
Opening the Door to Non-Programmers:
Authoring Intelligent Tutor Behavior by

Demonstration

Kenneth R. Koedinger1, Vincent Aleven1, Neil Heffernan2, Bruce McLaren1, and
Matthew Hockenberry 1

1 Human-Computer Interaction Institute, Carnegie Mellon University, Pgh, PA, 15213
{koedinger, aleven, bmclaren}@cs.cmu.edu , mch2@andrew.cmu.edu

2 Computer Science Dept., Worcester Polytechnic Institute, Worcester, MA 01609-2280
nth@wpi.edu

Abstract. Intelligent tutoring systems are quite difficult and time inten-
sive to develop. In this paper, we describe a method and set of software
tools that ease the process of cognitive task analysis and tutor development
by allowing the author to demonstrate, instead of programming, the behav-
ior of an intelligent tutor. We focus on the subset of our tools that allow
authors to create “Pseudo Tutors” that exhibit the behavior of intelligent tu-
tors without requiring AI programming. Authors build user interfaces by di-
rect manipulation and then use a Behavior Recorder tool to demonstrate al-
ternative correct and incorrect actions. The resulting behavior graph is an-
notated with instructional messages and knowledge labels. We present some
preliminary evidence of the effectiveness of this approach, both in terms of
reduced development time and learning outcome. Pseudo Tutors have now
been built for economics, analytic logic, mathematics, and language learn-
ing. Our data supports an estimate of about 25:1 ratio of development time
to instruction time for Pseudo Tutors, which compares favorably to the
200:1 estimate for Intelligent Tutors, though we acknowledge and discuss
limitations of such estimates.

1 Introduction
Intelligent Tutoring Systems have been successful in raising student achievement and
have been disseminated widely. For instance, Cognitive Tutor Algebra is now in
more than 1700 middle and high schools in the US [1] (www.carnegielearning.com).
Despite this success, it is recognized that intelligent tutor development is costly and
better development environments can help [2, 3]. Furthermore, well-designed devel-
opment environments should not only ease implementation of tutors, but also im-
prove the kind of cognitive task analysis and exploration of pedagogical content
knowledge that has proven valuable in cognitively-based instructional design more
generally [cf., 4, 5]. We have started to create a set of Cognitive Tutor Authoring
Tools (CTAT) that support both objectives. In a previous paper, we discussed a num-
ber of stages of tutor development (e.g., production rule writing and debugging) and
presented some preliminary evidence that the tools potentially lead to substantial

savings in the time needed to construct executable cognitive models [6]. In the current
paper, we focus on the features of CTAT that allow developers to create intelligent
tutor behavior without programming. We describe how these features have been used
to create “Pseudo Tutors” for a variety of domains, including economics, LSAT prepa-
ration, mathematics, and language learning, and present data consistent with the hy-
pothesis that these tools reduce the time to develop educational systems that provide
intelligent tutor behavior.

A Pseudo Tutor is an educational system that emulates intelligent tutor behavior,
but does so without using AI code to produce that behavior. (It would be more accu-
rate, albeit more cumbersome, to call these “Pseudo Intelligent Tutors” to emphasize
that it is the lack of an internal AI engine that makes them “pseudo,” not any signifi-
cant lack of intelligent behavior.) Part of our investigation in exploring the possibili-
ties of Pseudo Tutors is to investigate the cost-benefit trade-offs in intelligent tutor
development, that is, in what ways can we achieve the greatest instructional “bang”
for the least development “buck.” Two key features of Cognitive Tutors, and many
intelligent tutoring systems more generally, are 1) helping students in constructing
knowledge by getting feedback and instruction in the context of doing and 2) providing
students with flexibility to explore alternative solution strategies and paths while
learning by doing. Pseudo Tutors can provide these features, but with some limita-
tions and trade-offs in development time. We describe some of these limitations and
trade-offs. We also provide preliminary data on authoring of Pseudo Tutors, on student
learning outcomes from Pseudo Tutors, and development time estimates as compared
with estimates of full Intelligent Tutor development.

2 Pseudo Tutors Mimic Cognitive Tutors
Cognitive Tutors are a kind of “model-tracing” intelligent tutoring systems that are
based on cognitive psychology theory [7], particularly the ACT-R theory [8]. Devel-
oping a Cognitive Tutor involves creating a cognitive model of student problem solv-
ing by writing production rules that characterize the variety of strategies and miscon-
ceptions students may acquire. Productions are written in a modular fashion so that
they can apply to a goal and context independent of what led to that goal. Consider
the following example of three productions from the domain of equation solving:

Strategy 1: IF the goal is to solve a(bx+c) = d
THEN rewrite this as bx + c = d/a

Strategy 2: IF the goal is to solve a(bx+c) = d
THEN rewrite this as abx + ac = d

Misconception: IF the goal is to solve a(bx+c) = d
THEN rewrite this as abx + c = d

The first two productions illustrate alternative correct strategies for the same goal.
By representing alternative strategies, the cognitive tutor can follow different students
down different problem solving paths. The third “buggy” production represents a
common error students make when faced with this same goal. A Cognitive Tutor
makes use of the cognitive model to follow students through their individual ap-
proaches to a problem. A technique called “model tracing” allows the tutor to provide

individualized assistance in the context of problem solving. Such assistance comes in
the form of instructional message templates that are attached to the correct and buggy
production rules. The cognitive model is also used to estimate students’ knowledge
growth across problem-solving activities using a technique known as “knowledge
tracing” [9]. These estimates are used to adapt instruction to individual student needs.

The key behavioral features of Cognitive Tutors, as implemented by model tracing
and knowledge tracing, are what we are trying to capture in Pseudo Tutor authoring.
The Pseudo Tutor authoring process does not involve writing production rules, but
instead involves demonstration of student behavior.

3 Authoring Pseudo Tutors in CTAT
Authoring a Pseudo Tutor involves several development steps that are summarized
below and illustrated in more detail later in this section.

1. Create the graphical user interface (GUI) used by the student
2. Demonstrate alternative correct and incorrect solutions
3. Annotate solutions steps in the resulting “behavior graph” with hint mes-

sages, feedback messages, and labels for the associated concepts or skills
4. Inspect skill matrix and revise

The subset of the Cognitive Tutor Authoring Tools that support Pseudo Tutor devel-
opment and associated cognitive task analysis are:
1. Tutor GUI Builder — used to

create a graphical user interface
(GUI) for student problem solving.

2. Behavior Recorder —records
alternate solutions to problems as
they are being demonstrated in the
interface created with the Tutor GUI
Builder. The author can annotate
these “behavior graphs” (cf., [10])
with hints, feedback and knowledge
labels. When used in “pseudo-tutor
mode”, the Behavior Recorder uses
the annotated behavior graph to trace
students’ steps through a problem,
analogous to the methods of model-
tracing tutors.

Create the Graphical User Inter-
face. Figure 1 shows an interface for
fraction addition created using a “record-
able widget” palette we added to Java NetBeans, a shareware programming environ-
ment. To create this interface, the author clicks on the text field icon in the widget
palette and uses the mouse to position text fields.

Fig. 1. The author creates the initial
state of a problem that the learner will
later see. Here, the initial state displays
the fraction addition problem 1/4 + 1/5.

Typically in the tutor development process new ideas for interface design, particu-
larly “scaffolding” techniques, may emerge (cf., [11]). The interface shown in Figure 1
provides scaffolding for converting the given fractions into equivalent fractions that
have a common denominator. The GUI Builder tool can be used to create a number of
kinds of scaffolding strategies for the same class of problems. For instance, story
problems sometimes facilitate student performance and thus can serve as a potential
scaffold. Consider this story problem: “Sue has 1/4 of a candy bar and Joe has 1/5 of a
candy bar. How much of candy bar do they have altogether?” Adding such stories to
the problem in Figure 1 is a minor interface change (simply add a text area widget).
Another possible scaffold early in instruction is to provide students with the common
denominator (e.g., 1/4 + 1/5 = __/20 + __/20). An author can create such a subgoal
scaffold simply by entering the 20’s before saving the problem start state. Both of
these scaffolds can be easily implemented and have been shown to reduce student errors
in learning fraction addition [12].

The interface widgets CTAT provides can be used to create interfaces that can scaf-
fold a wide variety of reasoning and problem solving processes. A number of non-
trivial widgets exist including a “Chooser” and “Composer” widget. The Chooser
widget allows students to enter hypotheses (e.g., [13]). The Composer widget allows
students to compose sentences by combining phrases from a series of menus (e.g.,
[14]).
Demonstrate Alternative Correct and Incorrect Solutions . Once an inter-
face is created, the author can use it and the associated “Behavior Recorder” to author
problems and demonstrate alternate solutions. Figure 1 shows the interface just after
the author has entered
1, 4, 1, and 5 in the
appropriate text
fields. At this point,
the author chooses
“Create Start State”
from the Author
menu and begins
interaction with the
Behavior Recorder,
shown on the left in
Figure 2. After creat-
ing a problem start
state, the author
demonstrates alternate
solutions as well as
common errors that
students tend to
make. Each interac-
tion with the inter-
face (e.g., typing a

Fig. 2. The Behavior Recorder records authors’ actions in
any interface created with CTAT’s recordable GUI widgets. The
author demonstrates alternative correct and incorrect paths.
Coming out of the start state (labeled “prob-1-fourth-1-fifth”)
are two correct paths (“20, F21den” and “20, F22den”) and one
incorrect path (“2, F13num”). Since state8 is selected in the
Behavior Recorder, the Tutor Interface displays that state,
namely with the 20 entered in the second converted fraction.

20 in the cell to the
right of the 4) produces
a new action link and
interface state node in
the behavior graph
displayed in the Behav-
ior Recorder.

Figure 2 shows the
Behavior Recorder after
the author has demon-
strated a complete
solution and some
alternatives. The link
from the start state
(prob-1-fourth-1-fifth)
off to the left to state1
represents the action of
entering 20. The links
to the right from the start state represent either alternative solution strategies or com-
mon errors. Alternative solutions may involve reordering steps (e.g., putting the
common denominator 20 across from the 5 before putting the 20 across from the 4),
skipping steps (e.g., entering the final answer 9/20 without using the equivalent frac-
tion scaffold on the right), or changing steps (e.g., using 40 instead of 20 as a com-
mon denominator). The common student errors shown in Figure 2 capture steps in-
volved in adding the numerators and denominators of the given fractions without first
converting them to a common denominator (e.g., entering 2/9 for 1/4 + 1/5).
Label Behavior
G r a p h w i t h
H i n t s a n d
Feedback Mes-
s a g e s . After
demonstrating
solutions, the
author can anno-
tate links on the
behavior graph by
adding hint mes-
sages to the cor-
rect links and error
feedback messages
to the incorrect
links. Figure 3
shows an example of an author entering hint messages and Figure 4 shows an exam-
ple of entering a feedback message. In Figure 3, the author has entered three layers of
hint messages for finding the equivalent numerator in the blank cell in 1/4 = __/20.

Fig. 3. The author adds a sequence of hint messages for a
step by control-clicking on the associated action link (e.g.,
“5, F21num” just below state2) and then typing messages.

Fig. 4. The author enters an error feedback or “buggy” message
by control-clicking on the link corresponding with the incorrect
action (e.g.,“2, F13num” going to state7). The error of adding
the numerators of fractions with unlike denominators is shown.

When a student requests a hint at this step in the resulting Pseudo Tutor, message 1 is
presented and, only if further requests are made are the subsequent messages given.

When an author encounters a new step, in the same or different problem, in which
a similar hint would make sense, this is a cue that that step draws on the same knowl-
edge (concepts or skills) as the prior step. For instance, the hint sequence shown in
Figure 3 can be re-used for the later step in this problem where the student needs to
find the equivalent numerator to fill in the blank cell in 1/5 = __/20. The author need
only substitute 5 for 4 and 4 for 5 in the message. Such similarity in the hint mes-
sages across different steps is an indication that learners can learn or use the same
underlying knowledge in performing these steps. As described in the next section, the
tools allow the author to annotate links in the behavior graph with knowledge labels
that indicate commonalities in underlying knowledge requirements.

After demonstrating correct and incorrect solutions and adding hint and buggy mes-
sages, authors can have students use the Pseudo Tutor. The Pseudo Tutor provides
feedback and context-sensitive error messages in response to students’ problem-solving
steps and provides context-sensitive hints at the students’ request. Figure 5 shows a
student receiving a hint message that may have been rewritten moments ago in re-
sponse to observations
of a prior learner using
the Pseudo Tutor.

Adding Knowl-
edge Labels. Once
the behavior graph has
been completed the
author can attach
knowledge labels to
links in the behavior
graph to represent the
knowledge behind
these problem-solving
steps, as illustrated in
Figure 6. While these
labels are referred to as
“rules” in the tutor
interface (reflecting a
connection with the
use of production rules
in the ACT-R theory), the approach is neutral to the specific nature of the knowledge
elements, whether they are concepts, skills, schemas, etc. One consequence of using
knowledge labels is that it provides a way for the author to copy hint messages from
one step to a similar step. In Figure 6 the author has labeled the step of entering 5 in
5/20 (i.e., the one between state2 and state3) with find-equivalent-numerator. If the
author believes the next step of entering the 4 in 4/20 (i.e., between state3 and state4)
draws upon the same knowledge, he or she can label it as find-equivalent-numerator as
well. Doing so has the direct benefit that the hint that was written before will be

Fig. 5. The author begins testing tutor behavior by putting
the Behavior Recorder in Pseudo-Tutor Mode (top right). She
“plays student” by entering two correct steps (the 20’s),
which the Behavior Recorder has traced to follow the student
to state2. She then clicks the Help button and the tutor high-
lights the relevant interface element (F21num cell) and
displays the preferred hint (thicker line) out of state2.

copied to this link. The author needs to
make some modifications to the mes-
sages, in this case by changing 4 to 5
and 5 to 4 so that, for instance, message
1 in Figure 3 now becomes “Ask your-
self, 1 out of 5 is the same as how many
out of 20?” These steps of hint copying
and editing push the author to make
decisions about how to represent desired
learner knowledge. When an author is
tempted to copy a hint message from one
link to another, they are implicitly hy-
pothesizing that those links tap the same
knowledge. When authors add knowledge
labels to steps, they are performing cog-
nitive task analysis. They are stating
hypotheses about learning transfer and
how repeated learning experiences will
build on each other. Knowledge labels are
also used by the Pseudo Tutor to do
knowledge tracing whereby students’
knowledge gaps can be assessed and the
tutor can select subsequent activities to
address those gaps. For instance, if a
student is good at finding a common denominator, but is having difficulty finding
equivalent fractions, the tutor can select a “scaffolded” problem, like “1/4 + 1/5 =
__/20 + __/20”, where the common denominator is provided and the student is focused
on the find-equivalent-numerator steps.
Inspect Skill Matrix and Revise Tutor Design. Not only can knowledge
labels be reused within problems, as illustrated above, they can also be reused across
problems. Doing so facilitates the creation of a “skill matrix” as illustrated in Figure
7. The rows of the skill matrix indicate the problems the author has created and the
columns are the knowledge elements required to solve each problem. The problems in
the skill matrix are 1) prob-1-fourth-1-fifth described above, 2) prob-multiples is “1/3
+ 1/6”, 3) prob-same-denom is “2/5 + 1/5”, and 4) prob-with-scaffold is “1/4 + 1/5 =
__/20 + __/20” where the start state includes the common denominator already filled
in. Inspecting the skill matrix, one can see how the problems grow in complexity
from prob-same-denom, which only requires add-common-denominators and add-
numerators, to prob-with-scaffold, which adds find-equivalent-numerators, to prob-1-
fourth-1-fifth and prob-multiples which add more skills as shown in the matrix.

The skill matrix makes predictions about transfer. For instance, practice on prob-
lems like prob-with-scaffold should improve performance of the find-equivalent-
numerator steps of problems like prob-1-fourth-1-fifth but should not improve per-
formance of the find-common-denominator step. The author can reflect on the plausi-
bility of these predictions and, better yet, use the Pseudo Tutor to collect student

Fig. 6. The author labels links in the
behavior graph to represent hypotheses
about the knowledge needed to perform
the corresponding step. Some steps are
labeled the same, for instance, “find-
equivalent-numerator” is on both the
state2-state3 and state3-state4 link. The
“Define as Existing Rule” option shown
allows the selection of an existing label
and copies associated hint messages.

performance data to test these predictions.
The cognitive task analysis and tutor can
then be revised based on such reflection and
data analysis.

4 Development Time and Use
The previous description illustrates that
Pseudo Tutors are relatively easy to develop
and do not require AI programming exper-
tise. In this section we focus on the devel-
opment time of Pseudo Tutors, comparing
it to estimates for other types of computer-
based learning environments. Estimates for
the development time of intelligent tutoring
systems have varied from 100-1000 hours
of development per hour of instruction [2,
8, p. 254]. Estimates for the development
of CAI vary even more widely [15 , p.
830]. One of our own estimates for the
development of Cognitive Tutors, which
comes from the initial 3-year project to
create the Algebra Cognitive Tutor [16], is

about 200 hours per one hour of instruction. We developed the original Cognitive
Tutor Algebra in roughly 10,000 hours and this provided approximately 50 hours of
instruction. While we have not, as yet, collected formal data on the development and
instructional use of Pseudo Tutors, we do have some very encouraging informal data
from 4 projects that have built Pseudo Tutors with our technology.
o The Economics Project: Part of the Open Learning Initiative (OLI) at Carnegie

Mellon University, the Economics Project has a goal of supplementing an on-
line introductory college-level microeconomics course with tutors.

o The Math Assistments Project: A four-year project funded by the Department of
Education, the Assistments Project is intended to provide web-based assessments
that provide instructional assistance while they assess.

o The LSAT Project: A small project aimed at improving the performance of stu-
dents taking the law school entrance examination on analytic problems.

o The Language Learning: Classroom Project: Four students in a Language Tech-
nologies course at CMU used the Pseudo Tutor technology to each build two
prototype Pseudo Tutors related to language learning.

In order to estimate the development time to instructional time ratio, we asked the
authors on each project, after they had completed a set of Pseudo Tutors, to estimate
the time spent on design and development tasks and the expected instructional time of
the resulting Pseudo Tutors (see Table 1). Design time is the amount of time spent
selecting and researching problems, and structuring those problems on paper. Devel-
opment time is the amount of time spent with the tools, including creating a GUI, the

Figure 7. The skill matrix shows what
knowledge elements (columns) are
used in which problems (rows). For
example, the 2 in the “prob-1-fourt”
row means this problem requires two
uses of knowledge element R3.

behavior diagrams, hints, and error messages. Instructional time is the time it would
likely take a student, on average, to work through the resulting set of Pseudo Tutors.
The final column is a ratio of the design and development time to instructional time
for each project's Pseudo Tutors. The average Design/Development Time to Instruc-
tional Time ratio of about 23:1, though preliminary, compares favorably to the corre-
sponding estimates for Cognitive Tutors (200:1) and other types of instructional tech-
nology given above. If this ratio stands up in a more formal evaluation, we can claim
significant development savings using the Pseudo Tutor technology.
Table 1. Data on Pseudo Tutor Development and Instructional Use (in Minutes)

Of Pseudo
Tutors

Design
Time

Dev.
Time

Instructional
Time

Design/Dev to
Instr.

Economics 11 3600 2190 180 32.2
Math Assistments 20 810 1170 98 20.2
LSAT 3 240 3000 180 18.0
Language Learning 8 210 575 50 15.7

Totals 4860 6935 508 23.2

Aside from the specific data collected in this experiment, this study also demon-
strates how we are working with a variety of projects to deploy and test Pseudo Tu-
tors. In addition to the projects mentioned above, the Pseudo Tutor authoring tools
have been used in an annual summer school on Intelligent Tutoring Systems at CMU
and courses at CMU and WPI. The study also illustrates the lower skill threshold
needed to develop Pseudo-Tutors, compared to typical intelligent tutoring systems:
None of the Pseudo Tutors mentioned were developed by experienced AI programmers.
In the Language Learning Classroom Project, for instance, the students learned to
build Pseudo Tutors quickly enough to make it worthwhile for a single homework
assignment.

Preliminary empirical evidence for the instructional effectiveness of the Pseudo-
Tutor technology comes from a small evaluation study with the LSAT Analytic Logic
Tutor, involving 30 (mostly) pre-law students. A control group of 15 students was
given 1 hour to work through a selection of sample problems in paper form. After 40
minutes, the correct answers were provided. The experimental group used the LSAT
Analytic Logic Tutor for the same period of time. Both conditions presented the stu-
dents with the same three “logic games.” After their respective practice sessions, both
groups were given a post-test comprised of an additional three logic games. The re-
sults indicate that students perform significantly better after using the LSAT Analytic
Logic Tutor (12.1 ± 2.4 v. 10.3 ± 2.3, t(28) = 2.06, p < .05). Additionally, pre-
questionnaire results indicate that neither group of students had a significant difference
in relevant areas of background that influence LSAT test results. Thus, the study
provides preliminary evidence that Pseudo Tutors are able to support student learning
in complex tasks like analytic logic games.

5 Comparing Pseudo Tutors and full Cognitive Tutors
In principle, Pseudo Tutors and full Cognitive Tutors exhibit identical behavior in
interaction with students. Both perform model tracing, provide context-sensitive in-
struction in the form of hints and error feedback messages, and are flexible to multiple
possible solution strategies and paths. Authoring for this flexibility is different. In the
case of a full Cognitive Tutor, such flexibility is modeled by a production system that
generalizes across problem solving steps within and between problems. In a Pseudo
Tutor, such flexibility is modeled by explicit demonstration of alternative paths in
each problem. Authors face challenges in both cases. Writing production rules that
work correctly across multiple situations requires significant skill and inevitable cy-
cles of testing and debugging. On the other hand, demonstrating alternative solutions
may become increasingly tedious as the number of problems increases and the com-
plexity of alternative paths within problems increases.

To illustrate this contrast, we consider what it might take to re-implement a real
Cognitive Tutor unit as a Pseudo Tutor. Consider the Angles Unit in the Geometry
Cognitive Tutor [17]. This unit has about 75 problems. At first blush, the thought of
developing 75 Pseudo Tutor behavior graphs may not seem daunting. It could be done
by someone without AI programming expertise and might seem that it would take
less time than developing the corresponding production rule model.

While alternative inputs can be handled by Pseudo Tutors, as described above, it
can be time consuming to provide them, requiring separate links in the behavior dia-
gram. For example, in the Angles unit of the Geometry Cognitive Tutor, students
give reasons for their answers. Although there is always only a single correct solution
for a numeric answer step, there may be different reasons for the step, at least in the
more complex problems. Currently, those alternative correct reasons need to be repre-
sented with alternative links in a behavior diagram, which in itself is not a problem,
except that the part of the diagram that is “downstream” from these links would have
to be duplicated, leading to a potentially unwieldy diagram if there were multiple steps
with alternative inputs. At minimum, a way of indicating alternative correct inputs for
a given link would be useful. We are currently working on generalization features
within Pseudo Tutor, one form of which is to allow authors write simple spreadsheet-
like formulas to check student inputs.

While possible in principle, other behaviors are difficult in practice to replicate in
Pseudo Tutors. For example, the Geometry Cognitive Tutor imposes some subtle
constraints on the order in which students can go through the steps in a problem.
These constraints are hard to express within Pseudo Tutors. To recreate this tutor's
behavior, one would have to be able to (1) require students to complete a given an-
swer-reason pair before moving on to the next answer-reason pair (i.e., if you give a
numeric answer, the next thing you need to do is provide the corresponding reason -
and vice versa) and (2) require students to complete a step only if the pre-requisites for
that step have been completed (i.e., the quantities from which the step is derived). To
implement these requirements with current Pseudo Tutor technology would require a
huge behavior diagram. In practice, Pseudo Tutors often compromise on expressing
such subtle constraints on the ordering of steps. Most of the Pseudo Tutors developed

so far have used a “commutative mode”, in which the student can carry out the steps
in any order. We are planning on implementing a “partial commutativity” feature,
which would allow authors to express that certain groups of steps can be done in any
order, whereas others need to be done in the order specified in the behavior graph.

Despite some limitations, Pseudo Tutors do seem capable of implementing useful
interactions with students. As we are building more Pseudo Tutors, we are become
more aware of their strengths and limitations. One might have thought that it would
be an inconvenient limitation of Pseudo Tutors that the author must demonstrate all
reasonable alternative paths through a problem. However, in practice, this has not
been a problem. But, these questions would best be answered by re-implementing a
Cognitive Tutor unit as a Pseudo Tutor. We plan to do so in the future.

6 Conclusions
We have described a method for authoring tutoring systems that exhibit intelligent
behavior, but can be created without AI programming. Pseudo Tutor authoring opens
the door to new developers who have limited programming skills. While the Pseudo
Tutor development time estimates in Table 1 compare favorably to past estimates for
intelligent tutor development, they must be considered with caution. Not only are the
these estimates rough, there are differences in the quality of the tutors produced where
most Pseudo Tutors to date have been ready for initial lab testing (alpha versions) and
past Cognitive tutors have been ready for extensive classroom use (beta+ versions).
On the other hand, our Pseudo Tutor authoring capabilities are still improving.

In addition to the goal of Pseudo Tutor authoring contributing to faster and easier
creation of working tutoring systems, we also intend to encourage good design prac-
tices, like cognitive task analysis [5] and to facilitate fast prototyping of tutor design
ideas that can be quickly tested in iterative development. If desired, full Intelligent
Tutors can be created and it is a key goal that Pseudo Tutor creation is substantially
“on path” to doing so. In other words, CTAT has been designed so that almost all of
the work done in creating a Pseudo Tutor is on path to creating a Cognitive Tutor.

Pseudo Tutors can provide support for learning by doing and can also be flexible to
alternative solutions. CTAT's approach to Pseudo-Tutor authoring has advantages over
other authoring systems, like RIDES [3], that only allow a single solution path.
Nevertheless, there are practical limits to this flexibility. Whether such limits have a
significant affect on student learning or engagement is an open question. In future
experiments, we will evaluate the effects of limited flexibility by contrasting student
learning from a Pseudo Tutor with student learning from a full Cognitive Tutor. The
Pseudo Tutor approach may be impractical for scaling to large intelligent tutoring
systems where students are presented a great of number of problem variations. In full
tutors, adding new problems is arguably less effort because only the machine-readable
problem specification needs to be entered and the production rules take care of comput-
ing alternative solution paths. Adding new problems in Pseudo Tutors is arguably
more costly because solution paths must be demonstrated anew. Future research
should check these arguments and, more importantly, provide some guidance for when
it might make sense to author an intelligent tutor rather than a Pseudo Tutor.

References
1. Corbett, A. T., Koedinger, K. R., & Hadley, W. H. (2001). Cognitive Tutors: From the

research classroom to all classrooms. In Goodman, P. S. (Ed.) Technology Enhanced
Learning: Opportunities for Change, (pp. 235-263). Mahwah, NJ: Lawrence Erlbaum.

2. Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of
the art. International Journal of Artificial Intelligence in Education, 10, pp. 98-129.

3 . Murray, T., Blessing, S., & Ainsworth, S. (Eds.) (2003). Authoring Tools for Ad-
vanced Technology Learning Environments: Towards cost-effective adaptive, interac-
tive and intelligent educational software. Dordrecht, The Netherlands: Kluwer.

4. Lovett, M. C. (1998). Cognitive task analysis in service of intelligent tutoring sys-
tem design: A case study in statistics. In Goettl, B. P., Halff, H. M., Redfield, C. L., &
Shute, V. J. (Eds.) Intelligent Tutoring Systems, Proceedings of the Fourth Int'l Con-
ference. (pp. 234-243). Lecture Notes in Comp. Science, 1452. Springer-Verlag.

5 . Schraagen, J. M., Chipman, S. F., Shalin, V. L. (2000). Cognitive Task Analysis.
Mawah, NJ: Lawrence Erlbaum Associates.

6 . Koedinger, K. R., Aleven, V., & Heffernan, N. (2003). Toward a rapid development
environment for Cognitive Tutors. In U. Hoppe, F. Verdejo, & J. Kay (Eds.), Artificial
Intelligence in Education, Proc. of AI-ED 2003 (pp. 455-457). Amsterdam, IOS Press.

7. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive
tutors: Lessons learned. The Journal of the Learning Sciences, 4 (2), 167-207.

8. Anderson, J. R. (1993). Rules of the Mind. Mahwah, NJ: Lawrence Erlbaum.
9. Corbett, A.T. & Anderson, J.R. (1995). Knowledge tracing: Modeling the acquisition

of procedural knowledge. User modeling and user-adapted interaction , 4, 253-278.
10. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:

Prentice-Hall.
11. Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B. K., Steinmuller, F., & Leone, A. J .

(2001). BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology
classrooms. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five
years of progress (pp. 263-305). Mahwah, NJ: Erlbaum.

12. Rittle-Johnson, B. & Koedinger, K. R. (submitted). Context, concepts, and proce-
dures: Contrasting the effects of different types of knowledge on mathematics problem
solving. Submitted for peer review.

13. Lajoie, S. P., Azevedo, R., & Fleiszer, D. M. (1998). Cognitive tools for assessment
and learning in a high information flow environment. Journal of Educational Comput-
ing Research, 18, 205-235.

14. Shute, V.J. & Glaser, R. (1990). A large-scale evaluation of an intelligent discovery
world. Interactive Learning Environments, 1: p. 51-76.

15. Eberts, R. E. (1997). Computer-based instruction. In Helander, M. G., Landauer, T.
K., & Prabhu, P. V. (Ed.s) Handbook of Human-Computer Interaction, (pp. 825-847).
Amsterdam, The Netherlands: Elsevier Science B. V.

16. Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent
tutoring goes to school in the big city. International Journal of Artificial Intelligence
in Education, 8, 30-43.

17. Aleven, V.A.W.M.M., & Koedinger, K. R. (2002). An effective metacognitive strat-
egy: Learning by doing and explaining with a computer-based Cognitive Tutor. Cog-
nitive Science, 26(2).

