the problems of modeling user

behavior and strategies. Detectors of user behavior and strategies should focus on

behaviors which are associated with differences in user experience and outcomes. A

detector of a category of user behavior should not just identify that a behavior has

occurred, but when it occurs – as in the example presented within this paper, this task

may be facilitated by using hierarchical modeling frameworks that make predictions at

multiple grain-sizes. Detectors of user behavior and strategies will be more useful if they

can help identify why users engage in the studied behaviors and strategies. Finally,

detectors of user behaviors and strategies will be more useful if they can effectively

generalize to different sub-domains within an overall system; and as in our example,

training on broadly sampled data may result in a detector which can be applied more

widely. Ultimately, a detector of behavior will be useful if it captures important

behaviors, identifies when they occur, promotes understanding of the behaviors, and is

general – regardless of what domain the behavior occurs within.

Detecting When Students Game the System

25

Acknowledgements

 This research was supported by an NDSEG (National Defense Science and

Engineering Graduate) Fellowship, a fellowship from the Learning Sciences Research

Institute at the University of Nottingham, and by IERI grant number REC-043779 to

"Learning-Oriented Dialogue in Cognitive Tutors: Towards a Scalable Solution to

Performance Orientation".

We would like to thank Angela Wagner, Jay Raspat, Meghan Naim, Katy

Getman, Pat Battaglia, Dina Crimone, Russ Hall, and Sue Cameron for assisting in the

collection of the data discussed here. We would also like to thank Darren Gergle, Vincent

Aleven, Dave Andre, Joseph Beck, and the anonymous reviewers for helpful discussions

and suggestions.

Detecting When Students Game the System

26

References

Ainsworth, S.E. and Grimshaw, S.K.: 2002, ‘Are ITSs created with the REDEEM

authoring tool more effective than “dumb” courseware.’ Proceedings of the 6th

International Conference on Intelligent Tutoring Systems (ITS 2002), Biarritz,

France, pp. 883-892.

Aleven, V.: 2001, ‘Helping Students to Become Better Help Seekers: Towards

Supporting Metacognition in a Cognitive Tutor’. Paper presented at German-USA

Early Career Research Exchange Program: Research on Learning Technologies

and Technology-Supported Education, Tubingen, Germany.

Aleven, V., McLaren, B.M., Roll, I., and Koedinger, K.R.: 2004, ‘Toward tutoring help

 seeking: Applying cognitive modeling to meta-cognitive skills’. Proceedings of

the 7th International Conference on Intelligent Tutoring Systems (ITS 2004),

Maceió, Brazil, pp. 227-239.

Anderson, J.R., Corbett, A.T., Koedinger, K.R., and Pelletier, R.: 1995, ‘Cognitive

Tutors: Lessons Learned’. Journal of the Learning Sciences 4 (2), 167-207.

Arroyo, I. and Woolf, B.: 2005, ‘Inferring learning and attitudes from a Bayesian

Network of log file data’. Proceedings of the 12
th

 International Conference on

Artificial Intelligence in Education, Amsterdam, pp. 33-40.

Arroyo, I., Ferguson, K., Johns, J., Dragon, T., Meheranian, H., Fisher, D., Barto, A.,

Mahadevan, S., and Woolf. B.P.: 2007, ‘Repairing Disengagement with Non-

Invasive Interventions’. Proceedings of the 13
h
 International Conference on

Artificial Intelligence in Education, Marina del Rey, CA, pp. 195-202.

Baker, R.S., Corbett, A.T., and Koedinger, K.R.: 2004, ‘Detecting Student Misuse of

Intelligent Tutoring Systems’. Proceedings of the 7th International Conference on

Intelligent Tutoring Systems, Maceió, Brazil, pp. 531-540.

Baker, R.S., Corbett, A.T., Koedinger, K.R., and Wagner, A.Z.: 2004, ‘Off-Task

Behavior in the Cognitive Tutor Classroom: When Students "Game The System"’,

Proceedings of ACM CHI 2004: Computer-Human Interaction, Vienna, Austria,

pp. 383-390.

Baker, R.S.J.d., Corbett, A.T., Koedinger, K.R., Evenson, S.E., Roll, I., Wagner, A.Z.,

Naim, M., Raspat, J., Baker, D.J., Beck, J.: 2006. ‘Adapting to When Students

Game an Intelligent Tutoring System’. Proceedings of the 8
th

 International

Conference on Intelligent Tutoring Systems, Jhongli, Taiwan, pp. 392-401.

Baker, R.S.J.d., Walonoski, J.A., Heffernan, N.T., Roll, I., Corbett, A.T., and Koedinger,

K.R.: in press. ‘Why Students Engage in “Gaming the System” Behavior in

Interactive Learning Environments’. To appear in Journal of Interactive Learning

Research.

Beal, C.R., Mitra, S., and Cohen, P.R.: 2007. ‘Modeling learning patterns of students

with a tutoring system using Hidden Markov Models’. Proceedings of the 13
h

International Conference on Artificial Intelligence in Education, Marina del Rey,

CA, pp. 238-245.

Beal, C.R., Qu, L., and Lee, H.: 2006. ‘Classifying learner engagement through

integration of multiple data sources’. Proceedings of the 21
st
 National Conference

on Artificial Intelligence, Boston, pp. 2-8.

Detecting When Students Game the System

27

Beck, J.: 2005, ‘Engagement tracing: using response times to model student

disengagement’. Proceedings of the 12th International Conference on Artificial

Intelligence in Education (AIED 2005), Amsterdam, pp. 88-95.

Boyd, S. and Vandenberghe, L.: 2004, ‘Convex Optimization’. Cambridge, UK:

Cambridge University Press.

Cheng, R. and Vassileva, J.: 2005, ‘Adaptive Reward Mechanism for Sustainable Online

Learning Community’. Proceedings of the 12
th

 International Conference on

Artificial Intelligence in Education, Amsterdam, pp. 152-159.

Conati, C. and McLaren, H.: 2005, ‘Data-Driven Refinement of a Probabilistic Model of

User Affect’. Proceedings of the Tenth International Conference on User

Modeling (UM2005), Edinburgh, Scotland, pp. 40-49.

Corbett, A.T. and Anderson, J.R.: 1995, ‘Knowledge Tracing: Modeling the Acquisition

of Procedural Knowledge’. User Modeling and User-Adapted Interaction 4, 253-

278.

Corbett, A.T., Koedinger, K.R., and Hadley, W.H.: 2001, ‘Cognitive Tutors: From the

research classroom to all classrooms’. In: Goodman, P.S. (ed.) Technology

Enhanced Learning: Opportunities for Change. Mahwah, NJ: Lawrence Erlbaum

Associates, pp. 235-263.

D’Mello, S.K., Craig, S.D., Witherspoon, A.W., McDaniel, B.T., and Graesser, A.C.: in

press, ‘Automatic Detection of Learner’s Affect from Conversational Cues’. To

appear in User Modeling and User-Adapted Interaction.

de Vicente, A. and Pain, H. : 2002, ‘Informing the detection of the students’ motivational

state: an empirical study’. Proceedings of the Sixth International Conference on

Intelligent Tutoring Systems, Biarritz, France, pp. 933-943.

Hanley, J.A. and McNeil, B.J.: 1982, ‘The Meaning and Use of the Area under a

Receiver Operating Characteristic (ROC) Curve’. Radiology 143, 29-36.

Johns, J., Woolf, B.: 2006, ‘A Dynamic Mixture Model to Detect Student Motivation and

Proficiency’. Proceedings of the 21
st
 National Conference on Artificial

Intelligence (AAAI-06), Boston, pp. 163-168.

Koedinger, K. R.: 2002, ‘Toward evidence for instructional design principles: Examples

from Cognitive Tutor Math 6’. Proceedings of PME-NA XXXIII (the North

American Chapter of the International Group for the Psychology of Mathematics

Education), Athens, GA, pp. 21-49.

Koedinger, K.R., Anderson, J.R., Hadley, W.H., and Mark, M.: 1997, ‘Intelligent

Tutoring Goes to School in the Big City’. International Journal of Artificial

Intelligence in Education 8, 30-43.

Liu, H., Singh, P.L 2002, ‘MAKEBELIEVE: Using Commonsense Knowledge to

Generate Stories’. Proceedings of the 18
th

 National Conference on Artificial

Intelligence, AAAI 2002, Edmonton, Canada, pp. 957-958.

Magnussen, R. and Misfeldt, M.: 2004, ‘Player Transformation of Educational

Multiplayer Games’. Proceedings of Other Players. Copenhagen, Denmark.

Available at http://www.itu.dk/op/proceedings.htm

Maris, E.: 1995, ‘Psychometric Latent Response Models’. Psychometrika 60 (4), 523-

547.

Detecting When Students Game the System

28

Mostow, J., Aist, G., Beck, J., Chalasani, R., Cuneo, A., Jia, P. and Kadaru, K.: 2002, ‘A

La Recherche du Temps Perdu, or As Time Goes By: Where does the time go in a

Reading Tutor that listens?’ Proceedings of the Sixth International Conference on

Intelligent Tutoring Systems (ITS'2002), Biarritz, France, pp. 320-329.

Murray, R.C. and vanLehn, K.: 2005, ‘Effects of Dissuading Unnecessary Help Requests

While Providing Proactive Help’. Proceedings of the 12
th

 International

Conference on Artificial Intelligence in Education, Amsterdam, pp. 887-889.

Ramsey, F.L. and Schafer, D.W.: 1997, ‘The Statistical Sleuth: A Course in Methods of

Data Analysis’. Belmont, CA: Duxbury Press.

Rodrigo, M.M.T., Baker, R.S.J.d., Lagud, M.C.V., Lim, S.A.L., Macapanpan, A.F.,

Pascua, S.A.M.S., Santillano, J.Q., Sevilla, L.R.S., Sugay, J.O., Tep, S., Viehland,

N.J.B.: 2007, ‘Affect and Usage Choices in Simulation Problem Solving

Environments’. Proceedings of the 13
th

 International Conference on Artificial

Intelligence in Education, Marina del Rey, CA, pp. 145-152.

Roll, I., Baker, R.S., Aleven, V., McLaren, B.M., and Koedinger, K.R.: 2005, ‘Modeling

Students’ Metacognitive Errors in Two Intelligent Tutoring Systems’.

Proceedings of User Modeling 2005, Edinburgh, Scotland, pp. 379-388.

Roll, I., Aleven, V., McLaren, B.M., and Koedinger, K.R.: 2007, ‘Can help seeking be

tutored? Searching for the secret sauce of metacognitive tutoring’. Proceedings of

the 13
th

 International Conference on Artificial Intelligence in Education, Marina

del Rey, CA, pp. 203-210.

Rosenthal, R. and Rosnow, R.: 1991, ‘Essentials of Behavioral Research: Methods and

Data Analysis’. Boston, MA: McGraw-Hill.

Schofield, J.W.: 1995, ‘Computers and Classroom Culture’. Cambridge, UK: Cambridge

University Press.

Stevens, R., Soller, A., Cooper, M., and Sprang, M.: 2004, ‘Modeling the Development

of Problem-Solving Skills in Chemistry with a Web-Based Tutor’. Proceedings of

the 7th International Conference on Intelligent Tutoring Systems (ITS 2004),

Maceió, Brazil, pp. 580-591.

Strube, M.J.: 1985, ‘Combining and comparing significance levels from nonindependent

hypothesis tests’. Psychological Bulletin 97, 334-341.

Tait, K., Hartley, J., Anderson, R.C.: 1973, ‘Feedback procedures in computer-assisted

arithmetic instruction’. British Journal of Educational Psychology 43, 161-171.

van Lehn, K., Lynch, C., Shulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D.,

Weinstein, A., and Wintersgill, M. : 2005, ‘The Andes physics tutoring system:

Five years of evaluations’. Proceedings of the 12
th

 International Conference on

Artificial Intelligence in Education, Amsterdam, pp. 678-685.

Walonoski, J.A., Heffernan, N.T.: 2006a, ‘Detection and Analysis of Off-Task Gaming

Behavior in Intelligent Tutoring Systems’. Proceedings of the 8
th

 International

Conference on Intelligent Tutoring Systems, Jhongli, Taiwan, pp. 382-391.

Walonoski, J.A., Heffernan, N.T.: 2006b, ‘Prevention of Off-Task Gaming Behavior in

Intelligent Tutoring Systems’. Proceedings of the 8
th

 International Conference on

Intelligent Tutoring Systems, Jhongli, Taiwan, pp. 722-724.

Wood, H. and Wood, D.: 1999, ‘Help Seeking, Learning, and Contingent Tutoring’.

Computers and Education 33, 153-169.

Detecting When Students Game the System

29

Yu, L. and Liu, H.: 2003, ‘Feature selection for high-dimensional data: a fast correlation-

based filter solution’. Proceedings of the International Conference on Machine

Learning, Washington, D.C., 856-863.

Detecting When Students Game the System

30

Table of Contents

1. Introduction 1

2. Gaming the System in Cognitive Tutors 2

3. Data 5

4. The Gaming Detector 8

4.1. Detector Structure 8

 4.2. Detector Selection 9

5. Validation 10

5.1. Generalization to New Students 11

5.2. Generalization Across Tutor Lessons 12

6. Behavior Analysis 14

7. Comparing the Gaming Detector to Related Systems 15

7.1 Criteria For an Ideal Detector of Gaming Behavior 15

7.2 Other Detectors of Gaming Behavior 16

7.3 Comparing Detectors of Gaming Behavior 18

8. Discussion and Conclusions 21

I. Appendix: Gaming Detector Training Algorithm 29

II. Appendix: Strube’s (1985) Adjusted Z 31

List of Figures

1. Picture of Cognitive Tutor 4

2. Gaming Detector Architecture 8

List of Tables

1. Data Summary 6

2. Generalization of Detector Across Lessons – Comparing

Harmful Gaming to Non-Gamers 12

3. Generalization of Detector Across Lessons – Distinguishing

Between Types of Gaming 13

4. Features Used in Gaming Detector 15

5. Comparison of Systems That Detect Gaming Behavior 21

Detecting When Students Game the System

31

Appendix I

Gaming Detector Training Algorithm

Goal: Find model with good correlation to observed data, and good A’

Preset values:

π − The percentage of the best path’s goodness-of-fit that is acceptable
as an alternate path during fast correlation-based filtering (value used =
60%)

µ − The maximum acceptable correlation between a potential path’s most
recently added parameter and any alternate parameter with a better
goodness-of-fit. (value used = 0.7)

ζ − The maximum size for a potential model (-1 if LOOCV is used to set
model size). (value used = 7)

 Data format:

A candidate model is expressed as two arrays: one giving the list of
parameters used, and the second giving each parameter’s coefficient.

Prior Calculation Task: Find correlations between different parameters

 For each pair of parameters,
Compute linear correlation between the pair of parameters,
across all actions, and store in an array

Main Training Algorithm:
Set the number of parameters currently in model to 0
Set the list of candidate models to empty
MODEL-STEP (empty model)
For each candidate model (list populated by MODEL-STEP)

Calculate that model’s A’ value (for both GAMED-HURT versus NON-GAMING,
and GAMED-HURT versus GAMED-NOT-HURT)

 Average the two A’ values together
Output the candidate model with the best average A’.

Recursive Routine MODEL-STEP: Conduct a step of model search
 Input: current model

 If there is at least one parameter already in the model,
Subgoal: Complete exploration down the current path

Create variable PREV-GOODNESS; initalize to -1.
Create variable CURRENT-GOODNESS; initialize to -1
Create array BEST-RECENT-MODEL
Repeat

For each parameter not already in the model
Use iterative gradient descent to find best model that includes both

the current model and the potential parameter (using linear
correlation to the observed data as the goodness of fit metric).

Store the correlation between that model and the data
Add the potential parameter with the best correlation to the model

If ζ = −1 (i.e. we should use cross-validation to determine model size)

Detecting When Students Game the System

32

Create an blank array A of predictions (of each student’s game freq)
For each student S in the data set

Use iterative gradient descent to find best parameter values for
the current model, without student S

Put prediction for student S, using new parameter values, into
array A

Put the linear correlation between array A and the observed data into
variable CURRENT-GOODNESS

If CURRENT-GOODNESS > PREV_GOODNESS
 PREV_GOODNESS = CURRENT-GOODNESS
 Put the current model into BEST-RECENT-MODEL

 Else
Put the current model into BEST-RECENT-MODEL

Until (the model size = ζ OR PREV_GOODNESS > CURRENT-
GOODNESS)

Add BEST-RECENT-MODEL to the list of candidate models
 Else
 Subgoal: Select a set of paths

Mark each parameter as POTENTIAL
For each model parameter

Use iterative gradient descent to find best model consisting only of this
potential parameter (using linear correlation to the observed data as
the goodness of fit metric).

Store the correlation between that model and the data
Repeat

Find the parameter P whose associated candidate model has the highest
linear correlation to the observed data (among the set POTENTIAL)

Mark parameter P as SEARCH-FURTHER
For all potential parameters Q marked POTENTIAL
 If the linear correlation between parameter Q and parameter P

 is greater than µ, mark parameter Q as NO-SEARCH
 If the linear correlation between the model with parameter Q and the

observed data, divided by the linear correlation between the
model with parameter P and the observed data, is less than

π, mark parameter Q as NO-SEARCH
Until no more parameters are marked POTENTIAL
For each parameter R marked as SEARCH-FURTHER

 Set N to the best model that has only parameter R (this has already
been computed)
Recurse MODEL-STEP (N)

Detecting When Students Game the System

33

Appendix II

Strube’s (1985) Adjusted Z

Strube’s adjusted Z (1985) is a technique used when data in different data sets is

partially, but not fully, independent. In this paper, this condition is true because some but

not all of the students used two of the tutor lessons studied (scatterplot and geometry).

 Strube’s Adjusted Z explicitly accounts for the intercorrelation between data sets

with overlapping participants. Strube’s Adjusted Z is recommended in Rosenthal and

Rosnow (1991) for precisely this statistical situation, and has been used in at least 20

papers in published scientific literature (Google Scholar, visited September 3, 2007). In

this section, we provide a brief discussion of Strube’s formula, adapted from Strube’s

text.

Strube’s Adjusted Z generalizes Stouffer’s formula for computing Z scores (cf.

Rosenthal and Rosnow, 1991) for the case where there is non-independence between

samples. As Strube (1985) discusses, Stouffer’s formula for Z corresponds to a linear

combination of Z values, divided by the linear combination’s standard deviation. The

variance of a linear combination (the standard deviation squared) can be written as the

sum of the variances of the individual terms plus their covariances. Stouffer’s formula

assumes independence and thus eliminates the covariance terms; Strube’s formula

explicitly includes the covariance terms – the covariances between the measures which

we have Z values for. In addition, where there is only partial overlap in population, the

covariance terms can be treated as a combination of the inter-dataset correlation where

individual variable values are taken from the overlapping students, but the total number

of students in both data sets is treated as the N (this is not strictly Strube’s formula, but is

a clear extension of the formula, as non-overlapping students are independent of one

another).

To give a brief example (using simplified numbers rather than the exact numbers

from the data in this paper):

Let us say that we are combining two tests of whether a detector is statistically

significantly better than chance, involving two overlapping data sets (which we will call

the Lesson-X and Lesson-Y 2004 data sets). The significance of the detector’s

effectiveness in Lesson-X is A'=0.80, Z=2.00, and the significance of the detector’s

effectiveness in Lesson-Y is A'=0.85, Z=2.50. 75% of the students in the two lessons are

represented in both lessons, and the other 25% only contributed data to one of the two

lessons. Within the 75% of students represented in both lessons, the correlation between

the observed gaming frequency in the two lessons is 0.25.

Stouffer’s Z would calculate the combined Z as (2.00+2.50)/sqrt(num-tests)= 3.18

(there are two statistical tests here, hence num-tests = 2). However, this assumes full

independence, which is in this case an overly liberal estimation (i.e. there is an overly

high chance of Type II error).

Assuming full non-independence (the average Z method) would calculate the

combined Z as (2.00+2.50)/(num-tests) =2.25. However, since there is only partial non-

Detecting When Students Game the System

34

independence, this estimate is overly conservative (i.e. there is an overly high chance of

Type I error).

Using Strube’s method, and treating non-overlapping students as independent

from one another, we calculate Z as 2.00+2.50/sqrt(num-tests+0.25*0.75+0.25*0.75) =

2.92. This gives us a value between these two estimates, which is not biased towards

either Type I or Type II error.

Detecting When Students Game the System

35

Author Vitas

(1) Dr. Ryan Shaun Joazeiro de Baker

Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA,

15213, USA

Dr. Baker is a Post-Doctoral Fellow in the Human-Computer Interaction Institute and

Pittsburgh Science of Learning Center at Carnegie Mellon University. Dr. Baker received

his Sc.B. in Computer Science from Brown University and Ph.D. in Human-Computer

Interaction from Carnegie Mellon University in 2005. His research focuses on the

development of interactive learning environments that can adapt effectively and

sensitively to differences in students’ choices, affect, and motivation. He uses methods

from user modeling, educational data mining, machine learning, and quantitative

observation.

(2) Dr. Albert Corbett

Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA,

15213, USA

Albert Corbett is Associate Research Professor in the School of Computer Science at

Carnegie Mellon University. Dr. Corbett received his B.A. in Psychology from Brown

University and Ph.D. in Psychology from the University of Oregon. His primary research

interests are in human memory, comprehension and problem solving and he has brought

these interests to the design and evaluation of intelligent computer tutors. These tutors

have proven to be rich environments for pursuing basic research in human cognition that

has applied significance.

(3) Ido Roll

Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA,

15213, USA

Ido Roll is a Ph.D. candidate in Human-Computer Interaction at Carnegie Mellon

University, and a member of the Program in Interdisciplinary Education Research (PIER)

and the Pittsburgh Science of Leaning Center (PSLC). He received his B.Sc. in

Mathematics and Physics from the Hebrew University of Jerusalem in 1995. His research

focuses on making students more eager, capable, independent, and innovative learners,

using Intelligent Learning Environments. More specifically, he is interested in improving

students' usage of available help facilities, and in combining the benefits of structured

discovery tasks with explicit instruction.

(4) Dr. Kenneth R. Koedinger

Detecting When Students Game the System

36

Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA,

15213, USA

Dr. Koedinger is Professor of Human-Computer Interaction and Psychology at Carnegie

Mellon University, and the CMU director of the Pittsburgh Science of Learning Center

(PSLC). He received his B.S. in Mathematics and Computer Science from the University

of Wisconsin, and received his Ph.D. in Cognitive Psychology from Carnegie Mellon

University. His research goal is to create educational technologies that dramatically

increase student achievement. He has developed Cognitive Tutors, rich problem solving

environments which provide just-in-time learning assistance, for mathematics and

science, and has tested them in the laboratory and the classroom.

