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Abstract 

A person's ability to translate a mathematical problem into 
symbols is an increasingly important skill as computational 
devices play an increasing role in academia and the 
workplace.  Thus it is important to better understand this 
"symbolization" skill and how it develops.  We are working 
toward a model of the acquisition of skill at symbolizing and 
scaffolding strategies for assisting that acquisition.  We are 
using  a difficulties factors assessment as an efficient 
methodology for identifying the critical cognitive factors that 
distinguish competent from less competent symbolizers.  The 
current study indicates there is more to symbolizing than 
translating individual phrases into symbols and using long-
term schematic knowledge to fill in implied information.  In 
particular, students must be able to compose these individual 
translation operations into a complete symbolic sentence.  We 
provide evidence that in contrast to many prior models of 
word problem solving which address story comprehension 
skills, a critical element of student competence is symbolic 
production skills. 

Introduction 
When a student is presented with an algebra word problem 
such as P0 in Table 1 and asked to provide a symbolic 
expression (rather than a numerical answer) he is doing 
what we call symbolizing.  For instance, the symbolic 
expression for P0 is "800-40*m".  In studying symbolization 
skills we have focused on algebra story problems but our 
results may be relevant more generally to symbolization 
skills needed in using a calculator, programming a 
spreadsheet, or computer programming.  As these 
computational devices take over more of the symbol 
manipulation of algebra, symbolization is becoming an 
increasingly central skill. As part of an effort to build 
computerized instructional support for symbolizing, we are 
trying to understand how students learn to symbolize and 
test that understanding by developing a cognitive model. 

Much of the prior work on word problem solving has 
focused on  students' comprehension abilities.  Paige & 
Simon(1979) proposed a model that included a direct 
translation component.  Paige & Simon took 
Bobrow's(1968) computer program STUDENT, that did 
symbolization of certain classes of algebra story problems, 
as a foundation for their cognitive model.  They compared 

symbolization to translation from English to French, which 
they said involved taking each French word, looking it up in 
a French to English dictionary, and writing down the 
answers with some possible changes to inflections, and 
rearrangements due to syntax rules.  Paige & Simon's model 
included a limited use of schemata for problems like "age" 
problems.  These schemata, when recognized as appropriate 
for a problem, brought to bear certain assumptions about 
what to expect as well as certain world knowledge that is 
usually not stated in algebra story problems (e.g., that we all 
age at the same rate and ages are positive integers).  Mayer 
(1981) extended the study of schemata and classified a large 
number of story problems into 90 different schemata and 
suggested we might want to teach children to recognize 
schemata.  Mayer suggested that students first identify the 
general class of problem and then bring to bear schemata 
that pull out of the situation some of the numbers to fill 
expected slots.  Other research on arithmetic story problem 
solving has focused on the role of comprehension 
(Cummins et. al., 1988, LeBlanc & Weber-Russell, 1996, 
Lewis & Mayer, 1987, and Stern, 1993).  Cummins et. al.  
"suggest that much of the difficulty children experience with 
word problems can be attributed to difficulty in 
comprehending abstract or ambiguous language."  The 
general conclusion from much of the above research is that 
comprehension rules and schema detection skills are key 
knowledge components students must acquire to become 
competent problem solvers.  

More recently Koedinger & Anderson (in press) found 
evidence that acquiring such comprehension skills is not 
sufficient for symbolization competence.  They found that 
on 36% of problems that students comprehended well 
enough to find a numerical answer, they nevertheless failed 
to correctly symbolize.  This result suggests that in addition 
to comprehension difficulties, students have difficulty in 
"symbolic production."  That students have substantial 
difficulties on the symbolic side of the translation process is 
further supported by Koedinger & Tabachneck's (1995) 
results that show, contrary to many algebra teachers' 
predictions, that students are better at solving certain algebra 
word problems than they are at solving the mathematically 
equivalent problems given in algebra symbols.  These two 
results together suggest that a large amount of the difficulty 



 

of symbolization can be explained by a "foreign language 
hypothesis".  If you ask a student to translate an English 
sentence into Greek and observe that the student fails, it is 
not necessarily that they lack the comprehension skills of 
English but maybe that they lack the production skills for 
Greek.  Similarly, students may fail in story problem 
solving not because they lack English comprehension skills, 
but rather because they cannot "speak algebra".  

To compensate for this lack of algebra language fluency, 
students fall back on arithmetic knowledge.  Figure 1 shows 
a  student who appears to have correctly described the 
mathematical sequence needed to solve for a value if given 
"h" but who fails to  express that knowledge in the correct 
algebraic form.  Instead of writing 500/(h-2) the student has 
indicated that first she would subtract 2 from "h" which 
would result in a new unknown that she again calls "h".  
Then she indicated that 500 should be divided by this new 
number.  She uses the non-algebraic notation for division 
that is taught in elementary school.  This example illustrates 
very well that a student can have an understanding of the 
quantitative structure of a problem but not be able to 
symbolize because they lack the correct knowledge for 
producing algebraic sentences.   

Figure 2 is another example that demonstrates 
comprehension and quantitative understanding but not the 
ability to correctly generate the algebraic symbols.  Her 
answer is similar to the answer in Figure 1 in that they both 
indicate the process that should be used to solve for an 
answer, but fail to output that answer in standard algebraic 
form.  The use of the equals sign in this example appears to 
grow out of the way students use the equal sign as "gives" in 

elementary arithmetic in which it is not uncommon to see 
students chain together steps with equal sign like 3*4=12-
5=7 (Sfard, et. al., 1993).   Since 72-m can not be simplified 
the student uses a new variable "n" to stand for the result 
and then continues. 

Our goal is to better understand what these symbol 
production skills are and how students might better learn 
them.  What capabilities do more competent students have 
that poorer students do not?  What kinds of scaffolds might 
we provide to assist student learning?  To address these 
questions, we performed a difficulties factors assessment 
whereby we sampled student performance on a set of 128 
problems created by systematically modifying 8 core 
problem situations along 4 binary factor dimensions.  These 
4 factors represent specific hypotheses about what causes 
students symbolization difficulties and how scaffolds might 
ease the symbolization process. 

Experimental Design 
Again consider the problem P0 from Table 1.  This is a hard 
problem for ninth grade beginning algebra students, with 
only 13% of the students in the experiment (described 
below) answered it correctly. What makes this problem 
hard? Maybe what makes this problem hard is 1) having to 
compose the symbolic translation of parts of the problem 
into a complete translation of the whole problem, 2)  the 
presence of the distractor phrase "2400 yards wide", 3) 
comprehending the text well enough to translate the phases 
into operators and numbers and knowing which numbers are 
matched up with which operators, or 4) the presence of an 
algebraic variable "m" as opposed to the numeric constants 

Table 1 An example and four variants  
 
PO: Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from the dock.  She then rows for "m" minutes back 

towards the dock.  Ann rows at a speed of 40 yards per minute.  Write an expression for Ann's distance from the dock.   
P1:  A)Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from the dock.  She then rows "y" yards back towards 

the dock.  Write an expression for Ann's distance from the dock.   
 B)Ann is in a rowboat in a lake that is 2400 yards wide.  She then rows for "m"  minutes back towards the dock.  Ann rows at a 

speed of 40 yards per minute.  Write an expression for the distance Ann has rowed. 
P2: Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from the dock.  She then rows for "m"  minutes back 

towards the dock.  Ann rows at a speed of 40 yards per minute.  Write an expression for Ann's distance from the dock.   
P3: Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from the dock.  She then rows for "m" minutes back 

towards the dock.  Ann rows at a speed of 40 yards per minute.  Write an expression for Ann's distance from the dock. 
 Hint 1:  Ann's distance from the dock is equal to the 800 yards she started out from the dock minus the distance she has rowed in 

"m" minutes. 
 Hint 2:  The distance she has rowed in "m" minutes is equal to the 40 yards she rows per minute multiplied by the "m" minutes it 

takes her. 
P4 Ann is in a rowboat in a lake that is 2400 yards wide.  She is 800 yards from the dock.  She then rows for 11 minutes back towards 

the dock.  Ann rows at a speed of 40 yards per minute.  Write an expression for Ann's distance from the dock.  
 

 
Bob drove 500 miles from Denver to Fargo to visit his 
grandmother.  Normally this trip takes him "h" hours, but on 
Tuesday there was good weather and he saved 2 hours.  Write 
an expression for his driving speed? 

                     ____ 
h - 2 --> h)500 

 

Figure 1: A problem and a student's response 

Sue made 72 dollars by washing 6 cars to buy holiday 
presents.  She decided to spend "m" dollars on a present for 
her mom and then use the remainder to buy presents for 
each of her 4 sisters.  She will spend the same amount on 
each sister.  How much can she spend on each sister? 

 
72 - m = n / 4= 

 

Figure 2: A problem and a student's response 



 

students are already familiar with from arithmetic 
instruction.  In the following sections we provide motivation 
for the consideration of each of these factors and illustrate 
them as they modify problem P0 (see Table 1). 

Factor One: Composed vs. decomposed  
Singley, Anderson & Givens (1991) reported that some 
students fail to solve multi-step story problems even when 
they can solve the individual parts that make them up.  We 
desire to know whether or not this is simply the expected 
effect of having to do multiple steps each of which results in 
an accumulated chance of failure.  Alternatively, the multi-
step problem may be even harder (or easier) than the 
combined probability of the correct performance of the 
individual steps separately. Consider P1, which is the two 
sub-problems of PO, which we call the decomposed version 
of P0.  Of course we would expect that solving a single part 
of this problem is easier than solving P0.  The more 
interesting question is "Is solving P0 easier than solving 
both parts of P1?"  Maybe if comprehension of the text is a 
limiting factor then the more wordy P1 will make it harder. 

Factor Two: Presence of Distractor Numbers 
As Paige & Simon observed, less competent symbolizers 
appear to sometimes rely exclusively on direct translation 
and do not evoke any semantic processes to recognize, for 
instance, that a negative board length is impossible.  We 
have observed (Tabahneck, Koedinger, & Nathan, 1994) 
that novice symbolizers exhibit other kinds of shallow 
processing.  In particular, students will often produce 
"symbol soup" by guessing at the answer using the given 
numbers and symbols but getting position or operations 
wrong.  To the extent that novice symbolizers employ such 
a guessing strategy (perhaps as a fall back when more 
specific knowledge is lacking), we should see more errors 
on problems that involve an extra distractor quantity (such 
as "2400 yards wide" in P2) than on problems that do not. 

A second justification for including the distractor factor is 
that it provides a way to test an alternative hypothesis for 
why composed problems may be more difficult than 
decomposed problems.  If less competent students are, in 
fact, sometimes guessing at answers using random 
sequences of quantities and operators in the problem, then 
composed problems should be more difficult than 
decomposed problems because the possible combinations of 
the quantities in the composed, no-distractor problems 
(these are the total number of possible guesses) is greater 
than the sequences of the two quantities and operator in the 
separate parts of the decomposed no-distractor problem.  
This hypothesis suggests that decomposed distractor 
problems should be more difficult than composed no-
distractor problems. 

Factor Three:  Comprehension Hints 
Given the attention past research has given to the role of 
comprehension in the symbolization process, our third 
factor tests a possible scaffolding technique that attempts to 
help students comprehend the problems more effectively.  

This technique is to give the student a hint that reexpresses 
the problem in a form that is more amenable to direct 
translation to symbols.  These hints are in a form that would 
clearly facilitate performance of a computer model like the 
STUDENT program Paige & Simon used.  Consider the 
comprehension hints given in P3.  Notice that the hints 
identify what mathematical operator is to be used, while the 
original problem statement did not.  Also note that the form 
of the hint is in the simple form of <Subject_Quantity> "is 
equal to" <Quantity1> <Operator> <Quantity2>, where 
<Subject_Quantity>,<Quantity1> and <Quantity2> are 
replaced with a verbal description of a quantity noun phrase, 
and <operator> is replaced by either "plus", "minus", 
"multiplied by" or "divided by."  This simple form makes it 
possible for a left to right scan of the problem to work 
efficiently.  Also note that these verbal recodings identify 
what number or variable is matched with each quantity.  
Since these hints identify the operation to be used, they 
eliminate the need for schemata or world knowledge such as 
having to know the distance-rate-time formula. 

Factor Four: Presence of Variables 
As mentioned earlier, Koedinger & Anderson(in press) 
found that for certain classes of problems students are better 
able to find a numerical answer than write a symbolic 
expression for the same problems.  Koedinger & Anderson 
hypothesized that asking students to compute concrete 
instances (problems without a variable) of a general 
problem would facilitate symbolization of that problem.  To 
test this hypothesis, they designed a scaffolding technique 
called inductive support and implemented it as part of an 
intelligent tutor. 

We can illustrate the inductive support scaffolding 
technique with our running example P0.  The scaffolding 
involved two questions that asked students to solve the 
problem if the variable were replaced with a constant, for 
instance, "How far is Ann from the dock in 4 minutes?".  
After answering these concrete arithmetic problems, 
students were asked to write the symbolic expression.  
Students in this inductive support tutor were shown to learn 
more than students using an alternative "textbook" tutor.  
The tutor's design was adapted based on this study so that 
the current tutor (Koedinger, Anderson, Hadley, Mark, 
1995) has a "Pattern Finder" component where, rather than 
just answering these concrete questions, students are asked 
to show how to get answers for successive small values of x, 
namely, 2, 3, and 4.  In the example above, students are 
expected to answer "800 - 40 * 2", then "800 - 40 * 3" and 
"800 - 40 * 4".  Next, they are to induce the pattern to get 
the abstract expression "800 - 40 * x".  It has come as 
somewhat of a surprise that making this last step it not at all 
difficult for students and that, in fact, it is only the first step, 
writing the expression when x is 2, that students have any 
difficulty with.  We began to wonder whether this first step 
really is easier than the final goal of writing the abstract 
expression.  If not, the Pattern Finder may not be such a 
good scaffolding technique.  Thus, we added the presence of 
variable factor to this assessment to test whether writing a 



 

concrete expression (e.g., "800 - 40 * 11" as in P4) is in fact 
easier than writing an abstract expression (e.g., "800 - 40 * 
m "as in P1). 

Procedure 
Given the four binary factors that were studied there were sixteen 
different possible combinations of the factors.  These 16 different 
possible combinations were crossed with 8 different cover stories 
and distributed in a latin square design among 16 test forms that 
balanced for each factor.  Given that students tend to perform 
worse on items near the end of a test, the order of various problems 
was systematically varied on each (e.g., the 8 composed, distractor, 
no hint, no variable problems were in the 8 different position on 8 
different forms).  However, because the cover story factor was not 
a variable of critical interest, the 8 cover stories appeared in the 
same order on each form (to do otherwise would have required 
many more forms).  All eight cover stories had two operators 
implicit in the story so that the composed version required a two 
operator answer, while the decomposed version required two 
separate answers that each had one operator.  The subjects were 79 
ninth grade students in the first month of a low-level algebra 
course from an affluent suburb of Pittsburgh.  Each student was 
randomly given one of the 16 different test forms and had 14 
minutes to complete the test.  After two class periods of instruction 
on such problems, students were again given a random form as a 
post test.  Each test was then graded and no partial credit was 
given.  A decomposed problem was considered correct only if both 
parts were answered correctly.   

Results and Discussion 
To test for effects of the four factors we performed both an 
item analysis and a subject analysis as recommended by 
Clark (1973).  We performed an item analysis on students’ 
mean performance on the 128 different problems appearing 
on the pre- and post-test forms. Separate item means were 
computed for the pre- and post-tests. We performed a four 
factor (2*2*2*2) ANOVA on the item means. 

Figure 3 illustrates the relative impact of the four factors.  
The effect of the comprehension hints appears small at best 
(3.1% difference in favor of hint problems) and this 
difference is not statistically significant (F(1,238)=1.127, 
p<.2894).  Similarly, the presence of a variable is also small 
at best (4.5% difference in favor of no variable problems) 
and not statistically significant (F(1,238)=1.531, p<.217).  
In contrast the distractor effect was considerably larger 
(11.8% difference in favor of no distractor problems) and 
statistically significant (F(1,238)=8.135, p<.0047). The 
composition factor had by far the largest effect (22% 
difference in favor of the decomposed problems), and was 
statistically significant (F(1,238)=37.048, p<.0001).  No 
statistically significant interactions were found in the full 
ANOVA model. 

To verify that these effects generalize across subjects as 
well as across items, we performed subject analysis as well.  
We performed four repeated measure ANOVAs with each 
factor as a within-subjects variable.  Again there were 
statistically significant effects for distractor 
(F(1,66)=14.018, p=.0004) and composition 

(F(1,66)=52.059, p=.0001) but again no statistically 
significant effects of variables (F(1,66)=.739 p=.3932) or 
hints (F(1,66)=1.306, p=.2573). 
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The Composition Effect 
These results show that a two operator problem is harder 
than both of the parts that make it up put together.  We call 
this the composition effect.  What skills are many students 
missing that prevent them from being able to deal with 
composed problems even though they are able to deal with 
the sub-problems individually?  We describe two alternative 
models of the composition effect and the relative evidence 
in support of them. 
Argument Generalization Model We hypothesize that the 
whole is harder than the sum of its parts because there is 
extra difficulty in putting the symbolic translations of the 
parts together to form a symbolic translation of the whole.  
We hypothesize that many students start their study of 
algebra with knowledge components (e.g., ACT-R 
production rules (Anderson 1993)) that enable them to 
symbolize only one operator problems because their 
production rules only allow for single numerals or variables 
(e.g., 40 or m) to be used as arguments to the mathematical 
operators, as opposed to whole subexpressions (e.g., 40*m 
or 800-x).  Such students can answer 800-x but not 800-
40*m because 40*m is a subexpression and they don't know 
how to substitute a subexpression into another expression.  
A student at this stage might fall back on his arithmetic 
rules and produce an answer like that shown in Figure 2 
which appears to indicate an inability to compose 
subexpressions.  Such a student would probably be the sort 
Koedinger & Anderson had identified as being able to solve 
for numerical answers but unable to symbolize correctly.  
As students tackle multi-operator problems they must 
generalize these rules to allow for symbolized 
subexpressions to be used as arguments to other operators 
enabling them to write 800-40*m.  We find support for this 
explanation in Sfard & Linchevski (1993) who argue that 
students gradually progress through a stage where their 
conception of an expression changes from viewing an 
expression as a recipe to viewing an expression as a first 
class object.  It might be that as a student makes this 
transition in their understanding of an expression they also 



 

can generalize their productions to perform subexpression 
substitution. 
Combinatorial Search (CS) Model  A second hypothesis 
is that the composition effect can be explained purely in 
terms of a combinatorial search model, in which a 
composed problem is harder because of the exponentially 
increasing number of possible sequences of arguments and 
operators.  The large effect of distractors leads us to 
conclude that many students engage in some form of 
guessing, particularly as a fallback strategy when having 
difficulty.  The difficulty of guessing grows with the 
complexity of problems, particularly as the number of 
possible combinations of given quantities and inferred 
operators grows.  The composed, no distractor problems 
have three quantities to choose from whereas there are only 
two quantities to choose from in each of the two parts of the 
decomposed, no distractor problems.  Thus, it may be that 
the composition effect is the result of this added complexity, 
and not the result of a missing or over specialized skill as 
hypothesized in the Argument Generalization model. 

We tried a number of ways of estimating complexity 
depending on different assumptions.  However, all of them 
predicted, contrary to the data, that the distractor effect 
should be bigger than the composition effect.  We present 
one such estimation which has the following assumptions 
about how a student may guess at an answer: 1) students can 
pick out what numbers or variables are present in the 
problem and which operators will be used, 2) students know 
the general syntactic form of a symbolic sentence, 
particularly that operators need to be written between 
quantities, and 3) students will not use the same argument 
(variable or number) twice.  To simplify the calculation, we 
ignore the difficulty of knowing when to add parentheses 
and assume that the operators in the problem are non-
commutative so the student has to get the order of the 
arguments correct.  Essentially, this comes down to 
assuming that to guess correctly, students must pick the 
correct order for the arguments and operators.  We compare 
the probability of doing so for various problem types. 

Let us first calculate the probability of getting the correct 
order for a composed problem, starting with the leftmost 
argument and moving right.  The probability of getting the 
first argument correct is 1/3 since there are three possible 
numbers to put first.  Similarly, the student picks one of the 
two inferred operators for the first operator slot (1/2).  Then 
given our assumption of a non-replacement strategy, the 
probability of choosing the next argument correct is 1/2 
since there are two remaining arguments.  The final operator 
and arguments are then determined.  So the combined 
probability of getting the correct answer is 
(1/3)(1/2)(1/2)(1/1)(1/1)=1/12.  

Now we calculate the probability of guessing the correct 
answer for a decomposed non-distractor problem.  Since 
there are only two arguments present, the probability of 
selecting the first argument is 1/2.  The operator and the 
second argument are then both determined.  So to get one 
part of a decomposed non-distractor problem correct is 1/2 
and to get both parts correct is (1/2)(1/2)=1/4.  Since 1/12 is 

less than 1/4 we see that this model does predict that there 
will be a composition effect.  But the model does not predict 
the relative effect of distractors as we will now show.   

Finally, consider a decomposed distractor problem.  The 
probability of selecting the first argument is 1/3, since there 
are now 3 arguments present in the problem statement.  The 
operator is determined, but the last argument is 1/2, which 
yields a total for one part of (1/3)(1/2)=1/6 and a total for 
the two parts together of  (1/6)(1/6)=1/36.   

In summary the CS model predicts that the distractor 
effect (1/36) will be larger than the composition effect 
(1/12).  However, the data shows that the composition effect 
is larger (22%) than the distractor effect (11%).  The 
composition effect was found to be statistically different 
from the distractor effect when we compared the means for 
composed, non-distractor problems with decomposed, 
distractor problems (F(1, 238) = 5.2, p < .05). 

Comprehension Hints 
We now consider an explanation for the surprising absence 
of a statistically significant effect of the comprehension 
hints.  After all, these hints recoded the story problem into a 
simpler form that is more amenable to direct translation.  
The hints also identified what the operators should be, 
which quantities to use with those operators and which order 
to put the operators in.  These results are consistent with the 
view that the comprehension of these sentences is not that 
large a stumbling block, particularly when compared with 
the stumbling block of learning to deal with composed 
problems.  But despite the fact that hints were not 
statistically significant there is evidence that the hints did 
help for the decomposed problems.  The trend in favor of 
the hint problems was much larger (a 7% difference) on the 
decomposed problems than on the composed problems 
(.01% difference).  We hypothesize that the students who 
benefited from the hints were less able students and were 
the students most likely not to have the skills to deal with 
composed problems (as outlined in the Argument 
Generalization Model). We speculate that the hints might be 
more helpful if they directly addressed composition.  A 
single "composed" hint for P3 could be: 

Hint :  Ann's distance from the dock is equal to the 
800 yards she started out from the dock minus the 
40 yards she rows per minute multiplied by the "m" 
minutes it takes her. 

Variables Vs Constants 
Although prior work (Koedinger & Anderson, in press) has 
shown that solving a concrete problem for an unknown can 
be easier than doing abstract symbolization (e.g., writing 
"800 - 40 * x"), in this study we found that concrete 
symbolization (e.g., writing "800 - 40 * 2") is not much 
easier, if at all, than abstract symbolization (the small trend 
in favor of concrete symbolization was not statistically 
significant).  As discussed above, this result has 
implications for the design of the "Pattern Finder" 
component of the PAT algebra tutor.  The evidence from 



 

Koedinger & Anderson provided some support for the 
hypothesis that solving concrete problems aids students in 
symbolizing.  The "Pattern Finder" is based on a further 
hypothesis that making this solution process more explicit 
through concrete symbolization would be an even better 
scaffold.  The results of the current study put this hypothesis 
into question.  At minimum, it suggests that the Pattern 
Finder should require students to answer the concrete 
problem before doing the concrete question (e.g., first, 
"How far is Ann from the dock in 2 minutes?" and then 
"Write down how you got that answer?").  Alternatively, 
since it appears that composing rather than abstracting is the 
real crux of the symbolization problem, we should focus our 
attention on developing a scaffolding technique that directly 
addresses composition. 

Conclusion 
One possible scaffolding technique for composition would 
be to tutor students to introduce variables for the 
subexpression and symbolize just the parts as the student in 
Figure 3 did spontaneously.  Next, provide instruction on 
doing symbolic substitution.  Another possible scaffolding 
technique would be to first ask students to symbolize any 
needed  subexpressions, before attempting to symbolize the 
whole expression.  For example, on P0, first ask students to 
symbolize "the distance Anne has rowed back towards the 
dock" and once they answer "40*11" ask them to use that 
subexpression to symbolize the final answer.  The scaffold 
might also prompt students to indicate what quantity name 
represents the subexpression. 

The large effect of the composition factor in this study, 
relative to the small or absent effect of comprehension hints, 
provides a strong case against the almost exclusive 
emphasis in previous research on language comprehension 
as the major stumbling block for students.  A focus on 
language comprehension  may be appropriate for the 
younger students learning arithmetic story problem solving.  
However, to address the difficulties of older students 
learning the new language of algebra, we need greater focus 
on the language production skills needed to "speak algebra". 
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Ms. Lindquist is a math teacher.  Ms. Lindquist teaches 62 
girls.  Ms. Lindquist teaches "f" fewer boys than girls.  Write 
an expression for how many students Ms. Lindquist teaches. 

62 - f = T   ,   T + 62 

Figure 3. Candidate for composition in symbols  


