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Abstract 

Despite the accumulation of substantial cognitive science research relevant to education, there 

remains confusion and controversy in the application of research to educational practice. In 

support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) 

framework. KLI promotes the emergence of instructional principles of high potential for 

generality, while explicitly identifying constraints of and opportunities for detailed analysis of 

the knowledge students may acquire in courses. Drawing on research across domains of science, 

math, and language learning, we illustrate the analyses of knowledge, learning, and instructional 

events that the KLI framework affords. We present a set of three coordinated taxonomies of 

knowledge, learning, and instruction. For example, we identify three broad classes of learning 

events: a) memory and fluency processes, b) induction and refinement processes, c) 

understanding and sense-making processes, and we show how these can lead to different 

knowledge changes and constraints on optimal instructional choices. 
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1. Introduction: The need for a learning-to-instruction theoretical framework  

A substantial base of highly refined and extensively tested theories of cognition and 

learning (e.g., Anderson & Lebiere, 1998; McClelland & Cleeremans, 2009; Newell, 1990; Son, 

1994) provide broadly useful but limited guidelines for instruction. Theoretical frameworks and 

design methods have been proposed that are directly relevant to instructional decision-making 

(Bruner, 1966; Gagne, 1985; Engelmann & Carnine, 1991; Sweller, 1994; van Merrienboer & 

Kirshner, 2007). However, we need instructional applications that are more grounded in 

cognitive theories that explicate the role in learning of basic cognitive science concepts such as 

memory, chunking, analogical transfer, reasoning, and problem solving.  To bring instructional 

decision making into closer contact with the science of learning, we propose a theoretical 

framework that builds on the computational precision of cognitive science while addressing 

instruction, not as an additional consideration, but as part of its basic conception.  Our 

framework embodies research-based principles and theoretical propositions, while demonstrating 

pathways to instructional decision making. In doing so, the framework supports “rigorous, 

sustained scientific research in education”, as urged by the National Research Council report 

(Shavelson & Towne, 2002). 

In the following sections, we first develop the basic background that motivates a general 

theoretical framework for improving student learning. We then define and explain the basic 

concepts that shape the theoretical framework. We follow with elaboration and examples across 

academic domains, and exemplary instructional principles. We conclude by suggesting how the 

framework can aid a sustained research effort and generate new hypotheses. 

1.1 Educational Context and the Need for Instructional Principles 

Heated debates in education (“education wars”) have been most visible in reading (e.g., 

Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2001) and math (e.g., Schoenfeld, 2004). 

Research has informed these debates, particularly in reading. However, its impact is blunted by 

larger contextual factors, including assumptions of both researchers and policy makers about 

educational values, child development, and research standards. For example, advocates in these 

debates tend to differ on the kinds of scientific support they value. Some emphasize rigor (e.g., 

internal validity, randomized controlled experiments) and others, relevance (e.g., ecological and 

external validity and appropriate settings and assessments).  Our approach addresses this divide 

by embedding rigorous experimental research methods in the context of real learning, with real 

students, in real contexts (see the Pittsburgh Science of Learning Center at learnlab.org).  

Our emphasis on connecting learning research to instructional principles is not unique.  

Research in the learning sciences has led to statements of principles, including the influential 

NRC report “How People Learn” (Bransford, Brown, & Cocking, 2000), instructional design 

principles (e.g., Clark & Mayer, 2003), and learning principles drawn from psychology research 

(http://www.psyc.memphis.edu/learning/principles/; Graesser, 2009). Progress in the “reading 

wars” was marked by a succession of evidence-based recommendations (National Reading 

Panel; 2000; Snow et al., 1996). Broad learning principles have been directed specifically at 

teachers and educational decision makers (e.g., http://www.instituteforlearning.org/; Pashler et 

al., 2008). We join the tradition of extracting principles from research because we believe that 

finding the right level to communicate evidence based-generalizations is important for guidance 

http://www.instituteforlearning.org/
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in instruction. However, we also are committed to the idea that principles must be based on 

sound evidence that supports their generality and identifies their limiting conditions.  

1.2 Levels of Analysis 

Finding the right level of analysis or grain size for theory is a major question. In all 

theories, including physical theories, the theoretical entities vary in the levels of analysis to 

which they apply, both in terms of the grain of the unit (micro to macro) and its functional level 

(neurological, cognitive, behavioral, social). We refer to these two together as “grain size” and 

follow past researchers (Newell, 1990; Anderson, 2002) in using the time course of cognitive 

processes to distinguish levels of analysis. The requirement of having an instructionally relevant 

theory requires a grain size that is intermediate between existing theoretical concepts in 

education and cognitive psychology.  

Education theories have tended to use macro levels of analysis with units at large grain 

sizes. For example, situated learning, following its origins as a general proposition about the 

social-contextual basis of learning (Lave & Wenger, 1991), has been extended to an educational 

hypothesis (e.g., Greeno, 1998). It tends to use a rather large grain size including groups and 

environmental features as causal factors in performance and to focus on rich descriptions of case 

studies. These features work against two important goals that we have: (1) Identifying 

mechanisms of student learning that lead to instructional principles and (2) Communicating 

instructional principles that are general over contexts and provide unambiguous guidelines to 

instructional designers.  We assume that learning is indeed situated, and understanding learning 

environments, including social interaction patterns that support learning, is an important element 

of a general theory. But we take the interaction between a learner and a specific instructional 

environment as the unit of analysis.  

Learning theories have small grain sizes as well. At the neural level, variations on Hebb’s 

idea (Hebb, 1949) of neuronal plasticity refer to a basic mechanism of learning, often expressed 

simplistically as “neurons that fire together, wire together”.  This idea has been captured by 

neural network models of learning mechanisms that use multi-level networks (e.g., O’Reilly & 

Munakata, 2000). Micro-level theories also give accounts of elementary causal events by using 

symbols, rules, and operations on basic entities expressed as computer code, as in the ACT-R 

theory of Anderson (1993).  Although initially developed without attention to biology, ACT-R 

has been tested and extended using brain imaging data (e.g., Anderson et al., 2004). It is 

important for the learning sciences that such theories demonstrate the ability to predict and 

explain human cognition at a detailed level that is subject to empirical testing.  The small grain 

size of such theories and the studies that support them leave them mostly untested at the larger 

grain size of knowledge-rich academic learning.  Thus, they tend to be insufficient to constrain 

instructional design choices.  

The level of explanation we target is intermediate to the larger and smaller grain sizes 

exemplified above. This level must contain propositions whose scope is observable entities 

related to instructional environments and learner characteristics that affect learning. These 

propositions must be testable by experiments and allow translation both downward to micro-

level mechanisms and upward to classroom practices. The theoretical framework we describe in 

section 2 uses this intermediate cognitive level, which we refer to as the Learning Event level.  

First, we briefly describe a research context for theory development. 



 Knowledge-Learning-Instruction (KLI) Framework  5 

 

Authors’ final version of:  

Koedinger, K.R., Corbett, A.C., & Perfetti, C. (2012).  The Knowledge-Learning-Instruction (KLI) framework: 

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798. 

ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2012.01245.x 

1.3. Generalizations and constraints  

Among many factors that can limit the application of even principles backed by solid 

evidence are two that are especially important for the application of principles to educational 

settings: Variations among subject matter domains and among students. The content of a domain 

is a specific challenge to a general learning principle. Physics is not the same as history, and 

neither is the same as language. Our approach is to develop a domain-independent framework for 

characterizing knowledge structures that in turn captures differences in the structure of content 

knowledge across domains. Thus the KLI framework is domain-independent in its general 

structure and domain-sensitive at the level of the knowledge components that are central to its 

deeper analysis of learning. This allows the framework to cover multiple academic content areas 

so that generalizations and limits on generalizations become visible.   

Variation in student characteristics is a more complex challenge. Because studies must be 

done with students in specific school and social-geographical settings, strong generalizations 

demand new studies beyond the original samples. We draw primarily from studies at the junior 

high school through college levels in K12 Schools and University settings. However, every 

theoretical proposition and instructional principle derived from this research is an empirically 

testable hypothesis for other populations.  

We address our goal of grounding our framework in application settings by emphasizing 

research within actual courses and their students. We call this in vivo experimentation (e.g., 

Koedinger et al., 2009; Salden et al., 2008; see also learnlab.org/research/wiki). We address 

challenges of different domains and student characteristics in terms of differences in knowledge 

demands (section 3) and stage of learning (section 4 and 6). 

2. The Knowledge-Learning-Instruction (KLI) Framework 

Many efforts at instructional “theory” are really frameworks (e.g., Bloom, 1956; Gagne, 

1985; Sweller, 1994; van Merriënboer & Sweller, 2005) because they do not lead directly to 

precise predictions.  Nevertheless, a theoretical framework does entail a hypothesis-testing 

research agenda: 

“Frameworks are composed of the bold, general claims … They are sets of constructs 

that define important aspects of [interest] … Frameworks, however, are insufficiently 

specified to enable predictions to be derived from them, but they can be elaborated, by 

the addition of assumptions, to make them into theories, and it is these theories that 

generate predictions. A single framework can be elaborated into many different theories.” 

Anderson (1993, p. 2) 

The propositions within the KLI framework can help generate research questions within specific 

domains and instructional situations that, with further work, yield precise and falsifiable 

predictions. However, our main goal here is to identify the broad constructs and claims that serve 

more specific instantiations. We pursue this goal by specifying three taxonomies, kinds of 

knowledge, kinds of learning processes, and kinds of instructional choices, and dependencies 

between them.  We show how kinds of knowledge constrain learning processes and how these 

processes constrain which instructional choices will be optimal in producing robust student 

learning.  Learning is robust when it lasts over time (long-term retention), transfers to new 

situations that differ from the learning situation along various dimensions (e.g., material content, 
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setting, cf., Barnett & Ceci, 2002; Chen & Klahr, 2008), or accelerates future learning in new 

situations (Bransford & Schwartz, 1999).  

 
Figure 1. Instructional Events are (usually planned) variations in the learning environment that cause Learning 

Events.  Learning events are unobservable processes that cause unobservable changes in Knowledge 

Components and can be effected by existing knowledge.  Knowledge Components cause student performances, 

which can be observed in Assessment Events. Examples of instructional and assessment events are shown, with 

some being only instructional (e.g., an explanation), some only assessment (e.g., an exam), and some both (e.g., 

a step taken by a student in an intelligent tutoring system). 

2.1. Learning Events, Instructional Events, Assessment Events 

The KLI framework relates a set of observable and unobservable events: Learning 

Events, Instructional Events, and Assessment Events, as illustrated in Fig. 1. Instructional and 

Assessment Events are observable activities in or changes to the instructional environment 

controlled by an instructor, instructional designer, or experimenter.  Instructional Events, which 

are intended to produce learning (they cause Learning Events), can be observed in a lesson from 

a 10-second episode on a computer to a series of didactic moves by a teacher or computer tutor. 

Assessment Events involve student responses that are evaluated.  Some are instructional; some 

are not.  Although assessment events are usually test items, they can also be embedded in the 

context of instruction, for instance, tracking whether a student is correct on their first attempt in a 

tutored problem-solving scenario (e.g., Aleven, Roll, McLaren, & Koedinger, 2010; Feng, 

Heffernan, & Koedinger, 2009). Learning Events are essentially changes in cognitive and brain 

states that can be inferred from data, but cannot be directly observed or directly controlled. 

Learning processes and knowledge changes are inferred from assessments at both immediate and 

remote time points  (long-term retention, future learning) and in tasks (transfer, future learning) 

that may differ from those during instruction. Each of the three central events is decomposable, 
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both temporally and structurally. Temporally, instructional sequences contain event segments 

that vary from less than 1 second (e.g., exposure to a printed word) and a little more than a 

second (e.g., a fact retrieval task with instructional feedback) to a few minutes (e.g., turns in a 

classroom dialogue around the concept of an integer).  Structurally, we decompose the cognitive 

changes that arise from these Instructional Events into Knowledge Components. Learning Events 

produce Knowledge Components and the acquisition and modification of these components is 

the KLI framework’s explanation for consistency in student performance and transfer across 

related Assessment Events.   

The arrows in Fig. 1 represent inferences about causal links to the unobservables 

(knowledge changes and the Learning Events that produce them) from the observables 

(Instructional and Assessment Events). Unobservable Knowledge Components (KCs) can be 

inferred by comparing performances exhibited by different kinds of Assessment Events (“tasks” 

or “items”).  For example, by contrasting student performance on assessment tasks that presented 

algebra problems in words versus matched equations, Koedinger and Nathan (2004) identified 

components of knowledge that students particularly struggle to acquire.  In contrast to teachers’ 

beliefs, beginning algebra students performed worse on equations than word problems and this 

contrast led the researchers to infer that students have greater knowledge deficits for 

comprehending algebraic expressions than corresponding English sentences. In cases like these, 

instructors may incorrectly treat knowledge and its acquisition as directly observable, not 

requiring empirically based inference, and conclude equations are easier than word problems 

because it looks like equations are simpler.  

The typical instructional experiment, in KLI terms, explores how variations in 

Instructional Events affect performance on subsequent Assessment Events.  The interpretation of 

such experiments may involve inferences about mediating Learning Events and KC changes.  As 

an example, we can explain results of Aleven and Koedinger (2002) in these terms. They found 

that adding prompts for self-explanation to tutored problem solving practice (without adding 

extra instructional time) produced greater explanation ability and conceptual transfer to novel 

problems while maintaining performance on isomorphic problems. In KLI terms, changing 

instruction from pure practice to practice with self-explanation (kinds of Instructional Events) 

engaged more verbally mediated explanation-based learning in addition to non-verbal induction 

(kinds of Learning Events) and thus produced more verbal declarative knowledge in addition to 

non-verbal procedures (kinds of KCs). KC differences were inferred from the observed contrast 

in student performance on isomorphic problem solving test items compared with conceptual 

transfer test items (kinds of Assessment Events). These results require an explanation that 

appeals to KCs: The groups perform the same when assessment tasks allow either kind of 

knowledge (verbal declarative or non-verbal procedural), but only the self-explainers do well on 

the transfer tasks that require just verbal declarative knowledge.  

We generalize such examples for linking knowledge to learning and instruction by 

specifying taxonomies of knowledge (section 3), learning (section 4), and instruction (section 5).  

Taxonomies have value when classification supports scientific analysis. In the case of the KLI 

framework, taxonomies are used to make more visible dependencies between the kinds of 

knowledge to be learned, the learning processes that produce knowledge changes, and the 

instructional options that affect robust learning. 
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Examples of possible dependencies have been suggested in the literature.  Rohrer and 

Taylor (2006) summarize a meta-analysis of spacing effects (Donovan & Radosevich, 1999) 

with “the size of the spacing effect declined sharply as conceptual difficulty of the task increased 

from low (e.g., rotary pursuit) to average (e.g., word list recall) to high (e.g., puzzle).” Wulf and 

Shea (2002) suggest that “situations with low processing demands [simple skills] benefit from 

practice conditions that increase the load and challenge the performer, whereas practice 

conditions that result in extremely high load [complex skills] should benefit from conditions that 

reduce the load to more manageable levels”.  These indications of dependencies between 

knowledge acquisition goals and effective learning and instruction illustrate the gain in 

conceptual clarity that may come from a systematic articulation of kinds of knowledge, learning, 

and instruction that provides the basis for exploring how they interrelate. 

It is useful to consider whether such taxonomies can help explain why opposing 

recommendations for optimal instruction remain in the literature. One such opposition contrasts 

recommendations for instruction that increases demands on students so as to produce “desirable 

difficulties” (e.g., Schmidt & Bjork, 1992; Roediger & Karpicke, 2006; Cepeda et al., 2006) with 

recommendations for instruction that decreases demands on students so as to reduce extraneous 

“cognitive load” (e.g., van Merriënboer & Sweller, 2005). KLI can be used to help generate 

hypotheses for how this opposition may be resolved based on differences in the kinds of KCs, 

kinds of Learning Events (LE), or kinds of Assessment Events (AE) on which these research 

paradigms focus. Research supporting desirable difficulties has tended to focus on fact 

knowledge (a kind of KC), memory processes (a kind of LE), and long-term retention tests (a 

kind of AE) to argue in favor of instructional approaches such as increased test-like practice 

(Roediger & Karpicke, 2006) and mixed or spaced practice (Schmidt & Bjork, 1992). Cognitive 

load research has tended to focus on rule or schema knowledge (kinds of KCs), induction or 

compilation processes (kinds of LEs), and transfer tests (a kind of AE) to argue in favor of 

instructional approaches such as increased study of examples (Renkl, 1997). KLI provides a 

frame for 1) noticing contradictions in instructional recommendations and 2) pursuing whether 

the resolution lies within differences in the kinds of knowledge being addressed, in the kinds of 

learning processes being evoked (LEs), or in the nature of the assessment strategies (AEs) being 

employed. 

Articulating potential dependencies among kinds of knowledge, learning, and instruction 

requires a stipulation of those kinds. Such articulation suggests a variety of open research 

questions that go beyond the open issues that motivated our creation of the KLI framework.   

3. Knowledge: Decomposing Task Complexity and Transfer 

Others have argued for the importance for educational design of analyzing learning goals into 

components of knowledge (e.g., diSessa, 1993; Minstrell, 2001).  Anderson and Schunn (2000) 

suggested “there is a real value for an effort that takes a target domain, analyzes it into its 

underlying knowledge components, … communicates these components, and monitors their 

learning”. Although cognitive task analysis to design instruction has been demonstrated to be 

effective in a number of training domains (e.g., Clark, Feldon, van Merriënboer, Yates, & Early, 

2007; Lee, 2003), it has not been a common approach for designing academic instruction.  

Cognitive task analysis remains as much an art as a science, in part because of the unobservable 

nature of knowledge and limited scientific tools for characterizing it at a useful level of analysis.  
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Thus, we think an effort toward defining a taxonomy of kinds of Knowledge Components is 

worthwhile and can be useful even without costly implementation of computational models that 

has been the traditional approach of cognitive science. 

 

 
 

We define a Knowledge Component (KC) as an acquired unit of cognitive function or 

structure that can be inferred from performance on a set of related tasks. These tasks are the 

Assessment Events of the KLI framework (see Fig. 1). As a practical matter, we use “Knowledge 

Component” broadly to generalize across terms for describing pieces of cognition or knowledge, 

including production rule (e.g., Newell, 1990; Anderson & Lebiere, 1998), schema (e.g., van 

Merriënboer & Sweller, 2005; Gick & Holyoak, 1983), misconception (e.g., Clement, 1987), or 

facet (e.g., Minstrell, 2001), as well as everyday terms such as concept, principle, fact, or skill 

(cf. Bloom, 1986). Many KCs describe mental processes at about the unit task level within 

Newell’s (1990) time scales of human action (see Table 1).  Unit tasks last about 10 seconds and 

are essentially the leaf nodes or smallest steps in the decomposition of a reasoning task – that is, 

the application of a single operator in a problem solving space (e.g., applying a theorem in a 

geometry proof). Unit tasks are at the interface between what Newell called the “cognitive band” 

and “rational band”. Scientific investigation at these time scales is critical to make productive 

bridges between neuroscience research within the biological band, where attention is on 

millisecond changes, and educational research within the social band, where attention is on 

changes occurring over months. 

A range of unit task times are illustrated in Fig. 2, which shows a sample of three 

learning curves of student performance in language and math domains.  Each curve displays the 

average time it takes students to correctly apply a single KC across successive opportunities 

during tutored problem solving. Application time for each KC systematically decreases as the 

KC is further refined and strengthened.  Comparing the three curves illustrates the variability in 

average time to correctly apply KCs across the examples from three different domains--Chinese 

vocabulary, English articles, and geometric areas. But rather than assuming such variability is 

intrinsic to a whole domain, the working assumption of our framework is that such variability is 

associated with specific KCs.  The prototypical KCs in Fig. 2 are drawn from different types as 

elaborated in Tables 2 and 3 and discussed below. Distinguishing properties of KCs is part of a 
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deep analysis of domain knowledge, and thus a powerful source for innovative instructional 

design.  

 

 
Figure 2. Performance time learning curves for three different kinds of knowledge components (KCs) show 

how more complex KCs take longer to perform than less complex KCs.  The data come from student use of 

computer tutors for High School Geometry, College English as a Second Language, and College Chinese and 

are available from DataShop (http://pslcdatashop.org).  The curves show the time for a correct performance of a 

KC (averaged across students and KCs) on successive opportunities to perform and learn that KC (the x-axis).  

Each opportunity is an Assessment Event, because the tutor observes and record students’ success, and an 

Instructional Event, because students get correctness feedback and as-needed instruction. 

KCs that function in a given task are hierarchical, thus posing a problem of how to target 

the right components for a given learning situation. For example, sentence comprehension relies 

on word identification, which relies on letter recognition and trigonometry relies on geometry, 

which relies on multiplication. Because the KLI framework targets the analysis of academic 

learning, our strategy is to focus on knowledge that is to be acquired by students in a given 

academic course. This general strategy leads to a more specific one, to focus on the component 

level at which the novice student makes errors. Thus, within a hierarchy of components, a 

knowledge analysis for a particular course may focus only on a single level that lies just above 

the level at which novices have achieved success and fluency.  KC descriptions at the target level 

(e.g., word identification or geometry) can treat lower levels (e.g., letter identification or 

multiplication) as atomic under the empirical constraint that the target population has mastered 

the lower level
i
.  

http://pslcdatashop.org/
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3.1 Kinds of Knowledge Components (KCs) 

KCs can be characterized in terms of various properties that cut across domains to capture 

their functioning in Learning Events. Time scale is one property we have already noted. 

Conditions of applications and the student response to an Assessment Event are others. Table 2 

illustrates the properties of application conditions and responses for examples across three 

domains.
ii
 Some KCs are applied under unvarying, constant conditions, while others are applied 

under variable conditions.  A KC has a constant condition when there is a single unique pattern 

to which the KC applies and a variable condition when there are multiple patterns to which it 

applies (e.g., a feature or features that can take on many different values).  Paired associates 

(e.g., Roediger & Karpicke, 2006) and “examples” (e.g., Anderson, Fincham, & Douglass, 1997) 

are constant condition KCs, whereas categories, rules, schemas, or principles are variable 

condition KCs.  Similarly, the response of a KC can be a single value or constant (e.g., a 

category label) or it can vary as a function of the variable information extracted in the 

condition
iii

.  

 

Table 2. Examples of different kinds of Knowledge Components in Second Language 

Learning, Mathematics and Science 
Domain /  

Knowledge Category 

Application 

Conditions 

 

Response 

 

Example 

2nd Language 

     Chinese vocabulary 

     English determiners 

     Plural English spellings 

     

 

Constant 

Variable 

Variable 

 

Constant 

Constant 

Variable 

 

Chinese radical “日” => “sun” in English  

Choose article for <Noun> & it is definite => use “the”  

<Noun> ending <consonant> “y” =>  

remove “y” from <Noun> & add “ies” 

Mathematics 

     Rule from name 

     Rule from context  

     Solution planning 

 

Constant 

Variable 

Variable 

 

Constant 

Constant 

Variable 

 

“circle area formula” = > “A=π*r
2”

 

Find area of <Fig> & it is a circle => use “A=π*r
2
” 

Find area of irregular shape made up of regular shapes 

<S1> and <S2> => find area <S1> and <S2> and 

combine 

Science 

     Content fact 

     Categorize situation 

 

     Experimental design  

 

Constant 

Variable 

 

Variable 

 

Constant 

Constant 

 

Variable 

 

“gravitational acceleration” => “g = 9.8/s
2” 

Find unit for <quantity>, a small volume => use 

“milliliters” 

Test hypothesis <Var1> causes <Var2> => run an 

experiment that varies only <Var1> and nothing else 

and measure differences in <Var2> 

 

The condition-response format emphasizes that knowing is not just about knowing what or 

knowing how, but knowing when.  Indeed, learning the conditions of application of knowledge, 

the “when”, may be more difficult than learning possible responses, the “what” (cf., Chi, 

Feltovich, & Glaser, 1981; Zhu, Lee, Simon & Zhu, 1996). 

For purposes of first approximation, these properties define a useful (if perhaps 

incomplete) notion of “complexity.” KCs that have variable conditions of application, variable 

conditions of response, and operate on a longer time scale can be said to be more complex than 

KCs that are constant in application or response and at a shorter time scale. To illustrate a 

relatively simple KC, consider learning the meaning of the Chinese radical 日. An English 
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language learner acquires the connection between this form and the English word “sun.” The 

implementation of this KC then is that, given 日and the goal of generating an English translation 

(the conditions), produce “sun.”  While knowledge may well be non-symbolic in its brain-based 

implementation, for purposes of scientific analysis, we describe KCs in a symbolic format (e.g., 

English or computer code).   

As illustrated in Table 3, our knowledge taxonomy makes four key distinctions (the first 

two have been introduced above): the generality of the conditions of application, the generality 

of the response, whether the KC is verbal or not, and the extent to which the KC can be 

rationalized. In the Chinese KC example above, the application condition (the Chinese radical 

日) is a constant and the response (sun) is a constant. The relationship is verbal (i.e., students 

express it in words), and while a few radicals may have iconic value, the relationship generally 

has no rationale, instead being a writing convention
iv

.  Non-language examples of “constant-

constant” KCs are shown in Table 2, as are examples of KCs with variable conditions and/or 

variable responses. As indicated in the last column of Table 3 (second row), constant-constant 

KCs are commonly called “facts.”  The labels in Table 3 (facts, categories, rules, etc) are rough 

mappings to commonly used terms (cf. Gagne, 1985) and not necessarily one-to-one with the 

cells in this taxonomy.  

 

Table 3. Some Basic Knowledge Component Categories 

Application 

conditions 

Response Relationship Rationale  Labels 

constant constant non-verbal no  association 

constant constant verbal no  fact 

      

variable constant non-verbal no  category 

variable constant verbal no  concept 

      

variable variable non-verbal no  production, 

schema, skill 

variable variable verbal no  rule, plan 

      

variable variable verbal yes  principle, 

rule, model 

 

3.1.1. Constant-Constant KCs. Whether the conditions and response of KCs are constants 

or variables is associated with the broad kinds of learning processes (e.g., memory, 

categorization, induction) that have been studied. Learning research that emphasizes memory 

(e.g., Schmidt & Bjork, 1992; Cepeda et al., 2006; Roediger & Karpicke, 2006) has primarily 

focused on constant-constant KCs and these are often assessed with “paired associate” tasks.  For 

example, instructional recommendations derived from research on spacing and testing effects 

(Pashler et al., 2007) have tended to emphasize constant-constant KCs with tasks such as math 

fact recall (e.g., 8x5=40 in a study of spaced practice; Rea & Modigliani, 1985).  

These relatively simple “associations” or “facts” (see Table 3) are pervasive in academic 

learning, such as vocabulary facts in second-language learning
v
. Similar KCs are essential in 
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middle school, high school and post-secondary mathematics and science, particularly, definitions 

of terms.  For instance, “Pi ( ) is the ratio of a circle’s circumference to its diameter” represents 

a constant-constant KC in math that relates a term to its definition. These tend to be relatively 

minor components in post-elementary mathematics, but they can be significant barriers to 

learning.   For example, student performance in the ASSISTment computer tutoring system 

(Feng, Heffernan, & Koedinger, 2009) reveals that errors in simple fraction multiplication word 

problems (e.g., “What is 3/4 of 1/2?”) are sometimes not about the math, but about vocabulary – 

follow-up questions indicate that students make more errors on “What does ‘of’ indicate?” 

(where multiply is one of four operator choices) than on “what is ¾ times ½?”.  

We emphasize that all KCs, even these simple facts, are not directly observable and 

multiple Assessment Events (AEs) are needed to infer whether or not a student has robustly 

acquired a KC.  Variability in the timing of AEs and the kinds of performance metrics used are 

important.  Success on an AE immediately after instruction provides evidence of some initial 

acquisition of a KC, but is weaker evidence of robust learning than success on a delayed AE (cf. 

Cepeda et al., 2006).  Accuracy in performance does not guarantee acquisition of fluency, but 

AEs that provide timing data or assess accuracy in time limited contexts would (cf., de Jong & 

Perfetti, 2011). 

3.1.2 Variable-Constant KCs. While memory research has emphasized constant-constant 

KCs, research on conceptual and perceptual category learning (Medin & Schaffer, 1978) and 

artificial grammar rule learning (Frank & Gibson, 2011) has primarily focused on variable-

constant KCs, which are essentially category-recognition rules with many-to-one mappings.  

English article selection is an example of this type: “to construct a noun phrase with a unique 

referent, use the article ‘the’” (e.g., “The moon …”).  Such categorical or classification 

knowledge exists in mathematics as well, for instance, any expression that indicates the quotient 

of two quantities is a fraction
vi

.  Other examples of variable-constant KCs are given in Table 2. 

That some knowledge can be used in (or generalizes across) a variety of different situations is 

reflected in KLI by KCs that have variable conditions.  

3.1.3 Variable-Variable KCs. Research that emphasizes more complex rule or schema 

structure learning and transfer (e.g., Gick & Holyoak, 1983; Sweller & Chandler, 1994) has 

primarily focused on variable-variable KCs.  These KCs map one relational structure (Gentner, 

et al., 2009) to another and variables are used to express the many possible arguments to those 

relations. An example in second language learning is a rule for generating an English plural: To 

form the plural of a singular noun <N> ending in an “s” sound or a “z” sound, form the word 

<N> “es”.  In mathematics and science, KCs that apply formulas to solve problems have a 

variable-variable structure: To find the area of a triangle with height <H> and base <B>, 

multiply <H> * <B> * 1/2.  Other math and science examples of variable-variable KCs are 

shown in Table 2. 

Variety in task contexts is needed to infer acquisition of variable condition KCs from 

Assessment Events.  Just because a second language English student correctly selects “an” in 

“[a/an] orange” does not ensure the student has learned a (variable-constant) KC with the right 

generality (Wylie et al., 2009).  They may or may not have (implicitly) induced a KC for which 

“the noun begins with a vowel” is a condition.  Variety in assessment tasks, such as “[a/an] 

honor”, is needed to infer the student has learned the correct condition, “the noun begins with a 

vowel sound”.  Aleven and Koedinger (2002) illustrate the use of a variety of assessments to 
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disambiguate KCs with incorrectly generalized conditions (“angles that look equal => are 

equal”) from KCs with correctly generalized conditions (e.g., “base angles of an isosceles 

triangle => are equal”).   

 3.1.4 Non-verbal vs. verbal KCs. Some KCs represent associations, perceptual 

categories, skills, or procedures that cannot be readily verbalized (cf., Alibali & Koedinger, 

1999; Dienes & Perner, 1999).  Other KCs represent concepts, procedures, principles or theories 

that learners can readily verbalize.  The KLI distinction between verbal and non-verbal is similar 

(but not identical
vii

) to the ACT-R distinction between declarative and procedural knowledge 

(Anderson & Lebiere, 1998), which has been influential in instructional design (e.g., Koedinger 

& Aleven, 2007). The ACT-R distinction is about unobservable cognitive mechanisms, 

emphasizing whether or not knowledge can be accessed by other knowledge (declarative can, 

procedural cannot).  The KLI distinction is about observable behavior, emphasizing whether 

students can “do” but not explain (indicating non-verbal knowledge), explain but not do 

(indicating “inert” verbal knowledge), or do and explain (indicating both non-verbal and verbal 

knowledge).   

One reason to emphasize this distinction derives from the observation that much of what 

experts know is only in non-verbal or “implicit” form (Posner, in press). Much language 

knowledge (e.g., English article selection) is non-verbal – English speakers can converse 

effectively and fluently, but most either cannot explain their choices at all or cannot do so to a 

reasonable standard of coherence. Non-verbal knowledge is common in math too; for example, 

students may be able to accurately recognize which expressions are fractions, but not articulate 

how they do so.  Aleven and Koedinger (2002) provide evidence of non-verbal procedural 

knowledge in the performance of geometry students who were more correct on making 

geometric inferences than they were on matched explanation items. A mathematical model of 

their data provides evidence that non-verbal procedural and verbal declarative knowledge of the 

same content can co-exist and that different mixtures of such knowledge can yield identifiable 

patterns of performance across multiple assessments. 

Because experts cannot directly access or articulate many aspects of what they know, 

they are susceptible to “expert blind spot” (Koedinger & Nathan, 2004). Instructors and 

designers may thus underemphasize or even completely overlook non-verbal knowledge in their 

instructional delivery or design. The pervasiveness of non-verbal visual or procedural knowledge 

is one reason why Cognitive Task Analysis is so powerful in improving instruction (Clark et al., 

2007). 

Verbal instruction is intrinsically bound to learning verbal KCs. Moreover, even in tasks 

involving substantial non-verbal knowledge, the verbal articulation of knowledge (by teacher, 

textbook, tutor, or student) can enhance learning. It is not well enough understood when 

explanations (intended to produce verbal KCs) should be given to or elicited from students to 

best enhance their learning (cf. Renkl et al., 1998).  Much research on “self-explanation” 

indicates that prompting students to provide verbal explanations of actions (whether their own or 

ones given in a worked example) can often aid robust learning (Aleven & Koedinger, 2002; Chi 

et al., 1994; Graesser, McNamara, & VanLehn, 2005; Hausmann & VanLehn, 2007). Although 

verbalization during mainly perceptual tasks can sometimes interfere with learning (Schooler et 

al., 1997), verbalization in such tasks can also be supportive (Fox & Charness, 2009). In some 

situations, the support provided for verbalization is offset by the additional instructional time it 
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requires (Wylie et al., 2009).  These somewhat ambiguous conclusions may reflect variations in 

the specific Instructional Events and the target learning. The KC taxonomy may help 

differentiate positive and negative results of the effects of verbalization, including prompting for 

self-explanations. The negative results tend to involve variable-constant KCs in domains where 

non-verbal acquisition is sufficient, whereas the positive results involve variable-variable KCs in 

domains where verbal KCs (as well as non-verbal KCs) are learning objectives (e.g., students are 

expected to be able to express mathematical theorems and scientific principles).   

One reason why educators in some domains value verbal articulation of rules and 

principles is that, once expressed, they are available for rational argument.  How much 

rationalization can be done around a KC is a topic we discuss next.  

3.1.5 Connective tissue -- KCs with and without rationales.  While some “rules” or 

“principles” clearly have a rationale, such as theorems in mathematics, other “rules” may reflect 

regularities of seemingly arbitrary conventions, as in some English spelling rules. The 

availability of rationales should be considered as graded rather than all or none and dependent on 

the depth of theory development in a domain.  

The rules for creating plurals are relatively difficult to rationalize insofar as different 

languages have different ways to create plurals. These rules gain some rationale within the 

constraints of a given language, but they remain largely opaque to everyday usage
viii

. Other KCs 

have rationales grounded in nature. The formula for the area of a triangle is a provable regularity 

of Euclidean spaces that are approximated in the real world.  However, just as a skilled language 

user will not know the rationales for plurals, the successful geometry student may not understand 

the rationale for the area of a triangle.   

The rationale feature of KCs is relevant in considering whether certain forms of 

instruction, such as collaborative argumentation or discovery learning, will be effective for a 

particular kind of KC. The rationale of a KC can support sense-making strategies and be used to 

reconstruct a partially forgotten KC, adapt it to unfamiliar situations, or even construct a KC 

from scratch.  Instruction that involves students in explicitly discovering KCs from data or 

deriving KCs through argumentation may be productive for KCs with a rationale, but not for 

ones without. 

3.2 Integrative Knowledge Components and other complexity factors  

Beyond the basic KC taxonomy illustrated in Tables 2 and 3 are some additional features 

of KCs that have significance for learning and instruction. Integrative knowledge (e.g., Case & 

Okamoto, 1996; Slotta & Chi, 2006), prerequisite conceptual and perceptual knowledge (e.g., 

Booth & Koedinger, 2008), probabilistic knowledge (e.g., Frishkoff, Pavlik, Levin, & de Jong, 

2008), and shallow or incorrect knowledge including misconceptions (e.g., Aleven & Koedinger, 

2002; Chi et al., 1981; Clement, 1987; Minstrell, 2001) are among the important knowledge 

complexities that have been made visible in learning research. 

KCs sometimes are not inferable from a single behavioral pattern, but only from 

behavioral patterns across task situations varying in complexity. We call such a component an 

“integrative Knowledge Component” because it integrates or must be integrated (or connected) 

with other KCs to produce behavior. Descriptions of integrative KCs make reference to internal 

mental states either in their condition (e.g., a deep feature produced by another KC) or in their 

response (e.g., a subgoal for another KC to achieve). A typical strategy for inferring an 
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integrative component uses a subtraction logic that takes the differences between two tasks of 

overlapping complexity as implicating an integrative KC. For example, Heffernan and 

Koedinger (1997) found students were significantly worse at translating two-step algebra story 

problems into expressions (e.g., 800-40x) than they were at translating two closely matched one-

step problems (with answers 800-y and 40x).  They hypothesized that many students are missing 

an integrative KC that is necessary to solve the two-step problems, namely a recursive grammar 

rule indicating expressions (e.g., 40x) can be embedded within other expressions (e.g., 800-40x).  

Instruction specifically designed to address learning of this KC significantly improved student 

performance (Koedinger & McLaughlin, 2010). 

For integrative knowledge, non-verbal forms of instruction (e.g., example study, repeated 

practice) may not be optimal for effective induction and refinement. Providing and eliciting 

explanations may be critical to help learners break down or externalize the complex inference 

needed when processing negative feedback to fully identify all the KCs and integrative KCs in a 

reasoning chain and to revise any KCs that are not correct as part of that chain (cf. MacLaren & 

Koedinger, 2002). 

Estimating and Measuring KC Complexity. Informally, complexity reflects the condition 

encoding requirements and the response requirements of the task (e.g., how many coding 

operations on perceptual stimulus are needed; how many response operations).  However, the 

knowledge taxonomy captures additional possibilities: KCs with variable conditions or responses 

tend to be more complex than those with constant conditions or responses. Knowing a KC both 

verbally and non-verbally is more complex than knowing it just non-verbally. And knowing the 

rationale of a KC as well as the KC itself is more complex than knowing a KC without a 

rationale.  

Beyond these informal approximations, we have two ways to ground and estimate KC 

complexity.  The first is a simple heuristic:  Simply put, the more complex the description of the 

KC, the more complex is the KC, following a general definition of complexity as description 

length (Rissanen, 1978).
ix

 The ideal description language for KCs is a formal cognitive modeling 

language such as an ACT-R production system (Anderson & Lebiere, 1998) or structure 

mapping theory (Gentner et al., 2009). But, KC descriptions in English may also serve this 

purpose particularly when closely guided by empirical cognitive task analysis methods such as 

think alouds or difficulty factors assessments (Koedinger & Terao, 2002; Rittle-Johnson & 

Koedinger, 2001).  Neither approach is guaranteed, but reasonable predictions are possible. 

Employing description length with the KC descriptions in Table 2 suggests that constant-

constant KCs in the three domains tend to be simpler (9, 6, and 6 words) than variable-constant 

KCs (11, 12, and 10 words), which are simpler than variable-variable KCs (12, 21, and 21 

words). 

A second grounding of KC complexity is empirical: the difficulty students have in 

applying the KC, one measure of which is the time it takes for students to correctly execute a 

KC. In general, simpler KCs can be executed more quickly, as suggested by the learning curves 

displayed in Fig. 2.  In these curves the y-axis is the average time for correct entries in computer-

based tutoring systems for second-language and math learning.  The average is for each student 

on each KC in a particular unit of instruction. The x-axis shows the number of opportunities that 

students have had to practice and learn these KCs. Each opportunity is both an Assessment 

Event, whereby the system measures accuracy (whether or not the student is correct on first 
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attempt without a hint) and latency (how long to perform the action), and an Instructional Event, 

whereby a correct action gets positive feedback, incorrect actions get substantive negative 

feedback, and successively more detailed hints are provided at request. In general, students learn 

with more opportunities and this relation is reflected in Fig. 2 where the curves go down, 

indicating faster correct performance as opportunities increase. 

Fig. 2 shows learning curves from a Chinese vocabulary unit, an English grammar unit on 

use of articles, and a Geometry unit on area of figures.  The Chinese Vocabulary unit involves 

constant-constant KCs, for example, the Chinese character for “lao3shi1” translates as “teacher”.  

Students’ correct performance of these KCs, which involves retrieving the correct response and 

typing it in, takes about 3 to 6 seconds on average (see Fig. 2a). The English Article unit 

involves variable-constant KCs, such as “if the referent of the target noun was previously 

mentioned, then use ‘the.’” Students’ correct performance of these KCs, which involves 

retrieving or reasoning to a correct response and selecting it from a menu, takes about 6 to 10 

seconds (see Fig. 2b). The Geometry Area unit involves variable-variable KCs such as “if you 

need to find the area of a circle with radius <R>, then compute 3.14 * <R> ^ 2”.  These typically 

involve retrieving or constructing the needed mathematical operations or formula and typing in 

the arithmetic steps to be taken (e.g., 3.14*3^2) or the final result (e.g., 28.26). Correct reasoning 

and entry takes about 10 to 14 seconds (see Fig. 2c).  These examples illustrate the possibility of 

supporting theoretically derived hypotheses about KC complexity (e.g., from KC category or 

description length) with empirical results (e.g., time to execute the KC) – the variable condition 

or action KCs with longer descriptions correspond with slower execution times. 

3.3 Kinds of Knowledge Components Guide Assessment and Instructional Decisions 

3.3.1 Kinds of KCs drive Assessment Event choices.  Assessment Events (AEs), as we 

have mentioned, need variability to support reliable inferences of student learning of KCs.  First, 

AEs need to assess long-term as well as short-term retention and fluency as well as accuracy.  

Second, variety in task contexts is needed to assess whether generality has been achieved in 

variable condition KCs.  Third, factorial variations in AEs are needed to infer the presence and 

level of acquisition of integrative KCs (which are usually variable-variable KCs).  

 Assessment of variable condition KCs requires multiple Assessment Events to determine 

whether the condition acquired by the student is accurate in level of generality.  Correct learning 

depends not only on the nature of the correct target KC, but also on the context of alternative 

interpretations that students acquire from instruction (e.g., worked examples or text descriptions 

of rules). Students may acquire overspecialized conditions, like the statistics students in Chang 

(2006) who (implicitly) induce rules such as “if you want to display demographic data, use a pie 

chart” rather than “if you want do display data <V> and <V> is categorical, then use a pie chart”.  

Multiple assessment tasks that vary surface details can detect KCs with overspecialized 

conditions.   

Alternatively, students may acquire incorrectly generalized conditions, as in our previous 

example of a student who learns that “an” rather than “a” is used when the first letter of the 

following noun is a vowel. This rule is consistent with most cases, but fails when applied to 

“honor.”  In geometry, many students (implicitly) induce a rule that when angles look equal in a 

diagram, they are equal (Aleven & Koedinger, 2002).  There are no sure fire methods to 

anticipate likely student misconceptions like these (simulated students notwithstanding, Matsuda 
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et al., 2008), so a sampling of a wide variety of assessment tasks are needed along with detailed 

error analysis.  

Assessment of integrative KCs requires a different form of variety.  Since integrative 

KCs work with other supporting KCs, they need to be assessed a combination of harder tasks 

that require the hypothesized integrative KC and easier tasks that require the supporting KCs but 

not the integrative KC.  The logic of inference in its simplest form assumes that the probability 

of knowing the integrative KC (Pi) is independent of the probability of knowing the supporting 

KC (Ps).  In that case, Pi can be found dividing success rate on the hard task (Pi * Ps) by success 

rate on the easier task (Ps).  This essential logic and a logistic regression generalization of it have 

been successfully employed to identify integrative KCs for symbolic solution composition 

(Koedinger & McLaughlin, 2010) and for problem decomposition planning (Stamper & 

Koedinger, 2011). 

3.3.2 Kinds of KCs drive Instructional Event choices. The differentiation of knowledge 

types has implications for the effectiveness of an instructional principle. A key motivation of the 

knowledge taxonomy is that its distinctions may help resolve apparent contradictions among 

instructional recommendations.  A related KLI assumption is that many learning processes and 

instructional design decisions are not restricted to a domain as whole, but are determined by the 

type of KCs being learned (cf. Sweller & Chandler, 1994; Wulf & Shea, 2002). While some KCs 

(e.g., constant-constant KCs) may be prevalent in certain domains (e.g., second language 

vocabulary learning), instructional principles should refer to KCs rather than to domains. A 

hypothetical principle “drill and practice is not effective for mathematics” is at the wrong level 

of analysis because it does not describe what it is about mathematics that makes drill and practice 

unsuitable. There are also aspects of math learning (e.g., non-verbal knowledge of the grammar 

of algebra, Koedinger and McLaughlin, 2010) where pure practice may be an ideal choice. 

Similarly, while language learning often benefits from repetition (e.g., vocabulary), other aspects 

of second language learning (e.g., pragmatics or intercultural competence) may benefit from a 

combination of dialogue, explanation, and practice (cf. Ogan, Aleven, & Jones, 2009). 

Rather than associate optimal instructional choices with domains (as disparate literatures 

on math education, physics education, reading, and second language learning are wont to do), the 

KLI framework suggests that instructional choices depend on the kinds of KCs being targeted. 

Some of these will be domain specific and some will not. We offer below some tentative 

hypotheses that link instructional choices to our taxonomy of KCs. Each hypothesis has some 

support in the research literature and the complete set reflects an overarching hypothesis that the 

optimal complexity of student behavior in an instructional event is correlated with the 

complexity of the underlying learning event (see section 5.4). But all these hypotheses require 

further testing. 

 Simpler constant-constant KCs (e.g., historical facts, vocabulary, see Table 2) and non-

verbal, probabilistic variable condition KCs (e.g., perceptual categories, simple concepts and 

skills) may imply instructional approaches that emphasize recall (Roediger & Karpicke, 

2006), spacing of practice (Cepeda et al., 2006), tutored practice (e.g., Corbett & Anderson, 

2001) and optimized scheduling of practice (Pavlik, 2007).  

 More complex variable-variable KCs (e.g., designing a controlled experiment, see Table 2) 

imply instruction that includes comparison/blocking (Gick & Holyoak, 1983; Gentner, et al., 

2009) and more worked example study (Sweller & Cooper, 1985). 
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 Integrated variable-variable KCs to be learned in both non-verbal procedural and verbal 

declarative form (e.g., math and science principles) imply instruction that prompts for self-

explanations (Aleven & Koedinger, 2002). 

 KCs with rationales (i.e., are not conventions, but reflect discoverable principles) imply 

instruction that includes classroom argumentation and instructional dialogues (Michaels, 

O’Connor, & Resnick, 2008). 

The various instructional recommendations seem mutually incompatible without the taxonomy. 

They would reflect “education wars:” More worked example study is at odds with more testing 

of recall, blocked comparison of examples is at odds with spacing, pure non-verbal practice is at 

odds with prompts for self-explanation and extended classroom dialogue and argumentation.  

The KC taxonomy does not resolve these debates and apparent contradictions, but provides a 

path toward resolution suggesting possible knowledge-by-instruction interactions that 

researchers can explore experimentally and theoretically. We turn now to explaining why the 

taxonomy might provide guidance for instructional choices. The key idea is that KC categories 

are tuned to Learning Events that must be supported by instruction aligned with those Learning 

Events.  

4. Learning: Toward a Taxonomy of Processes for Knowledge Acquisition and Improvement 

For a simple taxonomy of Learning Events, we propose three very broad types of learning 

processes as a starting point: 

A. Memory and Fluency-building processes: Non-verbal learning processes involved in 

strengthening memory and compiling knowledge, producing more automatic and 

composed (“chunked”) knowledge.  Fluency building can be conceived as making the 

link between the condition and response of a KC more direct, more consistent, and more 

resistant to interference as well as making the response execution faster.  

B. Induction and Refinement processes: Non-verbal learning processes that improve the 

accuracy of knowledge. They include perception, generalization, discrimination, 

classification, categorization, schema induction, and causal induction. (We classify these 

as nonverbal, because, although they are often supported by verbalizations, they do not 

require it.) These processes modify the conditions (e.g., which specific conditions satisfy 

the variable condition in a variable-constant or variable-variable KC) or response (e.g., 

which responses satisfy a variable response type KC). These processes refine a KC, 

making it more accurate, appropriately general and discriminating.  

C. Understanding and Sense-making processes: Explicit, verbally-mediated learning in 

which students attempt to understand or reason. This includes comprehension of verbal 

descriptions, explanation-based learning, scientific discovery, and verbal rule-mediated 

deduction. Sense making can be conceived as linking non-verbal with verbal forms of 

knowledge or a KC with its rationale. 

Fig. 3 illustrates how these different learning processes can lead to different kinds of 

knowledge changes and ultimately to measurable robust learning outcomes.  
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Figure 3. How different classes of learning processes change knowledge to yield different robust learning 

outcomes. 

The knowledge changes that result in robust learning are produced through the memory and 

fluency building, induction and refinement, and understanding and sense-making processes we 

have described above. There is no one-to-one mapping between these learning processes and 

robust learning outcomes. For example, it is not the case that only sense making leads to transfer. 

Accelerated future learning can include three very different learning processes: (1) learning how 

to learn, i.e., acquiring general learning strategies that can be used for more effective learning in 

a new domain; (2) acquiring deep concepts or foundational skills that facilitate learning in a new 

domain; (3) increasing “cognitive head room” through fluency with core knowledge that leaves 

more capacity for using that knowledge in new learning. An example of this cross-domain 

accelerated learning comes from Hausmann and VanLehn (2007), who found that prompting 

students to self-explain in a Physics unit on electricity led to accelerated learning in a later 

magnetism unit. This effect may reflect (1) acquisition of a learning strategy (self-explanation), 

(2) deeper learning of electricity concepts (e.g., electrical field principles) allowing better 

learning of similar magnetism concepts (e.g., magnetic field principles), or (3) greater fluency 

with core concepts and skills (e.g., elements of field equations) allowing more head room for 

learning magnetism. In a follow up study, Hausmann et. al. (2009) contrasted two types of  

explanation prompts in electrodynamics problems, justification-based prompts that focused on 
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the physics principle that justifies a step and meta-cognitive prompts that focused on how each 

step relates to the student’s existing knowledge, and found that justification-based prompts 

supported greater learning. This study did not examine transfer across topics, but suggests that 

the transfer effects in the prior study reflected the acquisition of deep concepts more than 

metacognitive learning or increased fluency. 

4.1 Memory and Fluency building processes  

The brain is continuously engaged in creating and strengthening connections between the 

conditions and responses of KCs in use.  Thus, memory strengthening operates throughout 

learning from the initial formation of a KC to each time it is subsequently used.  It operates on all 

kinds of KCs from the simplest non-verbal constant-constant associations to the most complex 

variable-variable schemas with verbal descriptions and rationales. Especially relevant for 

instruction is that memory improves with increased frequency of exposure (implying practice – 

Anderson & Lebiere, 1998), is more reflective of robust learning when recall rather than 

recognition is required (implying a “testing effect” – Roediger & Karpicke, 2006), and when 

practice is more widely distributed in time (implying a “spacing effect”– Cepeda et al., 2006). 

Even after a KC is learned enough to produce accurate responses, memory and fluency-

building processes continue, leading to fast and effortless performance. Two principle processes 

underlying fluency gains are knowledge compilation (e.g., Anderson & Lebiere, 1998) and 

memory strengthening (e.g., Logan, 1988). In compilation, an initial declarative encoding of KCs 

is proceduralized into a directly executable form and chains of small KCs may be composed into 

a single larger KC and producing more automatic processing (Schneider & Shifrin, 1977). In 

strengthening, KCs become more accessible with repeated use, resulting in faster and more 

reliable retrieval of KCs.  Fluency is often considered only as a matter of specific skill 

acquisition. However, it is important to test its possible role in accelerating future learning (see 

the lower right cell in Fig. 3).   

4.2 Induction and Refinement processes   

Induction and refinement processes modify KCs, especially the conditions that control 

the retrieval and application of knowledge. Like memory and fluency building processes, 

induction and refinement processes function in both the initial construction of a KC and its 

subsequent revision. These processes are relevant to Variable-Constant and Variable-Variable 

KCs, modifying the condition part of KCs by adding missing relevant features (a 

“discrimination”) or removing irrelevant features (a “generalization”). For instance, from 

examples in which equal angles look equal in a diagram (e.g., an isosceles triangle ABC is 

shown with base angle B = 70° and it is shown that base angle C = 70°), a geometry novice may 

induce the KC: “If angles look equal, then they are equal” (Aleven & Koedinger, 2002). (This 

induction may be done with little or no deliberate awareness.) Although this KC can yield correct 

answers, it is incorrect and in need of refinement. Refinement can occur through learning 

processes that remove the irrelevant feature “angles look equal” or add a relevant feature, such as 

“angles opposite each other in crossing lines” or “angles that are base angles of an isosceles 

triangle”.  

Many specific kinds of induction and refinement learning mechanisms can be found in 

the cognitive science and machine learning literatures. These include perceptual chunking (e.g., 

Gobet, 2005; Servan-Schreiber & Anderson, 1990), rule or schema induction and analogy (e.g., 
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Frank & Gibson, 2011; Gentner, Loewenstein, Thompson, & Forbus, 2009; Gick & Holyoak, 

1983), generalization (Hummel & Holyoak, 2003; Shepard, 1987), discrimination (e.g., Chang, 

2006; McClelland, Fiez, & McCandliss, 2002; Richman, Staszewski, & Simon, 1995), error-

driven learning (Ohlsson, 1996), classification and categorization (e.g., Blum & Mitchell, 1998; 

Medin & Schaffer, 1978; Quilici & Mayer, 1996), and non-verbal explanation-based learning 

(Mitchell, Keller, & Kedar-Cabelli, 1986).  

While memory and fluency-building processes involve core mechanisms of the cognitive 

architecture, induction and refinement processes make use of existing knowledge, as more 

elemental KCs become part of the condition or response of a larger KC.  These processes draw 

on cognitive resources and take time to execute.  Unlike the understanding and sense-making 

processes, induction and refinement processes are non-verbal (though verbally-mediated sense 

making may work in service of these processes). Learning from examples or “by experience” 

may result in feature inductions or refinements that students cannot verbalize. For instance, first 

language learners acquire the features for correct choice of articles, such as “a” and “the”, 

without being able to articulate the explicit rules for article choice, although their learning is 

produced by verbal events. Even second language learners, as well as math and science learners, 

engage in such non-verbal feature induction and refinement (cf. Koedinger & Roll, in press; 

Posner, in press).  Non-verbal induction can lead to a situation in which students can correctly 

perform mathematics (e.g., find a correct angle in a geometry problem by subtracting from 180°) 

that they cannot explain (e.g., indicating that the target and given angle form a line; Aleven & 

Koedinger, 2002). 

4.3 Understanding and Sense-making processes.   

Understanding and sense-making processes are robust learning strategies by which 

students engage in higher-level, language-mediated thinking to create knowledge. They involve 

explicit reasoning and include comprehension strategies, self-explanation, and social 

argumentation. While sense making can focus on application conditions and responses, it can 

also convert non-verbal relationships into verbal ones, thereby transforming constant-constant 

associations into facts, variable-constant categories into concepts, and variable-variable 

productions into rules (see Table 3). Similarly, when sense-making focuses on the rationale for a 

feature-response relationship, it may transform variable-variable rules into principles. 

Understanding and sense-making processes include explicit comprehension strategies 

(e.g., Graesser et al., 2005; Kintsch, 1998; Palinscar & Brown, 1984), verbally-mediated self-

explanation (e.g., Ainsworth, & Loizou, 2003; Chi, Bassok, Lewis, Reimann & Glaser, 1989; 

Lewis, 1988; VanLehn, 1999), explicit hypothesizing and scientific discovery processes (Levine, 

1966; Klahr & Dunbar, 1988), deductive proof (e.g., Stylianides & Stylianides, 2009), and 

explicit argumentation or collaborative discourse (e.g., Asterhan & Schwarz, 2009). Although 

understanding and sense making may operate in the early formation of knowledge, many 

competencies (not just first language) emerge from non-verbal induction and only later may be 

“understood” and articulated verbally.  In contrast with the first two categories of learning 

processes, understanding and sense-making processes are more deliberate, occurring when a 

student chooses to engage in them.  Unlike induction and refinement learning, for which verbal 

explanations are largely inaccessible, understanding and sense making are explicitly supported 

by language or external symbols (whether sub-vocalized, written, or spoken in social dialogue). 
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4.4 Knowledge and Learning Process Dependencies  

A taxonomy of learning processes helps provide causal links between instructional methods and 

changes in student knowledge.  The KLI framework suggests there are likely to be important 

dependencies between kinds of knowledge, learning processes, and choices of most effective 

instructional methods.  For example, fluency building processes may be most important for 

learning simple constant-constant components without a rationale, whereas sense-making 

processes may be most important for learning more complex variable-variable components that 

have a rationale.  Fluency-building processes may also be relevant for more complex Variable 

condition components that may become inaccessible in long-term memory without appropriate 

repetition.  Similarly, refinement processes are also relevant for the kinds of complex integrated 

and interconnected KCs (with rationales) produced by sense-making processes. These 

observations suggest a potential asymmetry whereby simpler learning processes (fluency and 

refinement) may support complex knowledge but complex learning processes (e.g., 

argumentation) may fail to support simple knowledge (e.g., arbitrary constant-constant 

associations).  

 

Table 4. Which learning processes are effective for which kinds of 

 Knowledge Components (KCs) 
  

Understanding 
& sense 
making 

-   

nothing to 

explain 

-   

implicit rule 

learning is 

more efficient 

++   

principles must 

be understood 

Learning 
Processes 
(simpler 
on bottom) 

 

Induction & 
refinement  

-   

no 

generalization 

needed 

++   

rules must be 

induced 

+   

principles can 

be inert 

without 

associated 

rules 

  

Memory & 
fluency 
building 

++   

facts must be 

memorized 

+   

rules (& 

instances) must 

be  remembered 

(dual paths may 

help) 

+   

principles must 

be remembered, 

but can be 

reconstructed 

  Facts  
(constant-

constant KCs) 

Rules  
(variable  

condition KCs) 

Principles  
(verbal KCs 

with a 
rationale) 

  Knowledge Components 
(simpler on left) 

 

Table 4 relates three kinds of KCs to the three broad learning process categories.  It 

suggests an asymmetry in the relevance of learning processes to kinds of KCs. While all three 

learning processes may be important for robust (and efficient) learning of more complex 

principles and mental models (integrated verbal and non-verbal KCs with rationales), for the 

simplest facts (constant-constant paired associates without rationales) memory and fluency 

processes are more important than the other learning processes.  We refer to this idea as the 
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asymmetry hypothesis, which we elaborate in the next section. For such KCs, there are no 

variable conditions (generalizations) that need to be induced and refined and there are no 

rationales to use to engage in understanding or sense making.  Thus two minus signs appear in 

the “Facts” column of Table 4. Similarly, for intermediate complexity rules (variable condition 

KCs which need not be verbalized and do not have rationales), induction and refinement are 

important but understanding and sense making may not be (cf. Wylie et al., 2009) – thus the 

minus sign in the “Rules” column of Table 4.  

On the other hand, humans sometimes fail to learn rules not because of failures in 

induction, but failures in memory - as was nicely demonstrated recently by Frank and Gibson 

(2011) in artificial grammar learning tasks.  In other words, memory processes remain necessary 

(and should be supported in optimal instruction) even for rules (see the single plus in Table 4).  

The other single plus signs (in the last column) indicate hypotheses that memory and fluency 

processes and induction and refinement processes are also important for learning principles – at 

least for lasting retention of the verbal form of those principles and for accurate and fluent 

performance of actions (generated by non-verbal procedures) corresponding with those 

principles (e.g., quickly find the area of a circle as well as state the formula).  These have single 

rather than double plus signs in Table 4, because research is insufficient and there are opposing 

views.   For example, “memorization” (as might be supported by spacing of practice) may not be 

(as) important for principles because interconnections with other knowledge may sufficiently 

support retrieval  (cf. Rohrer & Taylor, 2006).  

In addition to the kind of KC, the stage of learning may also have implications for what 

learning processes (and therefore what instructional choices) are relevant.  For example, in 

learning of a rule, inductive processes are critical for initial formation of the rule and refinement 

for improvement, but then memory and fluency process are important to improve retrieval 

reliability and application speed. 

We turn next to examples of instructional principles based on experimental results that 

support hypothesis-based instructional interventions in producing robust learning efficiency 

outcomes.  In section 6, we provide a more detailed analysis of one of these principles.  Finally, 

in section 7, we return to the issue of dependency and, in particular, hypothesize a general 

relationship between KC types and instructional methods.  

5. Instructional Principles and Hypotheses About their Effectiveness 

The main question for this section is what kinds of Instructional Events yield robust learning in 

an efficient way?   We are concerned not only about robust learning outcomes, but the 

instructional time required.  We seek principles that achieve greater robust learning outcomes 

without taking more time, that achieve equivalent robust learning in less time, or, most generally, 

that increase the rate at which robust learning occurs. Table 5 shows a list of example 

instructional principles from simplest to most complex, whereby we mean by “principle” a kind 

of Instructional Event for which there is substantial evidence that it enhances robust learning 

efficiency. The simplest, Spacing, Testing, and Optimized Scheduling, have tended to be used 

with the simplest kinds of KCs, constant-constant facts.  The most complex, Accountable Talk, 

has tended to be used with the most complex kinds of KCs, verbal principles with rationales.   

Our taxonomy of instruction follows directly from the taxonomy of learning and includes three 

major kinds:  1) memory and fluency enhancing instruction, 2) induction and refinement 



 Knowledge-Learning-Instruction (KLI) Framework  25 

 

Authors’ final version of:  

Koedinger, K.R., Corbett, A.C., & Perfetti, C. (2012).  The Knowledge-Learning-Instruction (KLI) framework: 

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798. 

ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2012.01245.x 

enhancing instruction, and 3) understanding and sense making enhancing instruction. We 

describe some example principles in these three categories in more detail.  

 

Table 5. Some examples of instructional principles in learning process categories and 

roughly ordered from simpler to more complex. 
Learning 

Processes  

Instructional 

Principle 

Description Example 

References 
 

Memory & 

Fluency  

Spacing and 

Testing 

Long-term retention of KCs is enhanced with longer intervals 

between practice and when active recall is required (“tests” or 

“problems”) 

Cepeda et al. 

(2006) 

Optimized 

Scheduling 

Selection of practice instances based on prior statistics and on 

each students’ experience with each target KC. 

Pavlik (2007) 

 

 

Induction 

and 

Refinement  

Timely 

Feedback 

Providing an evaluative response (e.g., correct or incorrect) soon 

after a students’ attempt at task or step  

Corbett & 

Anderson (2001) 

Feature 

Focusing 

Instruction leads to more robust learning when it guides the 

learner's attention ("focuses") to valid or relevant features of target 

KCs 

Dunlap et al. 

(2011) 

Worked 

Examples 

Students learn more efficiently and more robustly when more 

frequent study of worked examples is interleaved with problem 

solving practice as opposed to practice that is all problem solving. 

Sweller & 

Cooper (1985) 

 

 

Under-

standing and 

Sense 

Making  

Prompted 

Self-

Explanation 

Encouraging students to explain to themselves parts of instruction 

(steps in worked example or sentences in a text) yields more 

robust learning than not prompting or providing such explanations 

to students. 

Chi et al. (1994); 

Haussmann & 

VanLehn (2007) 

Accountable 

Talk 

Teacher use of “talk moves”, particular question and response 

patterns which encourage students to be accountable to accurate 

knowledge, rigorous reasoning, and the classroom community, 

leads to more robust learning. 

Michaels, 

O’Connor, & 

Resnick (2008) 

 

5.1 Memory and Fluency Enhancing Instruction 

Spacing and Testing Effects. The spacing recommendation in the “Organizing 

Instruction” practice guide (Pashler et al., 2007) suggests that spacing practice over longer time 

intervals leads to better long-term retention than massing practice over shorter intervals (e.g., 

Cepeda et al., 2006).  The testing recommendation (“use quizzing to promote learning”) from 

that same guide suggests that long-term retention is enhanced by practice in recalling target 

material more than by repeated studying of the same material (e.g., Roediger & Karpicke, 2006). 

Optimized Scheduling. Optimizing scheduling is a more specific version of the spacing 

principle and builds on Pavlik’s (2007) observation that much past research has not controlled 

for time on task and thus has underestimated the benefit of shorter practice intervals early in KC 

acquisition. This principle involves applying an instructional schedule that has been ordered to 

optimize robust learning. More precisely, what is optimized is instructional efficiency, i.e., gains 

in robust learning per instructional time.  Optimization is achieved mathematically by deriving 

when a student should repeat practice of a KC. The time interval between practice opportunities 

of a KC is optimal (neither too short or too long) when it best balances the benefit of enhanced 

memory strength, a benefit higher at a long interval (spaced practice), with the cost of time to 

retrain due to retrieval failure, a cost higher at a long interval. Mathematical models may be used 

http://www.learnlab.org/research/wiki/index.php/Worked_examples
http://www.learnlab.org/research/wiki/index.php/Instructional_schedule
http://www.learnlab.org/research/wiki/index.php/Robust_learning
http://www.learnlab.org/research/wiki/index.php/Spaced_practice
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to produce optimized schedules by computing the KC that will be most efficiently learned if 

practiced next. 

5.2 Induction and Refinement Enhancing Instruction 

Feature Focusing. This principle asserts the value of attending to cues or features that 

are valid for the targeted KCs. Focus on key features may help students to learn more quickly 

those KCs most important for the goals of learning. More generally, focusing may also result in 

students spending more time during a Learning Event on a particular KC and thus increase its 

strength. 

An example of feature focusing comes from learning to read Chinese, whose characters 

often are compounds, consisting of two components. Often these components (radicals) provide 

cues to pronunciation and meaning.  For example, consider the compound character 晴, which is 

translated as fair weather. On the left is a semantic radical 日 that means “sun” and on the right 

is a phonetic radical 青 that is pronounced “qing”. Knowing that 日 means ”sun” is useful in 

learning the meaning of this compound and others that contain it. Feature focus directs attention 

to the form for “sun” in association with is meaning. Standard Chinese reading instruction tends 

not to do this, emphasizing instead the meaning of the character as a whole. However, the 

research indicates that focusing on the feature of component form-meaning association supports 

learning of characters (Taft & Chung, 1999) and that a short instruction to focus on the semantic 

radical brings improvement that is dramatic and immediate (Wang, Liu, & Perfetti, C. A., 2004). 

In one implementation of the feature focus principle, Dunlap et al. (2011) found that highlighting 

the semantic component as a student moves the computer mouse over it improves learning the 

character. 

A second example comes from science education.  Chen and Klahr (1999) found that 

when elementary school students were provided with instruction that drew their attention to the 

specific features that distinguish confounded and unconfounded experiments, there were 

significantly greater gains in children's ability to design good experiments when compared to a 

condition in which children were only asked questions, but not instructed about such specific 

features. 

Worked Examples.  In a worked example, students are given a problem description 

along with a step-by-step solution to the problem and are asked to study or self-explain the 

solution. Sweller and Cooper (1985) demonstrated that alternating worked examples with 

standard problems leads to more efficient and more effective learning than having students to 

solve all the problems in the set: Students work through the interleaved worked examples and 

problems more quickly and perform better on corresponding problems in a posttest. Subsequent 

studies have refined the worked example technique. Renkl, Atkinson and Maier (2000) 

introduced a “fading” method that yields even better learning outcomes. In this fading technique, 

a succession of problems is presented. The first is completely solved and the rest incrementally 

replace a solved step with a request for a student solution until ultimately the student is providing 

the solution for all steps in a problem. Students are also encouraged to self-explain the solved 

solution steps in this fading method and it yields consistent evidence of more robust learning 

than problem solving alone. Section 6 provides an expanded analysis of this principle. 

http://www.learnlab.org/research/wiki/index.php/Focusing
http://www.learnlab.org/research/wiki/index.php/Learning_events
http://www.learnlab.org/research/wiki/index.php/Strength
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5.3 Understanding and Sense-Making Enhancing Instruction 

Prompted Self-Explanation Principle. When students are given a worked example or 

text to study, prompting them to self-explain each step of the worked example or each line of the 

text usually causes higher learning gains than having them study the material without such 

prompting (e.g., Aleven & Koedinger, 2002; Chi, de Leeuw, Chiu, & LaVancher, 1994; Renkl, 

Stark, Gruber, & Mandl, 1998), but exceptions are discussed below. Hausmann and VanLehn 

(2007) found that prompting students to self-explain while solving a physics problem produced 

more learning than providing them with high quality explanations to study.  When it comes to 

explaining physics examples, it appears it is better to do it yourself, even if you get it wrong, 

than to study someone else’s explanations. 

This principle provides a good example of how the effectiveness of a principle may be 

dependent on the nature of the target KCs. When both non-verbal and verbal versions of 

knowledge are objectives of instruction (i.e., we want both fluent doing and deliberate 

explaining), prompting self-explanation can pay off doubly by both 1) strengthening verbal 

forms of knowledge and 2) providing redundant support (co-training) for acquiring non-verbal 

forms of knowledge. The redundant support idea relies on the assumption that self-explanation is 

a verbal explication process that functions in addition to non-verbal learning processes. Verbal 

knowledge is an instructional objective for much of math and science where students are 

expected to able to state principles (e.g., Newton’s laws) and provide explanations of solutions. 

In contrast, in language, a fluent speaker is not expected to explain principles that might underlie 

grammatical choices, such as English article selection. 

Prompting students to self-explain may not aid learning for some kinds of KCs. One such 

KC type is grounded in perceptual learning, for which learner verbalization can serve as an 

inhibitor (Schooler et al., 1997).  Something similar may occur when a to-be-learned KC is 

relatively simple, i.e. non-verbal, lacking a deep rationale, probabilistic, and/or dependent 

primarily on perceptual information. Hints in that direction come from a study of learning the 

English double dative construction (Frishkoff, Levin, Pavlik, & de Jong, 2008). English allows 

speakers to say either “John gave the book to Mary” or “John gave Mary the book”. However, 

rather than a set of rules, native speakers’ choices about which noun to put first are subject to a 

web of factors that are implicitly weighted (Bresnan et al., 1997). These factors can be translated 

into instructional heuristics. When Frishkoff et al. (2008) implemented these heuristics into 

problem examples, they found that English second language learners subsequently made choices 

more in line with those of native speakers. However, when they provided these heuristics as 

feedback following some degree of implicit example-only learning (with correctness-only 

feedback), they found it was not helpful. This might imply that verbalization—in this case not by 

the learner—can be helpful or harmful as a function of specifically how it connects to learning 

that is proceeding implicitly. Self-explanation also might function within a similar space, 

supportive of learning in general but sometimes interfering with learning processes that are 

essentially nonverbal (e.g., Schooler et al., 1997). 

Finally, a more general qualification on the principle of Self-Explanation is that its 

successful application, as is the case with sense-making activities generally, depends on having 

access to relevant knowledge or to learning strategies that can support the explanation process. 

McNamara (2004) found that low knowledge learners reading a science text were unable to 

benefit from prompted-self explanation without training. However, with training in strategies to 

http://www.learnlab.org/research/wiki/index.php/Worked_examples
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support comprehension, including self-explanation strategies, low knowledge learners were able 

to show gains in comprehension of the science text.  

5.4 Linking knowledge analysis and instructional principles 

Our examples so far have illustrated how instructional methods may align with the 

learning processes. The existence of these alignments suggests that instructional principles will 

not apply universally but will be dependent on the kind of KCs that are the targets of instruction.  

Across a wide variety of instructional experiments, simpler Instructional Event types (involving 

less time, less feedback, less verbalization and reasoning) tend to be associated with simpler KCs 

(involving less time, less complex conditions and responses, less integration with related KCs).  

Table 6 illustrates this relationship.  

 

Table 6. A possible correlation between the complexity of Knowledge Components and the 

complexity of the instruction that best produces such knowledge.  

Instructional Principles  
(simpler on bottom)           

Understanding and 
Sense Making 

Accountable Talk                   + 

Collaboration       0          + 

Self-explanation     0 + +     +    

 
Induction and 

Refinement 

Worked examples       + + +        

Diagram coordination         +       +   

Feature Focusing + +                
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Facts Rules Principles 

 

 
Knowledge Components  

(simpler on left) 
 “+” indicates the corresponding instructional principle has been experimentally demonstrated to enhance robust learning 

efficiency for the corresponding kind of Knowledge Components.  “0” indicates an experiment found no difference.  An 

empty cell indicates absence of relevant experiments. 

 

The apparent association in Table 6 suggests that the complexity of instruction should be 

aligned with the complexity of the knowledge goals (the alignment hypothesis). Thus, 1) for 

simple kinds of knowledge, complex forms of instruction are not needed and 2) for complex 

kinds of knowledge, simple forms of instruction are not needed.  However, our analysis of which 

learning processes are relevant to which kinds of knowledge (shown in Table 4) suggests an 

alternative in which simple kinds of knowledge become embedded in more complex kinds, 
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leading to an asymmetry. Instruction for complex KCs (columns to the right of both Tables 4 and 

6) may include simpler Instructional Events, whereas instruction for simpler KCs (columns to the 

left in both tables) would not benefit from more complex Instructional Events (the asymmetry 

hypothesis). For simple KCs, as in our vocabulary examples, memory processes may be 

sufficient.  Somewhat more complex KCs, such as learning English articles, require induction of 

a category structure as well as memory. Learning articles involves forming generalizations, for 

instance, that “the” is used across the variable set of situations in which the referent of the target 

noun was previously mentioned.  But, because the acquired category structure must also be 

remembered, instructional methods that effectively engage memory processes are also important 

(cf. Frank & Gibson, 2011).  This line of reasoning argues against the alignment hypothesis.  It 

implies that simpler memory enhancing instructional methods, such as spacing, testing, or 

optimized scheduling, are also effective for more complex KCs.   

What about more complex instructional methods for simpler KCs?  To learn an arbitrary 

constant-constant association (a fact), a generalization process like that implemented by category 

induction is unneeded.  Further, for an arbitrary association (e.g., that a Chinese character that 

does not contain the “ching” phonetic radical is nonetheless pronounced “ching”), an explanation 

structure cannot be used to generate or re-derive a KC. Re-derivation is functional only for 

knowledge that has an underlying rationalization (complex knowledge). These observations 

suggest the asymmetry hypothesis is more nearly correct. 

One counter argument to the asymmetry hypothesis is that more complex instructional 

methods, such as accountable talk or even self-explanation prompting, can indirectly achieve the 

same robust learning efficiency outcomes (e.g., memory enhancement) that simpler methods 

(e.g., optimized scheduling) achieve. Engaging basic memory processes may not be necessary to 

the extent that complex forms of instruction help students form an integrated network of 

knowledge (e.g., combinations of principles and reasoning strategies) that can be used to 

regenerate or re-derive forgotten knowledge.  Supporters of mnemonic or memory elaboration 

strategies might take this argument further to suggest that robust learning of simple paired 

associates can be enhanced by engaging learners in an explanation process in that the mnemonic 

is essentially an explanation.   

To the extent the instructional goal is robust learning efficiency, outcomes must not only 

last and transfer, but also be achieved with less time or, at least, without extra time.  Too many 

theoretical analyses and experimental studies do not address the time costs of instructional 

methods.  Practically, use of more complex instructional strategies may not always be worth the 

extra time they tend to require. 

Others have suggested that the generality of instructional principles may be bounded by 

the complexity of targeted knowledge (e.g., Rea & Modigliani, 1985; Sweller & Chandler, 1994; 

Wulf & Shea, 2002), but more research is needed to clarify boundaries. The KLI taxonomies 

provide a conceptual space to guide alternative hypothesis formation, associated experimentation 

and theoretical interpretation. 

6. Using the KLI Framework to Illuminate and Compare Instructional Principles 

We provide an example of how the KLI Framework can be used to analyze instructional 

principles, showing how they operate in Learning Events at the KC level.  We focus on the 

worked example principle and make connections to the testing and self-explanation principles. 
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As described in section 5.2, integrating worked examples with problem solving is more efficient 

and effective learning for novices than conventional problem solving alone. Our analysis sheds 

light on alternative theoretical accounts and demonstrates how the application of the KLI 

framework helps specify boundary conditions on the kinds of knowledge and the types of 

students for which worked examples are effective.  

6.1 Theoretical Interpretations. 

The theoretical framework that drives much of the worked example research is Cognitive 

Load Theory (van Merriënboer & Sweller, 2005).  Human processing capacity is limited, and 

this theory argues that much of the cognitive load in novice problem solving practice is 

extraneous to robust learning. In problem solving, novices rely heavily on means-ends analysis 

and trial-and-error strategies.  While these processes are useful for solving novel problems, they 

require cognitive resources that cannot then be used (or be used as much) to engage in induction 

or sense making (e.g., in reflecting upon or self-explaining generated solution steps).  Thus, 

novices are less likely to develop a deep understanding of the domain while engaged in pure 

problem-solving practice. 

An alternative, but possibly complementary, theory proposes that problem solving yields 

poorer learning outcomes not because students’ cognitive resources are depleted, but because 

there is less environmental information to support students in filling KC gaps (cf., McNamara, 

Kintsch, Songer, & Kintsch 1996 ; VanLehn, 1999). Since a complete and correct solution is not 

available in problem solving, students can apply incorrect knowledge without realizing it, 

resulting in the refinement and strengthening of incorrect KCs. In addition, when students do 

recognize knowledge gaps, they are more likely to induce appropriate KCs with worked 

examples, because a worked example provides more input (KC conditions and responses) than a 

problem statement that has only the initial problem (KC conditions only). This additional input 

allows induction processes to build better solution knowledge. 

6.2 Knowledge Component Level Analysis 

In the earliest worked example research, the basic unit of analysis was the complete 

solution: Students were asked to study full worked examples and in problem solving were given 

feedback and answers based on full solutions. The KLI framework suggests that examining 

instruction at the level of KCs, rather than whole problems, can illuminate a deeper theoretical 

analysis that provides more precision in defining the critical novice state. Subsequent 

computational modeling and empirical research that analyzes the worked example principle at 

the level of KCs is beginning to tease apart the competing explanations.  

On the empirical front, Renkl and colleagues shifted the analytic focus for worked 

examples to the grain-size of KCs when they compared interleaved worked examples and 

problem solving to an example “fading” condition (Renkl et al. 2000; Renkl, Atkinson, Maier & 

Staley, 2002; Atkinson, Renkl & Merrill, 2003). (See section 5.2) They found that fading was 

more effective, yielding better learning outcomes with the same learning time. 

Jones and Fleishman (2001) subsequently examined a formal KC-level explanation of 

worked examples by applying a computational model of learning called Cascade (VanLehn, 

1999) to a set of Newtonian physics problems, asking it both to explain worked examples and 

solve problems. These simulations, which model information available in the environment but 

not cognitive load nor motivation, replicated the benefits of faded examples over complete 
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worked examples on subsequent problem solving. They provide a theoretical argument that the 

Knowledge Gap theory is sufficient (though it may not be necessary) to produce the worked 

example effect and Cognitive Load Theory is not necessary (though it may be sufficient). In 

addition, the authors found that Cascade learns more effectively when the specific problem-

solving steps that are faded are ones that introduce new KCs.  

Finally, Renkl et al. (2002) began to examine the ordering of faded steps to compare the 

predictions of the Cognitive Load and KC gap-filling theories. They found that backward fading 

(fading the last step, then the last two steps, etc.) is more efficient and effective than forward 

fading (fading the first step, then fading the first two, etc). This result appears to support 

Cognitive Load Theory under the assumption that a student’s cognitive load is lower at the end 

of a problem, so the student is better able to learn from faded steps at the end of a problem. 

However, Renkl, Atkinson and Große (2004) note that this result is ambiguous because the KC 

content of faded steps is typically confounded with the position of faded steps. In two studies, 

they varied the position of a faded step independently of the specific KC required for the faded 

step. The results were consistent with the KC gap-filling theory rather than the Cognitive Load 

theory. Students’ test performance was reliably predicted by the specific KC that governs a faded 

step, but not by the position of the faded step.  

6.3 Defining Novices: A Knowledge Component Analysis. 

In contrast to the positive results of worked examples for novice students, a number of studies 

(e.g., Kalyuga et al., 2003, 2005) have demonstrated that for more experienced students, straight 

problem solving yielded better learning than interleaved worked examples and problem solving. 

This result has been dubbed the “expertise reversal effect”.  

Expertise reversal raises the question of defining the novice-expert boundary. In most 

worked-example research, novices are students who have just received instruction and are just 

beginning to apply it; the distinction between novices and advanced students is defined at the 

grain size of broad topics within the domain.  However, beginning students can vary greatly in 

their prior knowledge. Kalyuga and Sweller (2005) addressed this variability by developing 

pretests that categorize students as novices or advanced students and showed that channeling the 

novices into worked examples and the advanced students directly into problem solving yielded 

more efficient learning outcomes.  

In the KLI framework the novice/advanced student distinction is that novices are 

primarily engaged in KC induction and sense making, while advanced students are primarily 

engaged in refinement and fluency building. Novices may benefit from seeing examples of 

solution steps to induce variable-variable KCs and from seeing the entire solution structure to 

make sense of the role of each step so as to construct integrated KCs for generating plans and 

subgoals (cf. Catrambone, 1996).  Problem solving, in contrast, offers advanced students the 

opportunity to build memory and fluency through active retrieval opportunities (as in the testing 

effect) and to refine the conditions of application through feedback on incorrect solution attempts 

(Matsuda et al., 2008). A similar case, in which knowledgeable students benefit from active 

retrieval, may arise in the reverse cohesion effect in learning from text (McNamara et al, 1996; 

McNamara, 2001). In this reversal effect, readers with high knowledge in a domain do better in 

learning from a text when the text has cohesion gaps, which presumably stimulate more active 

knowledge retrieval and inference making. 
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Within the KLI framework the expertise reversal effect marks a boundary between two 

seemingly contradictory principles, the worked example principle (being shown answers is more 

effective than retrieving answers) and the testing effect (retrieving answers is more effective than 

being shown answers). In addition to the KC-based boundary suggested above (i.e., worked 

examples are better for variable condition KCs, testing for constant-constant KCs), a Learning 

Event boundary is that worked examples are better early to support induction and testing is better 

later to support memory and fluency. 

The optimal grain size for these boundaries is at the level of individual KCs, rather than 

the broad topics within a domain, and the ideal goal is to monitor each student’s progression 

from sense making and induction to refinement and fluency building for each KC. A recent study 

by Salden, Aleven, Renkl & Schwonke (2010) pursued this KC-based approach and 

demonstrated that adaptive fading of examples led to greater robust learning than fixed-fading 

and no fading conditions (see the description of example fading in section 5). In the adaptive 

fading condition, the Cognitive Tutor’s built-in student modeling algorithm was used to monitor 

each student’s accuracy in generating explanations for each of the KCs in the cognitive model. 

When the student-modeling algorithm estimated a student could correctly generate explanations 

for the application of a KC, the student was judged to be transitioning from induction/sense 

making to refinement/fluency building and in subsequent problems, solution steps employing 

that KC were faded (i.e., presented as problem steps rather than example steps). 

6.4 Summary 

We illustrated the use of the KLI framework to analyze an instructional principle, the worked 

example effect.  This analysis 1) finds support for the KC Gap theory as a viable alternative to 

Cognitive Load Theory, 2) suggests that “novice” is not a relation between a student and a 

domain, but between a student and a KC, 3) proposes boundary conditions between this principle 

and a related one, the testing effect, and 4) illustrates how knowledge-level analysis can be 

combined with a general instructional principle (faded worked examples) to produce a student-

adaptive version of that principle that enhances robust learning. 

7. Conclusion 

Our goal has been to put forward a theoretical framework (KLI) that links knowledge, learning, 

and instruction to organize the development of instructional theory at a grain size appropriate for 

guiding the design, development, and continual improvement of effective and efficient academic 

course materials, technologies, and instructor practices.  This goal reflects the purpose of our 

Pittsburgh Science of Learning Center, “to leverage cognitive theory and computational 

modeling to identify the conditions that cause robust student learning.”  It is also consistent with 

broader calls for cumulative theory development in education that is supported by “rigorous, 

sustained scientific research” (e.g., Shavelson & Towne, 2002).  The need for cumulative theory 

is illustrated both by the general lack of consensus around educational practices that work and by 

the limitations of large-scale randomized control trials, which are great tests of instructional 

practices, but do not generate new theory or practices.  

In elaborating the KLI framework, we proposed three fundamental taxonomies of kinds 

of knowledge, learning processes, and instructional principles. We outlined potential 
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interdependencies between categories in these taxonomies, and illustrated how the framework 

can be used to generate new research questions and frame alternative hypotheses. 

In developing the KLI framework, we emphasized the importance of KCs, as opposed to 

domains (Geometry; English). In contrast to Bloom’s well-known taxonomy (Bloom, 1956), 

which is expressed in terms of instructional objectives, our taxonomy focuses on the knowledge 

needed to achieve those objectives and is expressed in cognitive process terms.  It is at a more 

abstract and coarse-grain level than the representations used in computational models of 

cognition (e.g., Anderson & Lebiere, 1998; McClelland & Cleeremans, 2009; Newell, 1990; 

Sun, 1994).  Knowledge, in our account, is decomposable into units that relate some input 

characteristics or features of the student’s perceived world or mental state (the conditions) to 

some output in the students’ changeable world or mental state (the response). Unlike production 

rules in theories of cognitive architecture (Anderson & Lebiere, 1998; Newell, 1990), which are 

implicit components outside a students’ awareness, the KCs in KLI include explicit, verbalizable 

knowledge.  Given the prominence of comprehension, reasoning, dialogue, and argumentation in 

more complex forms of instruction (e.g., prompted self-explanation, accountable talk), the KLI 

knowledge taxonomy distinguishes between kinds of KCs that have accessible rationales, such 

that students can effectively reason and argue about them, and some that do not, such that 

explicit reasoning and argumentation may be of little value for learning. 

Learning occurs as unobservable events that can be inferred from performance and can be 

appropriately attributed to instruction events under circumstances of experimental control. The 

processes of learning include both simple associations and more complex, reflective processes 

that result in KC changes of three broad types: 1) memory and fluency building, 2) induction and 

refinement, and 3) understanding and sense making. These learning processes can proceed more-

or-less independently or in some synchrony.  

Instructional principles emerge from research that is sufficiently convergent to support 

generalization. Instructional principles are intended to be widely applicable across domains and 

situations, but in fact are likely constrained in their applicability by the kinds of KCs to be 

learned and students’ stage of learning.  Table 5 summarizes seven such principles, which have 

broad experimental support. We noted a general trend for a correspondence between the 

complexity of the principle and complexity of the KCs being targeted in those studies. But, our 

learning process analysis suggests an asymmetric relationship could turn out to be more nearly 

correct: Simple instructional principles are generally relevant, but more complex principles are 

only relevant for the most complex kinds of knowledge. 

We developed the case of worked examples in enough detail to illustrate the richness of 

applying the KLI framework to a single question that has been the focus of much research. Using 

the KLI framework and specifically the analysis of KCs led to experiments that found that 

instruction that was individualized to specific KCs led to more robust learning than instruction 

that was not (Salden et al., 2008).  Such studies not only validate the basic assumption that KCs 

are the functional unit of analysis for learning, they suggest instructional procedures that can be 

the object of further research, leading at some point to a broad instructional principle. 

The strategy of creating a student-adaptive version of a principle by applying a 

knowledge analysis could be applied not only to adaptive fading of worked examples as 

described above, but also to other principles as Pavlik (2007) has demonstrated for the spacing 

effect.  For example, it may be productive to employ student-adaptive fading from blocked 
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practice to random practice (cf. Wulf & Shea, 2002), from comparison (Gentner et al., 2009) to 

sequential spaced presentation (Rohrer & Taylor, 2006), from low content variability to high 

variability (cf. Paas & Van Merrienboer, 1994).  Regarding the testing effect, the Salden et al. 

(2008) study indicates that adaptive fading from study trials (“examples” in this context) to test 

trials (“problems”) is sometimes more effective.  The knowledge taxonomy provides a guide for 

hypothesizing how far the results may generalize outside the Geometry content that was 

investigated.  Instead of making a domain-general claim about applicability, we suggest that 

fading of example study to problem/test should work for content with variable-variable KCs with 

rationales.  For constant-constant KCs, adaptive fading may be wasted effort and simply 

providing study trials (examples) only after failures on test/problem attempts may be optimal, as 

is done in the most effective conditions in the testing effect experiments. 

Other researchers have recognized the importance for effective instructional design of a 

detailed analysis of domain content into the components of knowledge that students bring to a 

course and those we would like them to take away. Nevertheless, Anderson and Schunn (2000) 

expressed concern that “detailed cognitive analyses of various critical educational domains are 

largely ignored by psychologists, domain experts and educators”.  They noted the tendency for 

psychologists to value domain-general results, domain experts (e.g., mathematicians and 

linguists) to value new results in their domain, and educational researchers to value more holistic 

explanations.  Some progress has been made (e.g., Clark, Feldon, van Merriënboer, Yates, & 

Early, 2007; Lee, 2003), but careful cognitive task analysis of domain knowledge is not a 

standard research practice in any discipline.  Such analysis needs to become a more routine part 

of instructional design for new instructional domains as well as for existing ones. 

Finally we emphasize that the KLI framework implies a broad range of empirical studies 

that can disconfirm as well as strengthen some of its propositions. The framework is not a set of 

frozen taxonomies but an interconnected set of theoretical and empirical propositions that imply 

hypothesis-testing experiments. As with any theoretical framework, its utility is tested by 

whether it stimulates sufficient work to lead to its revision, abandonment, or enrichment through 

an increasingly well targeted set of research results from the learning and educational sciences.  



 Knowledge-Learning-Instruction (KLI) Framework  35 

 

Authors’ final version of:  

Koedinger, K.R., Corbett, A.C., & Perfetti, C. (2012).  The Knowledge-Learning-Instruction (KLI) framework: 

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798. 

ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2012.01245.x 

References 

Ainsworth, S., & Loizou, A.Th. (2003). The effects of self-explaining when learning with text or diagrams. 

Cognitive Science, 27, 669-681. 

Aleven, V., & Koedinger, K.R. (2002). An effective metacognitive strategy: Learning by doing and explaining with 

a computer-based Cognitive Tutor. Cognitive Science, 26(2). 

Aleven, V., Roll, I., McLaren, B.M., & Koedinger, K.R. (2010). Automated, unobtrusive, action-by- action 

assessment of self-regulation during learning with an intelligent tutoring system. Educational Psychologist, 

45(4), 224-233. 

Alibali, M.W. & Koedinger, K.R. (1999). The developmental progression from implicit to explicit knowledge: A 

computational approach. (Commentary on Z. Dienes & J. Perner, A theory of implicit and explicit knowledge.) 

Behavioral and Brain Sciences, 10, 755-756. 

Anderson, J.R. (1993). Rules of the mind. Mahwah, NJ: Lawrence Erlbaum.  

Anderson, J.R. (2002). Spanning seven orders of magnitude: A challenge for cognitive modeling. Cognitive Science, 

26(1), 85-112 

Anderson, J.R.,  & Schunn, C.D. (2000). Implications of the ACT-R learning theory:  No magic bullets.  In R. 

Glaser (Ed), Advances in instructional psychology: 5. NJ: Lawrence Erlbaum Associates. (1-34). 

Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the 

mind.  Psychological Review 111, (4). 1036-1060. 

Anderson, J.R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Asterhan, C.S.C. & Schwarz, B.B. (2009). The role of argumentation and explanation in conceptual change: 

Indications from protocol analyses of peer-to-peer dialogue. Cognitive Science, 33, 373-399. 

Atkinson, R.K., Renkl, A. & Merrill, M.M. (2003). Transitioning from studying examples to solving problems: 

Effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95, 774-

783 

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. 

Psychological Bulletin, 128, 612–637. 

Bloom, B.S. (Ed.). (1956). Taxonomy of educational objectives. Handbook 1: Cognitive domain. New York: 

McKay. 

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of Eleventh 

Annual Conference on Computational Learning Theory (COLT), (pp. 92–100). New York: ACM Press.  

Booth, J.L., & Koedinger, K.R. (2008). Key misconceptions in algebraic problem solving. In B.C. Love, K. McRae, 

& V.M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society. (pp. 571-

576). 

Bransford, J.D., & Schwartz, D. (1999). Rethinking transfer: A simple proposal with multiple implications.  In A. 

Iran-Nejad & P. D. Pearson (Eds.), Review of Research in Education (Vol. 24).  Washington, DC: American 

Educational Research Association. 

Bransford, J.D., Brown, A.L., & Cocking, R.R. (Eds.). (2000). How people learn: Brain, mind, experience, and 

school. Washington, DC: National Academy Press. 

Bresnan, J., Cueni, A., Nikitina, T., & Baayen, R.H. (2005). Predicting the dative alternation. Paper presented at the 

KNAW Academy Colloquium: Cognitive Foundations of Interpretation, Amsterdam. 

Bruner, J. S. (1966). Toward a theory of instruction. New York: W. W. Norton & Co. 

Case, R., & Okamoto, Y. (1996). The role of central conceptual structures in the development of children's thought. 

Monographs of the Society for Research in Child Development, 61 (1-2, Serial No. 246). 

Catrambone, R. (1996). Generalizing solution procedures learned from examples. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 22, 1020-1031.  

Cen, H., Koedinger, K.R., & Junker, B. (2007). Is over practice necessary? – improving learning efficiency with the 

Cognitive Tutor through educational data mining. In Luckin, R., Koedinger, K. R. & Greer, J. (Eds.).  

Proceedings of 13th International Conference on Artificial Intelligence in Education (AIED2007), 511-518. 

Amsterdam, IOS Press. 

Cepeda, N.J., Pashler, H., Vul, E., Wixted, J.T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A 

review and quantitative synthesis. Psychological Bulletin, 132, 354-380. 



 Knowledge-Learning-Instruction (KLI) Framework  36 

 

Authors’ final version of:  

Koedinger, K.R., Corbett, A.C., & Perfetti, C. (2012).  The Knowledge-Learning-Instruction (KLI) framework: 

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798. 

ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2012.01245.x 

Chang, N.M. (2006). Learning to Discriminate and Generalize through Problem Comparisons. Unpublished doctoral 

dissertation, Carnegie Mellon University, Pittsburgh PA.  

Chen, Z. & Klahr, D., (1999). All other things being equal: children's acquisition of the control of variables 

strategy, Child Development , 70 (5), 1098 - 1120. 

Chen, Z. & Klahr, D., (2008). Remote transfer of scientific reasoning and problem-solving strategies in children. In 

R. V. Kail (Ed.) Advances in Child Development and Behavior, Vol. 36.  (pp. 419 – 470) Amsterdam: Elsevier.  

Chi, M.T.H., de Leeuw, N., Chiu, M.H., & LaVancher, C. (1994). Eliciting self-explanations improves 

understanding. Cognitive Science, 18(3), 439-477. 

Chi, M.T.H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts 

and novices. Cognitive Science, 5, 121–152. 

Chi, M.T.H., Bassok, M., Lewis, M., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and 

use examples in learning to solve problems. Cognitive Science, 13, 145-182. 

Clark, R.E., Feldon, D., van Merriënboer, J., Yates, K., & Early, S. (2007). Cognitive task analysis. In J.M. Spector, 

M.D. Merrill, J.J.G. van Merriënboer, & M.P. Driscoll (Eds.), Handbook of research on educational 

communications and technology (3rd ed., pp. 577–593). Mahwah, NJ: Lawrence Erlbaum Associates.  

Clark, R.C. & Meyer, R.E. (2003). e-Learning and the science of instruction. San Francisco: Jossey-Bass/Pfeiffer. 

Clement, J. (1987).  Overcoming students’ misconceptions in physics:  fundamental change in children’s physics 

knowledge.  Journal of Research in Science Teaching, 28, 785-797. 

Corbett, A.T. & Anderson, J.R. (2001).  Locus of feedback control in computer-based tutoring:  Impact on learning 

rate, achievement and attitudes. Proceedings of ACM CHI’2001 Conference on Human Factors in Computing 

Systems, 245-252. 

De Jong, N. & Perfetti, C.A. (2011). Fluency training in the ESL classroom: An experimental study of fluency 

development and proceduralization.. Language Learning 61(2), 533-568. 

Dienes, Z. & Perner, J. (1999). A theory of implicit and explicit knowledge. Behavioral and Brain Sciences, 22, (5), 

735-808. 

diSessa, A.A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2 & 3), 105-225. 

Donovan, J. J., & Radosevich, D. J. (1999). A meta-analytic review of the distribution of practise effect: Now you 

see it, now you don’t. Journal of Applied Psychology, 84, 795–805. 

Dunlap, S., Perfetti, C.A., Liu, Y., & Wu, S.M. (2011)  Learning vocabulary in Chinese as a foreign language: 

Effects of explicit instruction and semantic cue reliability. http://www.pitt.edu/~perfetti/PDF/Dunlap Learning 

vocabulary.pdf 

Elliot, A.J. (2005). A conceptual history of the achievement goal construct. In A. Elliot & C. Dweck (Eds.), 

Handbook of competence and motivation (pp. 52-72). New York: Guilford Press.  

Engelmann, S. & Carnine, D. (1991). Theory of instruction: Principles and applications. Eugene, OR: ADI Press. 

Feng, M., Heffernan, N.T., & Koedinger, K.R. (2009). Addressing the assessment challenge in an online system that 

tutors as it assesses. User Modeling and User-Adapted Interaction: The Journal of Personalization Research 

(UMUAI). 19(3), pp. 243-266. 

Frank, M. C. & Gibson, E. (2011). Overcoming memory limitations in rule learning. Language, Learning, & 

Development, 7, 130-148. 

Frishkoff, G.A., Pavlik P., Levin, L., & de Jong, C. (2008). Providing optimal support for robust learning of 

syntactic constructions in ESL. In Proceedings of the Annual Meeting of the Cognitive Science Society 

(CogSci08). Washington, D.C. 

Fox, M.C. & Charness, N. (2009).  How to gain eleven IQ points in ten minutes: Thinking aloud improves Raven’s 

Matrices performance in older adults. Aging, Neuropsychology, and cognition. 17(2), 191-204. 

Gagne, R.M. (1985). The Conditions of Learning and Theory of Instruction (fourth edition). New York: Holt, 

Rinehart, and Winston. 

Gentner, D., Loewenstein, J., Thompson, L., & Forbus, K. D. (2009). Reviving inert knowledge: Analogical 

abstraction supports relational retrieval of past events. Cognitive Science, 33, 1343-1382.  

Gick, M.L., & Holyoak, K.J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1-38. 

Gobet, F. (2005). Chunking models of expertise: Implications for education. Applied Cognitive Psychology, 19, 

183–204. 

Goldstone, R.L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. 

The Journal of the Learning Sciences, 14(1), 69–110. 



 Knowledge-Learning-Instruction (KLI) Framework  37 

 

Authors’ final version of:  

Koedinger, K.R., Corbett, A.C., & Perfetti, C. (2012).  The Knowledge-Learning-Instruction (KLI) framework: 

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798. 

ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2012.01245.x 

Graesser, A.C., McNamara, D.S., & VanLehn, K. (2005).  Scaffolding deep comprehension strategies through 

Point&Query, AutoTutor, and iSTART. Educational Psychologist, 40, 225-234. 

Hausmann, R.G.M., Nokes, T.J., VanLehn, K., & Gershman, S. (2009). The design of self-explanation prompts: The 

fit hypothesis. In Proceedings of the 31
st
 Annual Conference of the Cognitive Science Society. Amsterdam, 

Netherlands. 

Hausmann, R. G. M., & VanLehn, K. (2007). Explaining self-explaining: A contrast between content and 

generation. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Proceedings of AI in Education, pp. 417-424. 

Amsterdam: IOS Press. 

Hebb D. O.  (1949). The organization of behavior. New York: Wiley 

Heffernan, N. & Koedinger, K. R. (1997).  The composition effect in symbolizing: The role of symbol production 

vs. text comprehension.  In Shafto, M. G. & Langley, P. (Eds.) Proceedings of the Nineteenth Annual 

Conference of the Cognitive Science Society, (pp. 307-312).  Hillsdale, NJ: Erlbaum.  

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-connectionist theory of relational inference and generalization. 

Psychological Review, 110, 220-264.  

Jones, R.M. & Fleischman, E.S. (2001) CASCADE explains and informs the utility of fading examples to problems, 

Proceedings of the 23rd Annual Conference of the Cognitive Science Society, pp. 459–464. Mahwah, NJ: 

Erlbaum. 

Kalyuga, S. & Sweller, J. (2005). Rapid dynamic assessment of expertise to improve the efficiency of adaptive e-

learning. Educational Technology Research and Development, 53,  83-93. 

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 

38, 23-32. 

Kaminski, J.A., Sloutsky, V.M., & Heckler, A.F. (2008).  The advantage of learning abstract examples in learning 

math. Science, 320, 454-455. 

Katz, S., Lesgold, A., Eggan, G. & Greenberg, L. (1996). Towards the design of more effective advisors for 

learning-by-doing systems. In C. Frasson, G. Gauthier, & A. Lesgold, (Eds.) Intelligent tutoring systems:  Third 

international conference , ITS ’96, 641-649.   New York:  Springer. 

Kintsch, W. (1998). Comprehension: A paradigm for cognition. New York: Cambridge University Press. 

Klahr, D., & Dunbar, K. (1988).  Dual space search during scientific reasoning.  Cognitive Science, 12, 1-48. 

Koedinger, K.R. & Aleven, V. (2007).  Exploring the assistance dilemma in experiments with Cognitive Tutors.  

Educational Psychology Review, 19 (3): 239-264. 

Koedinger, K.R., Aleven, V., Roll, I. & Baker, R. (2009). In vivo experiments on whether supporting metacognition 

in intelligent tutoring systems yields robust learning. In D. J. Hacker, J. Dunlosky, A. C. Graesser (Eds.) 

Handbook of Metacognition in Education. New York: Routledge.  

Koedinger, K.R. & McLaughlin, E.A. (2010). Seeing language learning inside the math: Cognitive analysis yields 

transfer.  In Proceedings of the 32nd Annual Conference of the Cognitive Science Society. 

Koedinger, K.R. & Nathan, M.J. (2004). The real story behind story problems: Effects of representations on 

quantitative reasoning. The Journal of the Learning Sciences, 13 (2), 129-164. 

Koedinger, K. R. & Terao, A. (2002). A cognitive task analysis of using pictures to support pre-algebraic reasoning.  

In C. D. Schunn & W. Gray (Eds.), Proceedings of the Twenty-Fourth Annual Conference of the Cognitive 

Science Society, 542-547. Mahwah, NJ: Lawrence Erlbaum Associates.  

Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK:Cambridge 

University Press. 

Lee, R.L. (2003). Cognitive task analysis: A meta-analysis of comparative studies. Unpublished doctoral 

dissertation, University of Southern California, Los Angeles, California.  

Levine, M. (1966). Hypothesis behavior by humans during discrimination learning. Journal of Experimental 

Psychology, 71, 331–338. 

Lewis, C.H. (1988). Why and how to learn why: Analysis-based generalization of procedures.  Cognitive Science, 

12, pp. 211-256. 

Logan, G. D. (1988) Toward an instance theory of automatization. Psychological Review, 95(4), 492-527. 

MacLaren, B. & Koedinger, K.R. (2002). When and why does mastery learning work: Instructional experiments 

with ACT-R “SimStudents”. In S.A. Cerri, G. Gouarderes, & F. Paraguacu (Eds.), Proceedings of the 6th 

International Conference on Intelligent Tutoring Systems, 355-366. Berlin: Springer-Verlag 



 Knowledge-Learning-Instruction (KLI) Framework  38 

 

Authors’ final version of:  

Koedinger, K.R., Corbett, A.C., & Perfetti, C. (2012).  The Knowledge-Learning-Instruction (KLI) framework: 

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798. 

ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2012.01245.x 

Matsuda, N., Cohen, W., Sewall, J., Lacerda, G., & Koedinger, K.R. (2008). Why tutored problem solving may be 

better than example study: Theoretical implications from a simulated-student study. In B. Woolf et al. (Eds.): 

Proceedings of the 9th International Conference of Intelligent Tutoring Systems, pp. 111-121. Springer-Verlag 

Berlin Heidelberg. 

McClelland, J. L., & Cleeremans, A. (2009). Connectionist models. In T. Byrne, A. Cleeremans, & P. Wilken 

(Eds.), Oxford Companion to Consciousness. New York: Oxford University Press.  

McClelland, J.L., Fiez, J.A., & McCandliss, B.D. (2002). Teaching the /r/-/l/ discrimination to Japanese adults: 

behavioral and neural aspects. Physiology & Behavior, 77, 657–62. 

McLaren, B. M., Lim, S., & Koedinger, K.R. (2008). When and how often should worked examples be given to 

students? New results and a summary of the current state of research. In B. C. Love, K. McRae, & V. M. 

Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 2176-2181). 

Austin, TX: Cognitive Science Society. 

McNamara, D. S. (2001). Reading both high and low coherence texts: Effects of text sequence and prior 

knowledge. Canadian Journal of Experimental Psychology, 55, 51–62.  

McNamara, D. S. (2004). SERT: Self-explanation reading training. Discourse Processes, 38(1), 1-30. 

McNamara, D. S., Kintsch, E., Songer, N. & Kintsch, W. (1996). Are good texts always better? Interactions of text 

coherence, background knowledge, and levels of understanding in learning from text. Cognition and 

Instruction, 14(1), 1-43. 

Medin, D., & Schaffer, M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238. 

Michaels, S., O’Connor, C., & Resnick, L.B. (2008). Deliberative discourse idealized and realized: Accountable talk 

in the classroom and in civic life. Studies in the Philosophy of Education, 27(4), 283-297. 

Minstrell, J. (2001). Facets of students' thinking: Designing to cross the gap from research to standards-based 

practice. In K. Crowley, C. D. Schunn and T. Okada (Eds.), Designing for Science: Implications for 

Professional, Instructional, and Everyday Science. Mahwah: Lawrence Erlbaum Associates.  

Mitchell, T.M., Keller, R.M., & Kedar-Cabelli, S.T. (1986). Explanation-based generalization: A unifying view. 

Machine Learning, 1, 47-80.  

National Reading Panel (2000). Report of the National Reading Panel. Teaching children to read:  An evidence- 

based assessment of the scientific research literature on reading and its implications for reading instruction 

(00-4769). Washington, DC: National Institute of Child Health & Human Development. 

Newell, A. (1990). Unified theories of cognition. Cambridge MA: Harvard University Press. 

Ogan, A., Aleven, V., & Jones, C. (2009). Advancing development of intercultural competence through supporting 

predictions in narrative video. International Journal of Artificial Intelligence in Education, 19(3), 267-288. 

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103(2), 241-262.  

O'Reilly, R.C. & Munakata, Y. (2000).  Computational Explorations in Cognitive Neuroscience: Understanding the 

Mind by Simulating the Brain. Cambridge, MA: MIT Press. 

Paas, F.G.W.C, & Van Merrienboer, J.J.G. (1994). Variability of worked examples and transfer of geometrical 

problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122-133. 

Palincsar, A.S., & Brown, A.L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-

monitoring activities. Cognition and Instruction, 1, 117-175. 

Pashler, H., Bain, P., Bottge, B., Graesser, A., Koedinger, K., McDaniel, M., & Metcalfe, J. (2007). Organizing 

Instruction and Study to Improve Student Learning (NCER 2007-2004). Washington, DC: National Center for 

Education Research, Institute of Education Sciences, U.S. Department of Education. 

Pavlik Jr., P. I. (2007). Understanding and applying the dynamics of test practice and study practice. Instructional 

Science, 35, 407-441. 

Posner, M.I. (in press).  The Expert Brain. Volume of Carnegie Symposium on Cognitive Science. 

Quilici, J. H. & Mayer, R. E. (1996). Role of examples in how students learn to categorize statistics word problems. 

J. Educ. Psychol. 88:144–61. 

Rayner, K., Foorman, B.R., Perfetti, C.A., Pesetsky, D., & Seidenberg, M.S. (2001). How should reading be taught. 

Scientific American. 

Rea, C.P., & Modigliani, V. (1985). The effect of expanded versus massed practise on the retention of multiplication 

facts and spelling lists. Human Learning: Journal of Practical Research & Applications, 4, 11–18. 

Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21, 1–

29. 



 Knowledge-Learning-Instruction (KLI) Framework  39 

 

Authors’ final version of:  

Koedinger, K.R., Corbett, A.C., & Perfetti, C. (2012).  The Knowledge-Learning-Instruction (KLI) framework: 

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798. 

ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2012.01245.x 

Renkl, A., Atkinson, R.K., & Große, C.S. (2004). How fading worked solution steps works—a cognitive load 

perspective. Instructional Science, 32, 59–82. 

Renkl, A., Atkinson, R.K., & Maier, U.H. (2000). From studying examples to solving problems: Fading worked-out 

solution steps helps learning. In L. Gleitman & A.K. Joshi (Eds.), Proceeding of the 22nd Annual Conference of 

the Cognitive Science Society (pp. 393–398). 

Renkl, A., Atkinson, R.K., Maier, U.H., & Staley, R. (2002). From example study to problem solving: Smooth 

transitions help learning. Journal of Experimental Education, 70, 293–315. 

Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out examples: The effects of example 

variability and elicited self-explanations. Contemporary Educational Psychology, 23, 90-108. 

Richman, H. B., Staszewski, J. J., & Simon, H. A. (1995). Simulation of expert memory with EPAM IV. 

Psychological Review, 102, 305–330. 

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, pp. 465-471. 

Rittle-Johnson, B. & Koedinger, K.R. (2001). Using cognitive models to guide instructional design: The case of 

fraction division. In Proceedings of the Twenty-Third Annual Conference of the Cognitive Science Society, (pp. 

857-862). Mahwah,NJ: Erlbaum. 

Roediger, H.L. & Karpicke, J.D. (2006). The power of testing memory: Basic research and implications for 

educational practice. Perspectives on Psychological Science, 1, 181-210. 

Salden, R.J.C.M., Aleven, V., & Renkl, A., & Schwonke, R. (2008). Worked examples and tutored problem solving: 

Redundant or synergistic forms of support? In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of 

the 30th Annual Conference of the Cognitive Science Society (pp. 589-594). Austin, TX: Cognitive Science 

Society.  

Schmidt, R.A., & Bjork, R.A. (1992). New conceptualizations of practice: Common principles in three paradigms 

suggest new concepts for training. Psychological Science, 3, 207-217.  

Schneider W. & Shiffrin, R.M. (1977). Controlled and automatic human information processing: I. Detection, search 

and attention. Psychological Review, 84, 1–66. 

Schoenfeld, A. (2004). The math wars. Educational Policy, 18 (1), 253-286. 

Schooler, Fiore, & Brandimonte (1997). At a loss From words: Verbal overshadowing of perceptual memories. 

Psychology of Learning and Motivation: Advances in Research and Theory. Academic Press 

Schwonke, R., Renkl, A., Krieg, C., Wittwer, J., Aleven, V., & Salden, R. (2009). The worked-example effect: Not 

an artifact of lousy control conditions. Computers in Human Behavior, 25, 258-266. 

Servan-Schreiber, E. & Anderson, J.R. (1990).  Learning artificial grammars with competitive chunking.  Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 16, 592-608. 

Shavelson, R.J., & Towne, L. (Eds.). (2002). Scientific research in education. Washington, DC: National Academy 

Press. 

Shepard, R.N. (1987).  Toward a universal law of generalization of psychological science.  Science, 237, 1317-1323. 

Slotta, J.D. & Chi, M.T.H. (2006). The impact of ontology training on conceptual change: Helping students 

understand the challenging topics in science. Cognition and Instruction, 24, 261-289. 

Stamper, J. & Koedinger, K.R. (2011). Human-machine student model discovery and improvement using data. In J. 

Kay, S. Bull & G. Biswas (Eds.), Proceedings of the 15th International Conference on Artificial Intelligence in 

Education, pp. 353-360. Berlin: Springer. 

Stylianides, G.J., & Stylianides, A.J. (2009). Facilitating the transition from empirical arguments to proof. Journal 

for Research in Mathematics Education, 40(3), 314-352  

Sun, R., 1994. Integrating rules and connectionism for robust commonsense reasoning. John Wiley and Sons, New 

York. 

Sweller, J. & Cooper, G.A. (1985) The use of worked examples as a substitute for problem solving in learning 

algebra, Cognition and Instruction 2: 59–89. 

Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12, 185–233. 

Taft, M., & Chung, K. (1999). Using radicals in teaching Chinese characters to second language learners. 

Psychologia, 42, 243-251. 

van Merriënboer, J.J.G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments 

and future directions. Educational Psychology Review, 17(1), 147-177. 

VanLehn, K. (1999). Rule learning events in the acquisition of a complex skill: An evaluation of Cascade. Journal 

of the Learning Sciences, 8(1), 71-125. 



 Knowledge-Learning-Instruction (KLI) Framework  40 

 

Authors’ final version of:  

Koedinger, K.R., Corbett, A.C., & Perfetti, C. (2012).  The Knowledge-Learning-Instruction (KLI) framework: 

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798. 

ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2012.01245.x 

Wang, M., Liu, Y., & Perfetti, C. A. (2004). The implicit and explicit learning of orthographic structure and function 

of a new writing system. Scientific Studies of Reading, 8(4), 357-379. 

Wulf, G. & Shea, C.H. (2002). Principles derived from the study of simple skills do not generalize to complex skill 

learning. Psychonomic Bulletin & Review, 9, 185-211.  

Wylie, R., Koedinger, K. R., & Mitamura, T. (2009). Is self-explanation always better?  The effects of adding self-

explanation prompts to an English grammar tutor. In Proceedings of the 31st Annual Conference of the 

Cognitive Science Society. Amsterdam, The Netherlands. 

Zhu X., Lee Y., Simon H.A., & Zhu, D. (1996). Cue recognition and cue elaboration in learning from examples. In 

Proceedings of the National Academy of Sciences 93, (pp. 1346±1351). 

 

  



 Knowledge-Learning-Instruction (KLI) Framework  41 

 

Authors’ final version of:  

Koedinger, K.R., Corbett, A.C., & Perfetti, C. (2012).  The Knowledge-Learning-Instruction (KLI) framework: 

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798. 

ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2012.01245.x 

Footnotes 

                                                 
i
 The level of KC analysis is a function of the target content and the target student population. It 

may not have a tight age correspondence.  The relevant level for adults learning to read Chinese 

as second language may be lower than second graders learning to read English as a first 

language.  Reading errors of adults learning Chinese could lead to a focus on KCs at the level of 

the stroke patterns that form the graphemes (characters) that make up words whereas reading 

errors of second graders learning English may lead to a focus on KC relevant for word 

identification that are above the level of recognizing graphemes (letters). 
ii
While our notion of KC shares similarity in condition-action structure with production rules in 

theories of cognitive architecture (Anderson & Lebiere, 1998; Newell, 1990) and with situation-

action schemas in theories of analogical transfer (e.g., Gick & Holyoak, 1983), it is a more 

general idea that encompasses both and includes explicit, verbalizable knowledge.  The inclusion 

of a condition component, even for verbal, declarative knowledge, represents a KLI assumption 

that learning when to do or think something is a critical part of learning. 
iii

 In formal computational modeling, paired associates (constant-constant mappings) can be 

represented in a schema or production rule without the use of any variables whereas categories 

(variable-constant) and general rules or principles (variable-variable) require the use of variables.  

Or in structure mapping (Gentner et al., 2009), relations are variables and the primitive objects 

(at the leaves of a structure map) are the constants. 
iv

The sun radical, one can argue, reflects the evolution of an iconic non-arbitrary representation 

of the sun to a more abstract graph that continues to be non-arbitrary; however, from a reader’s 

point of view graphs generally have at most an opaque, seemingly arbitrary, connection to 

meaning, even in Chinese and certainly in alphabetic writing systems. 
v
 Vocabulary KCs for words with explicit morphological markers (e.g., past tense of regular 

verbs in English, like “jumped”) are not members of this constant-constant fact category, but of 

the variable-variable rule category (e.g., To form the past tense of <verb>, produce <verb> 

followed by “ed”). 
vi

 Note that knowledge of recognizing expressions as fractions (e.g., saying that “3/4” is a 

fraction but that “3-4” is not) is not the same as being able to state the definition of a fraction, 

which is a constant-constant KC (mapping “fraction” to “quotient of two quantities”). 
vii

 Knowledge of visual images (e.g., someone’s face) is in declarative memory in ACT-R, but 

people cannot always verbalize such knowledge so it is non-verbal in KLI. 
viii

 For example, while the plural of tip is pronounced tip[s], the plural of tub is tub[z]. The 

difference between these two pronunciations is handled by a natural phonotactic constraint that 

makes it easier to assimilate the voicing feature from the preceding consonant (/p/ and /s/ are 

unvoiced, /b/ and /z/ are voiced), thus producing tub[z], than to shift from voiced to unvoiced to 

produce tub[s]. This constraint is not arbitrary because its source is the human speech 

mechanism.  
ix

 In a KC analysis for a particular course, a KC should be unpacked into smaller KCs when 

incoming student performance on tasks assessing those smaller KCs is sufficiently lower than a 

high threshold success rate (e.g., 95%), or in cases emphasizing fluency, than a desired reaction 

time. 


