
 1

New Potentials for Data-Driven Intelligent Tutoring System Development and
Optimization

Short title: Data-Driven Improvement of Intelligent Tutors

Authors: Kenneth R. Koedinger, Emma Brunskill, Ryan S.J.d. Baker, Elizabeth A. McLaughlin, and John
Stamper

Keywords: educational data mining, learning analytics, artificial intelligence in education, machine
learning for student modeling

Abstract
Increasing widespread use of educational technologies is producing vast amounts of data. Such data can
be used to help advance our understanding of student learning and enable more intelligent, interactive,
engaging, and effective education. In this paper, we discuss the status and prospects of this new and
powerful opportunity for data-driven development and optimization of educational technologies, focusing
on Intelligent Tutoring Systems. We provide examples of use of a variety of techniques to develop or
optimize the select, evaluate, suggest, and update functions of intelligent tutors, including probabilistic
grammar learning, rule induction, Markov decision process, classification, and integrations of symbolic
search and statistical inference.

1. Introduction
Technologies to support learning and education, such as Intelligent Tutoring Systems (ITS), have a long
history in artificial intelligence. AI methods have advanced considerably since those early days, and so
have intelligent tutoring systems. Today, Intelligent Tutoring Systems are in widespread use in K12
schools and colleges and are enhancing the student learning experience (e.g., Graesser et al. 2005;
Mitrovic 2003; Van Lehn 2006). As a specific example, Cognitive Tutor mathematics courses are in
regular use, about two-days a week, by 600,000 students a year in 2600 middle or high schools, and full-
year evaluation studies of Cognitive Tutor Algebra have demonstrated better student learning compared
to traditional algebra courses (Ritter et al. 2007).

In recent years, a range of types of interactive educational technologies have also become prominent
and widely used, including homework support and tutoring systems, science simulations and virtual labs,
educational games, on-line resources, massively open online courses, and highly interactive web-based
courses. Some have experimentally established learning benefits (e.g., Bowen et al. 2012; Lovett et al.
2008; Roschelle et al. 2010). These systems are increasingly being instrumented to collect vast amounts
of "Big Data" and more and more of it is freely available. DataShop, an open data repository at the
Pittsburgh Science of Learning Center1 (Koedinger et al. 2011), currently stores more than 350 datasets
that include over 200,000 student hours of data from thousands of students at an average of 10 seconds
per action, yielding more than 90 million stored student actions.

Such data can be used to help advance our understanding of student learning and create better, more
intelligent, interactive, engaging, and effective education. To do so requires advances in artificial
intelligence and machine learning and in our theories of human intelligence and learning, especially the
rich, knowledge-based learning flexibility that allows humans to develop expertise in so many complex
domains. This work is often being pursued in the new fields of educational data mining (Romero &
Ventura 2007; Baker & Yacef 2009) and learning analytics (Long & Siemens 2011).

1 http://learnlab.org/datashop

http://learnlab.org/datashop

 2

In this paper, we discuss the status and prospects of this new and powerful opportunity for data-driven
development and optimization of educational technologies, focusing on Intelligent Tutoring Systems, and
illustrating techniques especially in the context of Cognitive Tutors.

We begin by summarizing and illustrating the key functions of an intelligent tutoring system. We
then discuss techniques for using data to develop ITS functionality without extensive knowledge
engineering efforts and, ideally, with greater fidelity to student experience and consequent pedagogical
effectiveness. Explicitly directed at accurate modeling of student learning, student engagement, and
improved instruction, we next discuss techniques that optimize ITS functionality. We conclude with some
future possibilities for data-driven ITS development and optimization.

2. A Summary and Illustration of the Key Functions of Intelligent Tutoring Systems
Intelligent Tutoring Systems both guide students through a curriculum of instructional activities in an
outer loop, and monitor step-by-step progress on an activity within an inner loop (Van Lehn 2006). As
shown in Figure 1, the outer loop starts with selecting and presenting an activity to the student. Such
activities are often multi-step problems to solve, but may also include interactions in a simulation, game,
or a dialogue. Figure 2 shows an example of a complex activity selected from an Algebra curriculum unit
on systems of linear equations where students use table, graphical, and symbolic representations to model
a problem scenario and answer questions about it (Ritter et al. 2007). Once an activity is selected, the
inner loop takes over and, as shown in Figure 1, persists until the student has completed the activity.
Within the inner loop, a tutor must decipher and evaluate each student action given the context of prior
actions and a cognitive model of student reasoning and performance. For example, in Figure 2b, the
student has been filling in the table and most recently entered a mathematical expression (.13t) in a
column he/she previously labeled “Current cost” and using her choice of “t” to represent “Time”. The
tutor uses the cognitive model to evaluate this action (in the context of a plan) and determines it is
incorrect (it should be .13t+14.95). In addition to evaluating student actions (the left branch of the inner
loop in Figure 1), an intelligent tutor can also suggest a next action when a student is stuck (the right
branch). This suggestion may come in the form of a series of as-needed hints that get increasingly
specific. In Figure 2c, the student gets stuck on question 4 of the problem and clicks on the hint button
(2d). The tutor replies with an initial general hint to enter an equation (within the equation solving tool).
To perform the evaluate and suggest functions, the tutor uses a cognitive model, that represents possible
solutions to the activity, infers how a student’s input may relate to common misunderstandings, and
predicts what feedback or hints will best help the student complete the activity. Figure 3 illustrates how a

Figure 1. Key functions of Intelligent
Tutoring Systems, Select, Evaluate,
Suggest, and Update (in rectangles) are
supported by cognitive model and
individual student model components
(in rounded rectangles). They operate
inside an across-activity “outer loop”
and a within-activity “inner loop”.
Traditionally developed through
knowledge engineering, these
functions are increasingly being
developed and optimized through data-
driven machine learning.

 3

cognitive model can be used, through a plan recognition algorithm called model tracing (Ritter el al.
2007), to both evaluate a student’s responses and suggest hints.

The results of model tracing of student input as he or she completes the activity is used to update

(bottom of the outer loop in Figure 1) an estimate of the student’s skills and knowledge in the target
domain. This information is then used to aid in activity selection (top of the outer loop). While many
representations of student knowledge are possible, a simple yet effective model involves representing the
curriculum by a set of skills and concepts, known as Knowledge Components (KCs). Then student
knowledge is represented by the probability that the student has mastered each KC. These probability
estimates can be updated by using a probabilistic model of student learning, such as by Knowledge
Tracing (Corbett & Anderson 1995), which is essentially Bayesian filtering performed on a two-state
Hidden Markov Model. Figure 2e shows an estimate of the student’s understanding of the five
knowledge components used in this curriculum unit. These estimates are used to select the next activity
for the student.

Figure 2. A screen shot (with blow-ups) of a problem within the Algebra Cognitive Tutor provides
a concrete example of model tracing (a-d) and knowledge tracing (e) as implemented in an ITS. In
(a) the student reads the problem statement and (b) performs actions (filling in cells in table), which
the tutor evaluates in comparison to the cognitive model and then provides feedback. (c) Later, the
student reads question 4 and is stuck, (d) so she requests a hint. The cognitive model is run forward
to generate a reasonable next step given the current solution state and the tutor suggests a
corresponding hint (to set up an equation). (e) Student model updates are made based on student
performance and these are used to select the next problem.

 4

Figure 3. An example of the use of production rules in a cognitive model (green boxes) for model
tracing and knowledge tracing, which are specific implementations of the inner and outer loops in
Figure 1. In model tracing, the productions are used to evaluate student actions as correct (green
arrows) or incorrect (red arrows) with possible “bug” feedback (bottommost purple box) and to suggest
possible next actions with associated hints (two other purple boxes). Knowledge tracing uses the
evaluation of student actions in a Bayesian update of the individual student model of the chance a rule
is known, which in turn is used to select future problems adapted to student needs.

3. Machine learning and data-driven ITS development
Historically, most intelligent tutoring systems (ITS) have been built through extensive knowledge
engineering, and ideally cognitive task analysis, to develop models of student and expert skill and
performance. These models are then used to generate hints and feedback (inner loop of Figure 1). In
particular, two classes of effective tutors, cognitive tutors (e.g., Ritter et al. 2007) and constraint-based
tutors (e.g., Mitrovic et al. 2003), rely on knowledge representations, “production rules” or “constraints”,
that require extensive programming, expertise and often empirical research to develop. In contrast, data-
driven methods can enable more rapid development of new intelligent tutoring systems. We now present
different data-driven symbolic and/or statistical machine learning approaches for automated or semi-
automated development of the key components and functionalities of intelligent tutoring systems as
illustrated in Figures 1-3.
3.1. SimStudent: Developing Cognitive Models by Demonstration and Tutoring
SimStudent is a theory of student learning instantiated in a software tool that facilitates the development
of cognitive models. A primary use is to allow non-AI-programmers to “program by tutoring” to create
the central cognitive model component of an ITS. In this approach, authors first use Cognitive Tutor
Authoring Tools (CTAT; Aleven et al. 2009) to create a graphical user interface which students will use
to solve tasks (e.g., a table of rows for steps in an algebra equation solution). The author iteratively enters
tasks into the interface (e.g., an equation to solve) and then evokes SimStudent to solve each task.
Initially, SimStudent has no relevant productions, so asks the author to demonstrate a step. The
demonstration is used to induce a candidate production rule for accomplishing the step. On future steps,
previously induced production rules (which may be overly general) are used to generate candidate next
steps and the author gives yes-no feedback on the correctness of the step. When the author states the step
is incorrect, SimStudent relearns the production rule given the past history of demonstrations and
feedback it has received and tries again until it either gets positive feedback or runs out of options. In the
latter case, it asks the author for a demonstration of that step and induces a new production rule.

SimStudent employs multiple AI and machine learning techniques to learn a rule-based production
system (Li et al. in prep). Example problem and solution steps (e.g., algebra equations) are used by
probabilistic context-free grammar learning to generalize a hierarchical state representation that
production rules manipulate. The if-part of each production rule is acquired using a version space search
for generalizing information retrieval paths and inductive logic programming for learning preconditions,

 5

which refine correctness and search control. The then-part of production rules is acquired by an inductive
search of function compositions that are consistent with prior action records. The acquired production
system serves as the cognitive model component of an ITS that is used for all of its functions: evaluate,
suggest, update, and select. SimStudent has been applied to learn cognitive models in many domains
including algebra equation solving, stoichiometry, multi-column addition and subtraction, tic-tac-toe, and
fraction addition.
3.2. Hint Factory
The Hint Factory is a method of automatically generating context specific hints by using previously
collected student data (Barnes & Stamper 2008). The method is designed to be as specific as possible,
derived on-demand, and directed to the student’s problem-solving goal, to provide the right type of help at
the right time. In particular, the Hint Factory uses student attempt data to automatically Evaluate student
actions and to Suggest next steps, that is, to provide hints within a problem. It achieves the inner loop of
Figure 1.

The Hint Factory provides direct, data-driven feedback in an environment where students can choose
from a large space of actions to perform and many are correct. In order to deliver hints and feedback, the
Hint Factory first constructs a graph of states and actions that represents all previous student approaches
to a particular problem. Here the state describes what the student sees on the screen and the actions are
what the student does. The state-action graph is transformed into a Markov decision process (MDP). A
MDP is defined by its state set S, action set A, transition probabilities T, and a reward function R (Sutton
& Barto 1998). A simple reward function is to provide a small negative reward for all non-solution states:
this encourages reaching the solution as efficiently as possible. Then the MDP is used to generate hints
with the Hint Factory. The goal of using an MDP is to determine the best policy (i.e., the best path
through this graph) that corresponds to solving the given problem. This is achieved by calculating a
“value”, the expected discounted sum of the rewards to be earned by following an optimal policy from
state s, calculated recursively using value iteration. Once value iteration is complete, the optimal solution
in the MDP corresponds to taking an expert-like approach to solving the given problem, where from each
state the best action to take is the one that leads to the next state with the highest expected reward value
(Barnes & Stamper 2008). The Hint Factory uses these values when a student is in a particular state to
choose the next “best” state from which to generate a hint. When the hint button is pressed, the hint
provider searches for the current state in the MDP and checks that a successor state exists. If it does, the
successor state with the highest value is used to generate a hint sequence. A hint sequence refers to hints
that are all derived based on the same current state. For each state, four distinct hints are generated. If a
student requests a hint, then makes an error, and requests a hint again, the next hint generated is the next
one in the current sequence. Once a student performs a correct step, the hint sequence is reset.

Barnes and Stamper (2008) demonstrated the feasibility of this approach on historical data, showing
that extracted MDPs with the proposed hint-generating functions could provide correct next-step hints
towards the problem solution over 80% of the time. In a pilot study, Barnes and Stamper augmented a
tutor to teach propositional logic with the Hint Factory and showed that students were able to solve more
logic proof problems when hints were included. An example of the Hint Factory implemented in the logic
tutor can be seen in Figure 4. The figure shows a partially completed proof on the left, and a small graph
of previous attempts in the upper right. The states are represented with the numbers in circles. The start
state is state 0, and the current student has completed the four steps shown in the lower right (highlighted
in the graph). Error states are highlighted in red.

Since the Hint Factory is data-driven, the system can be bootstrapped with expert solutions (Stamper
et al. 2010). The Hint Factory can evolve, providing at least some automatically-generated hints initially
and improving as additional expert and student problem attempts are added to the model.

The Hint Factory and MDP methods have also been used to augment tutors in other domains. Fossati
and colleagues (2009) have used these MDP methods in the iList linked list tutor to deliver “proactive
feedback” based on previous student work. Work is ongoing to build a Hint Factory to provide hints for
novices in an open computer programming environment (Jin et al. 2011).

 6

Figure 4. On the left is a partially completed proof in the logic tutor with the Hint Factory added. The
student started with three given premises and the conclusion (State 0) and has performed four steps
(states 1-4), whose state descriptions are in the lower right. The upper right shows a solution graph
aggregated from past student solutions. The current student solution is traced against this graph, see
the filled in circles for states 0-4. By comparing the student’s current state (4) with the goal state
(which is state 5), the Hint Factory can give students hints toward the next best state that is on path to
the solution. In this case the student can reach the goal state by completing one more step (MP). When
a student presses the Hint button, a hint message is generated such as “Try using Modus Ponens(MP)”.

3.3. Detector approach: Science inquiry tutor example
In more ill-defined domains, it can be difficult to create an explicit cognitive model through typical
knowledge-engineering processes, and it can be difficult even to conceptualize what an “item” or
“practice opportunity” is. In recent years, data-driven approaches have proven useful for these domains as
well. Machine learning has been used to develop the inner-loop evaluate functionality of an ITS in more
ill-defined domains. In these cases, a “detector” or classifier is trained using human labels of desired and
undesired student actions within an open-ended simulation or performance environment. The work of Sao
Pedro et al. (2010) on developing a tutor for scientific inquiry illustrates this approach. In this approach,
humans hand-labeled student data from use of a set of science microworlds, using text-based replays of
segments of student interaction logs. The labels indicated whether an appropriate or inappropriate science
inquiry strategy was present in the replayed segment, including designing controlled experiments, testing
the stated hypothesis, and haphazard inquiry. Hand labels were validated for inter-rater reliability across
multiple coders, and then used as training labels for automated detectors of student science inquiry skill,
using standard classification algorithms. The algorithm used a set of engineered features relevant to the
timing and semantics of student actions, including features representing consistency and the number of
times a specific action (such as changing variables or running the same experiment) occurred. The
automated detectors were validated for effectiveness for new students and microworlds on different
science topics, and were found to be reasonably effective under these conditions. The detectors require
some accumulation of data before they can respond effectively, but Sao Pedro and colleagues found the
detectors could make accurate inferences about a specific student’s inquiry skill after that student had run
the simulation three times (each run takes under a minute), enabling reasonably rapid intervention. These
detectors have now been built into automated interventions administered by a pedagogical agent, which
evaluates student actions, identifies inappropriate strategies, gives students feedback and advice on how
to conduct more effective experimentation.

 7

3.4. Other future possibilities for automated ITS construction
Another interesting issue is automated problem generation to provide suggested activities in the outer
loop of Figure 1. Recent work by Singh, Gulwani, and Rajamani (2012) drew upon results on generalized
polynomial identity testing to automatically generate, from a given example Algebra proof problem, a set
of new similar but non-trivially different Algebra proof problems. This and related techniques for
automatically generating interesting related problems would help decrease the time required by domain
experts, reduce concerns of cheating, and, in principle, lead to more finely constructed examples
specifically designed to address a student’s current misunderstanding.

4. Machine learning and data-driven ITS optimization
In addition to using data-driven methods to enable more rapid development of new intelligent tutoring
systems, these methods can also be used to optimize the effectiveness of existing tutoring systems as we
discuss in this section.
4.1. Optimizing the Cognitive Model
Recently, Koedinger et al. (2012) introduced an automated search process for optimizing cognitive model
representations of student skill by hypothesizing alternative knowledge representations and testing them
against data. Their approach was implemented using a version of the Learning Factors Analysis (LFA)
algorithm (Cen, Koedinger, Junker 2006). LFA makes use of the Q matrix representation (Tatsuoka
1983), a map of skills or “knowledge components” (KCs) to tasks (e.g., observed steps in problems). The
KCs in a Q matrix are a latent variable simplification of the production rules or constraints in a cognitive
model. LFA searches over Q matrices to find the one that best predicts student learning data, where that
data is organized as success rate on knowledge components over time (encoded as number of
opportunities to practice). The statistical prediction model is logistic regression with parameters for each
student, KC, and KC by practice opportunity. Like a step-wise regression, LFA starts with a large set of
candidate predictor variables (the so-called “P matrix”), which are hypothesized “learning factors” that
may influence student performance difficulty or learning rate. Unlike step-wise regression, LFA uses
specific symbolic operators (split, merge, and add) to create new variables (new knowledge component
columns) thereby generating a huge space of possible Q matrices.

The version of LFA used in Koedinger et al. (2012) was run on eleven datasets in DataShop where
human analysts had created alternative possible cognitive models (in the form of Q matrices) for that data.
Instead of creating the P-matrix directly by hand (as was done in prior LFA applications), here the P
matrix is computed as the union of previously generated Q matrices associated with a data set created by
learning scientists or domain experts. In this way DataShop facilitates a simple version of scientist
crowdsourcing. LFA was then seeded with the simplest possible Q matrix, a single skill for all problem
steps, and the split operator was used to generate new Q matrices. Figure 5 shows a simple example of a
Q-matrix factor (Sub) being split by a P-matrix factor (Neg-result) resulting in the generation of a new
model (Q’) with two new KCs (Sub-Pos and Sub-Neg) replacing the old Sub KC. The LFA algorithm
uses the input from a P-matrix in a best first search process guided by a heuristic for model prediction
accuracy (e.g., the Akaike Information Criterion, AIC). It outputs a rank order of the most predictive Q-
matrices and, for each, the parameter estimates for student proficiency, KC difficulty and KC learning
rate.

Koedinger et al. 2012 applied the LFA algorithm to eleven datasets representing five domains and
various technologies. Discovered models were compared to prior models using the root mean square
error (RMSE) of predicted versus observed student correctness from a 10-fold item-stratified cross
validation. In all eleven datasets the best machine-generated model outperformed both the original (in-
use) model and the best hand-generated model. Because discovered models have much overlap with
existing models, the overall improvement in prediction, while reliable, is small. However, differences
between discovered and existing models provide a basis for meaningful improvements in tutor behavior,
as we describe below.

 8

Figure 5. Example of a Q matrix and P matrix mapped to problem steps and the resulting
Q’ matrix when Sub in the Q matrix is “split” by Neg-result from the P matrix.

One dataset (Geometry9697) was used to illustrate how to interpret discovered models and guide

tutor modification. Specific improvements of a discovered model over an original model were measured
by percent reduction in cross-validated RMSE referenced to the original model’s KCs. As expected, the
original 15 KCs were largely unchanged by experts or LFA where, in fact, the discovered models
replicate the base model. A substantial prediction error reduction was found in the three remaining KCs
(5.5 to 11.1%). The improvement found in two of these was mostly captured in the hand-generated model
and only slightly refined by LFA. However, the one remaining KC, circle-radius, realized a sizeable
reduction from both the original to best-hand model (6%) and from the best-hand to best-machine model
(4%). This discovery of LFA represents a genuine machine-based discovery not directly anticipated by
human analysts.

A close look at the problem steps associated with the splits made to the original model revealed a
distinction between forward vs. backward application of a formula (e.g., finding A in A=1/2bh vs. finding
b) that was unique to the circle area formula (i.e., A = πr2). The performance rate difference (80%
forward vs. 54% backward), parameter estimate differences (higher slopes and intercepts) and learning
curve shape (smoother and declining) led LFA to discover that backward application of circle area (given
the area find the radius) is a separate skill from forward application. It is not only harder, but there is
evidence that forward application practice does not transfer to backward application (or vice versa).
However, for other area formulas, backward application is not a distinguishable skill. For these formulas,
backward application is no harder than forward and practice in one direction does transfer to better
performance in the other. The unique feature of circle-area backwards is the need to evoke a square root
operation. LFA thus produces practical recommendations for tutor optimization, in this example, 1) to
change the update and selection functions to require separate mastery of forward and backward
application of circle area but collapse this distinction for other area formulas and 2) to change the evaluate
and suggest functions to specialize feedback and hint messages to the discovered challenge of seeing the
relevance of square root. More generally, LFA has implications for theories of human learning providing
an empirical methodology that demonstrates that student transfer of learning is often more narrow or
broad than expected.

4.2. Better statistical student models
The previous section described a method to automatically optimize the cognitive model, that is, the
representation of the underlying curriculum content. Given such a representation, we can use statistical
models to estimate and track student learning over the curriculum, as in the outer loop in Figure 1. Some
early, but still very successful, models of student learning, such as Knowledge Tracing (Corbett &
Anderson 1995), used identical model parameters for all students. In such generic models the estimate of
an individual’s student progress still adapts to the individual’s responses, but the parameters used to
compute this estimate are the same for all students.

Other statistical models explicitly include a student variable with one parameter estimated per
student. The Additive Factor, Performance Factor, and Instructional Factors Analysis models (Chi et al.

 9

2011) are all logistic regression models that include a single student parameter, which serves as a fixed
offset in performance prediction. Similarly, Pardos and Heffernan (2010) extended the Knowledge
Tracing model to allow for different, student-specific initial probabilities of knowing the material.
However, up to recently, almost no models attempt to account for wider possible variations among
students, such as learning rates. Corbett and Anderson (1995) did describe fitting individual weights to
each of the Knowledge Tracing parameters, but this was done as a correction to the population
parameters, rather than a direct parameter optimization for each student’s data. In contrast, recent work by
Lee and Brunskill (2012) allowed all parameters of a two-state, two-observation Hidden Markov Model
(the KT student model) to vary by student and fit models for individual students directly. The authors
were interested in whether significant variation in the different student model parameters existed amongst
students, and if such differences existed, if they had significant implications for instruction.

In this work, Lee and Brunskill fit a separate Knowledge Tracing model to each student’s data. This
involved fitting four parameters: initial probability of mastery, probability of transitioning from
unmastered to mastered, probability of giving an incorrect answer if the student has mastered the skill,
and probability of giving a correct answer if the student has not mastered the skill. Each student’s model
is fit using a combination of Expectation Maximization (EM) combined with a brute force search. It is
well known that fitting an HMM suffers from an identifiability problem (e.g. Beck & Chang 2007) and
that the resulting parameters may be implausible, such as if the probability of guessing correctly is higher
than giving the right answer if the skill is mastered (Beck & Chang 2007). In addition, EM is only
guaranteed to find a local optimum. To address identifiability, Baker et al. (2010) proposed performing a
brute force search over a discretized set of parameters, which is computationally feasible in this model as
there are only four parameters. Brute force search can also be used to enforce parameter plausibility, by
constraining the search to a range of values considered plausible. This is the approach taken by Lee and
Brunskill who used brute force search over the observation parameters to ensure plausibility, and used
EM to compute the initial probability and learning probability. Lee and Brunskill also fit a single generic
model to the combined set of all students’ data.

Typically the quality of a student model is measured by a model’s fit of the observed data, or its
ability to predict student performance on a held out dataset. Common methods include Bayesian
Information Criterion (BIC) and cross-validated Root Mean Square Error (RMSE). However, a key use
of student models is to inform a tutor’s instructional decisions: deciding the next activity to give to a
student. Motivated by this, Lee and Brunskill proposed to evaluate modeling parameters on an individual
level by whether this resulted in a significant change in the instructional decisions that would be made.
Typically KT models are used in a mastery learning setting, where a tutor provides additional practice
opportunities for a skill until the student’s probability of mastering that skill (as tracked using the KT
model) reaches a pre-specified threshold (e.g. Corbett & Anderson 1995). Given the same number of
practice opportunities and a fixed trajectory of a student’s responses, different model parameters will
result in different probabilities of mastery. Therefore different model parameters could vary the amount of
practice opportunities given to a student.

Lee and Brunskill evaluated whether the expected number of needed practice opportunities for a
student to reach the mastery threshold varied significantly depending on whether a generic set of model
parameters was used to evaluate mastery, or if model parameters fit to that individual’s data were used.
Computing this number can be viewed as policy evaluation in a continuous-state Markov Decision
Process, where the state is the current probability of mastery, and the policy is to provide another practice
opportunity if the state is below a threshold, or otherwise to halt teaching that skill. Lee and Brunskill
performed this policy evaluation using a forward search algorithm. Note that in both cases the model
parameters used to generate a student’s responses was the individual model, since in real situations the
student would be generating his responses based on his own internal knowledge and progression. The
difference is in whether those observed responses are assumed (by the tutor) to have been generated using
the set of generic model parameters or the individual’s own parameters (see Figure 6).

This approach was used to analyze data from over 200 students using the ASSISTments system
(Pardos & Heffernan 2011). Lee and Brunskill found that the fit individual parameters had a wide spread,

 10

and that the resulting parameters provided a significantly better fit of the observed data compared to a
generic model (likelihood ratio test, p< 0.0001). Their results also showed that over 20% of students
would be expected to be given at least twice as many expected practice opportunities if the generic model
was used compared to if their individual parameters were used, and 17% of students would be at <= 60%
probability of mastery (compared to the threshold of 95%) when the generic model would declare the
students as having mastered the material. This suggests that a significant number of students might be
advanced before they have fully understood the material, or prevented from learning new material when
ready, if a generic model of learning rate is used.

An implication of Lee and Brunskill’s work is that model parameters that are fit to individual learning
rates should yield better estimates of student learning and enable improved instruction. However, an
interesting open question is how to perform this analysis in an online fashion. Lee and Brunskill’s work
was performed as a retrospective analysis. When tutors interact with real students, the tutors must perform
this model fitting during tutoring. Indeed, this is a
challenge for any model with student parameters. When
only fitting a single parameter per student to specify the
offset, prior researchers (Corbett & Anderson 1995;
Pardos & Heffernan 2011) have proposed using the
student’s response on the first practice opportunity to fit a
model. However, this approach will not suffice for fitting
parameters that depend on the student’s learning rate
across skills. If prior diagnostic information exists about
the student, or if these parameters are similar across many
skills, then this model fitting could be performed in early
stages, while using a generic model to inform instruction.
More interesting is to consider how hierarchical models
of student parameters might be trained and shared across
multiple students, and used to inform instruction. Such
approaches could also be applicable beyond mastery
learning approaches to teaching.

4.3. Modeling engagement, affect
Beyond the relatively well-defined construct of student knowledge, data-driven methods can also be used
to model and adapt to constructs that have been historically difficult to define and model. One such area is
individual differences in student engagement and affect (emotion in context – Corno, 1986). Engagement
has long been seen as a critical factor in learning (cf. Corno & Mandinach 1983), but in past decades has
been seen as very difficult to operationalize in real time (Corno & Mandinach 1983), being a fairly ill-
defined construct, that can be seen as encompassing several constructs (e.g. several forms of
engagement). However, automated detectors of engagement and affect have recently become an effective
way to infer these constructs as a student is using online educational software such as intelligent tutoring
systems.

One of the key challenges to making automated detectors of engagement and affect feasible for
widespread use in intelligent tutoring systems has been the development of models that can infer these
types of constructs solely from the types of interaction data readily available in the contexts where the
software is used. Although reasonably effective models can be constructed using physical sensors such as
cameras and posture sensors (see Calvo & D’Mello, 2010 for review) these sensors can be challenging to
deploy at scale in schools, due to issues of cost and breakage in these settings. However, multi-year
efforts to understand and engineer the types of features associated with engagement and affect in
interaction data have begun to produce automated detectors that are reliable and effective for these
situations.

Figure 6. Standard tutors use generic model
parameters when selecting activities (left). On
the right, the tutor knows the current student’s
specific parameters.

 11

One of the first automated detectors of engagement was Baker et al.’s (2004) automated detectors of
gaming the system, a disengaged behavior where students attempt to succeed in an educational task by
systematically taking advantage of the intelligent tutor’s feedback and help rather than by thinking
through the material. In intelligent tutors, gaming the system can include misuse of hints to obtain
answers, or systematic guessing. Ground-truth training labels for this behavior can be obtained through
systematic field observations (Baker et al. 2004) or text replays (pretty-printed representations of student
logs, designed to be easy to read; Baker & de Carvalho 2008), checked across observers for inter-rater
reliability. Then classification algorithms such as J48 decision trees are used to infer what actions the
student was engaging in during the period of time labeled as gaming the system. Features such as repeated
fast errors on poorly known skills were found to be indicative of gaming. The automated detectors were
validated for effectiveness for new students and tutor lessons on different topics (within the same year-
long mathematics curriculum), and were found to be reasonably effective (A’/AUC over 0.8) under these
conditions. The automated detectors were first developed in the context of tutors for middle school
mathematics, but detectors of gaming have now also been developed for other curricula by the same and
other research groups.

A second disengaged behavior modeled in this fashion is off-task behavior, when the student
completely disengages from the learning task, for instance by talking to another student about an
unrelated topic. Though this behavior manifests in usage logs as inactivity, it can be inferred from the
actions that occur immediately before and after. The first detector of this behavior, by Baker (2007),
achieved a correlation of 0.55 between each student’s predicted frequency of off-task behavior and the
behavior’s frequency as noted by field observers, with cross-validation conducted at the student level.
Baker’s detector relied solely upon semantic actions within the interface, and timing data. Cetintas and
colleagues (2010) found that detection could be made more effective by also considering data from mouse
movements.

A third disengaged behavior modeled in this fashion is careless errors, where a student knows the
relevant skills to answer a question but produces an incorrect answer nonetheless. We infer training labels
for detectors of this behavior by using the probability that a student knew the skill at a specific time
computed from both student knowledge models (as discussed earlier) and data from future actions. For
example, an error produced when a student had a 90% chance of knowing a skill, followed by two correct
actions, is much more likely to represent a careless error, than errors produced under different conditions.
Once the training labels are obtained, detectors are developed to predict this behavior without using data
from the future. Detectors developed in this fashion have been validated to transfer not only to new
students, but to students from different countries (San Pedro et al. 2011). Detectors of this type have been
developed for intelligent tutors for both mathematics and science inquiry skill.

In addition to disengaged behaviors, a range of affective states have been modeled in intelligent
tutoring systems (cf. Calvo & D’Mello, 2010), in recent years solely from student interaction with
intelligent tutoring systems. The first such example is D’Mello et al. (2008), which modeled student affect
in the AutoTutor intelligent tutoring system in a laboratory study. D’Mello and colleagues achieved better
than chance agreement to ground-truth labels provided by human video coders, distinguishing students’
frustration, boredom, confusion, and flow from each other. Conati and Maclaren (2009) and Sabourin et
al. (2011) used a combination of interaction data and questionnaire data to infer a range of affective
states. More recent work by Baker and colleagues (2012) found that better agreement to ground-truth
labels could be achieved by explicitly using data from automated detectors of student disengaged
behaviors when predicting affect. In specific, guessing was indicative of boredom and confusion, and
failing to read hints was a negative predictor of engaged concentration.

In recent years, these detectors have been embedded into automated interventions that respond in
various fashion to attempt to re-engage students and mitigate the effects of negative affect. For example,
an automated agent that addresses gaming behavior has been developed, based on an automated detector
of gaming (Baker et al. 2006). This agent gave students supplementary exercises on material bypassed
through gaming, and displayed displeasure when the student games. In a classroom study in the USA, this
agent reduced gaming by half and improved gaming students’ learning relative to the control condition

 12

(Baker et al. 2006). Recent work has also leveraged automated assessments of uncertainty (e.g. Forbes-
Riley & Litman 2011), and affective states (cf. D’Mello, Craig, Fike, & Graesser 2009; Arroyo et al.
2011), with promising results. For instance, D’Mello and colleagues (2009) found that supportive
messages, given when negative affect occurred, improved affect for struggling students, while “shake-up”
messages improved affect for more successful students.

4.4. Optimizing instruction
A key aspect of the tutoring process is selecting the next activity to give to a student. This process can be
considered as an optimization problem: what activity should be selected next, based on an estimate of
what the student understands, in order to maximize some aspect of student learning, such as learning
gains or engagement. This view allows the activity selection problem to draw on advances in sequential
decision making under uncertainty. Early work by Beck, Woolf and Beal (2000) and Murray, VanLehn
and Mostow (2004) used reinforcement learning and myopic decision utility maximization to inform
instruction.

More recently, Chi et al. (2011) modeled physics tutoring as a Markov Decision Process (MDP) to
inform which type of activity to provide at certain junctures: whether to elicit student performance of a
step (to practice the underlying skill) or tell the student how to perform the step (as an example to learn
from), and whether to ask a student to justify a particular step of reasoning or to skip the request for
justification. Chi et al. considered a rich set of features to model the student’s state, and performed
automatic feature selection by identifying features associated with policies leading to high learning gains
in a training set. Chi et al. found that an MDP policy that used these features and optimized to maximize
expected learning gains resulted in higher empirical learning gains in a new lab student experiment
compared to an MDP policy designed to minimize learning gains. The focus of Chi et al.’s work was on
seeing if the tutorial policy used during micro-step tutoring could influence learning gains, so this control
policy was a reasonable comparison. However, the authors call for future work and, in particular, there is
a need to see whether MDPs provide a significant benefit over other stronger control methods for making
instructional decisions.

Recently several researchers (e.g. Brunskill & Russell, 2010; Brunskill et al. 2010; Rafferty et al.
2011) have taken an alternate approach of modeling the student state as being partially observable,
making instructional decisions an instance of Partially Observable MDP (POMDP) planning. Many
current tutoring systems do model student state as being partially observable, but such approaches often
take (quite successfully) a myopic approach to planning. When there are multiple different activities, and
there exists prerequisite structure about the skills in the curriculum, a myopic approach is not optimal.
Performing POMDP planning in such domains is generally computationally challenging, since a
curriculum may consist of many skills, each of which may be known or not known, and the skills are not
independent. However, Brunskill and Russell (2010) provided an efficient algorithm for planning in such
domains that have prerequisite structure, and showed in simulations that the resulting solutions could be
substantially better than myopic approaches. Brunskill et al. (2010) also used POMDP planning to inform
problem selection for students sharing a very simple groupware mathematical game. Their classroom pilot
found that tailoring activities to individual students led to less instances of a single student consistently
winning, suggesting potential benefits for engagement.

Though these initial findings are encouraging, there remains significant work to be done on
optimizing instructional design. More comparisons need to be made to existing state of the art
approaches. There also exists more machine learning and artificial intelligence research to be done, to
handle the huge state, action and observation (or feature) spaces involved, and close the loop of informing
model design by instructional policies. To accomplish this work, partnerships between learning science
and machine learning researchers are likely to be particularly effective. Learning sciences researchers
bring new and existing methods from psychology or education that can be built upon or used as strong
comparisons to new approaches that may be developed in tandem with machine learning researchers
expert in algorithms for analyzing and optimizing policies for large, many-featured domains (such as
education).

 13

5. Conclusions

In recent years, there has been increasing work to leverage data to optimize and redesign intelligent
tutoring systems. Within this paper, we discuss a range of recent work illustrating this potential in a range
of areas. Many of the examples are drawn from work with Cognitive Tutors, a mature platform used by
large numbers of students, but as discussed throughout the paper, there are relevant examples in a number
of other research groups and platforms as well. The kinds of data-driven development and optimization
techniques we have illustrated are relevant for both inner and outer loop functions of intelligent tutoring
systems. Some of this work enhances existing functionality. For example, when Learning Factors
Analysis is given student learning data from use of an ITS, it generates an improved cognitive model that
better matches student performance. The improved cognitive model can be used to optimize the suggest,
update, and select functions of the tutor. Similarly, Lee and Brunskill (2012) used student ITS data to
build a better student model that improves the update function, which in turn could improve the
effectiveness of the select function.

Beyond this, entirely new functionality can be supported through data-driven approaches. When
automated detectors of student engagement and affect are developed, it then becomes possible to evaluate
these aspects of the student in real-time, information that can be used to select different activities for the
student -- for example, through selecting alternate exercises designed to re-engage students and/or
mitigate the negative impacts on learning that disengagement and negative affect can cause. When the
Hint Factory is given data on a dense set of alternative solution paths for a problem, it can perform the
suggest function of generating next step hints. When SimStudent is given data on problem solution
demonstrations and feedback on its solution attempts, it learns new knowledge representation structures,
particularly domain representations and production rules. These produce the cognitive model component
of an ITS that is used for all of its functions: evaluate, suggest, update, and select.

As a whole, then, there are several ways that data can enhance the functionality of intelligent tutoring
systems, leading to more personalized instruction. This work remains in early stages; every year, new
approaches and uses for tutor data emerge, and new applications for enhancing intelligent tutors become
possible. We have framed a set of challenges and some preliminary solutions toward the vision of fully
optimized and personalized learning. The recent excitement and growth in online learning has the
potential to produce the data needed to pursue this vision. The effectiveness of online courses can be
vastly improved, but it will require going beyond compelling lecture videos and short follow-up questions
to address learning by doing. Missing from today’s most popular online courses and learning resources
are complex problem solving tasks, more open-ended interfaces, and AI back-ends that can interpret
students' step-by-step progress on these complex tasks. These changes will enrich the data and the
opportunities for data-driven improvement. In general, meeting the challenges inherent in the vision of
personalized learning will require richer data sources and advances in AI. Doing so could revolutionize
educational practice.

Acknowledgements

Thanks to the National Science Foundation #SBE-0836012 for funding of LearnLab at the Pittsburgh
Science of Learning Center (http://learnlab.org).

Author Biographies
Ken Koedinger is Professor of Human-Computer Interaction and Psychology at Carnegie Mellon. He
directs LearnLab.org, which leverages cognitive and computational approaches to support researchers in
investigating the instructional conditions that cause robust student learning.
(pact.cs.cmu.edu/koedinger.html)

Emma Brunskill is an Assistant Professor in the Computer Science Department at Carnegie Mellon
University. She is also affiliated with the Machine learning Department. Her research lies in artificial

http://learnlab.org/

 14

intelligence and machine learning, where she focuses on novel methods to automatically make good
sequences of decisions under uncertainty. She is particularly interested in applications of this work to
intelligent tutoring systems and healthcare.

Ryan S.J.d. Baker is the Julius and Rosa Sachs Distinguished Lecturer at Columbia University Teachers
College. He is also President of the International Educational Data Mining Society, and uses data mining
methods to study student engagement and robust learning in educational software.

Elizabeth A. McLaughlin is a Research Associate at the Human-Computer Interaction Institute at
Carnegie Mellon University. Her research interests include cognitive science and the application of cognitive
science principles to educational technology.

John Stamper is a member of the research faculty at the Human-Computer Interaction Institute at
Carnegie Mellon University. He is also the Technical Director of the Pittsburgh Science of
Learning Center DataShop (http://pslcdatashop.org). His primary areas of research include Educational
Data Mining and Intelligent Tutoring Systems.

References

Aleven, V.; McLaren, B.; Sewall, J.; and Koedinger, K. R. 2009. Example-tracing tutors: A new
paradigm for intelligent tutoring systems. International Journal of Artificial Intelligence in Education, 19:
105-154.

Arroyo, I.; Woolf, B.P.; Cooper, D.G.; Burleson, W.; and Muldner, K. 2011. The Impact of Animated
Pedagogical Agents on Girls’ and Boys’ Emotions, Attitudes, Behaviors, and Learning. In Proceedings
of the 11th IEEE Conference on Advanced Learning Technologies. Athens, Georgia.

Baker, R.S.J.d. 2007. Modeling and Understanding Students' Off-Task Behavior in Intelligent
Tutoring Systems. In Proceedings of ACM CHI 2007: Computer-Human Interaction, 1059-1068. San
Jose, CA.

Baker, R.S.; Corbett, A.T.; and Koedinger, K.R. 2004. Detecting Student Misuse of Intelligent
Tutoring Systems. In Proceedings of the 7th International Conference on Intelligent Tutoring Systems,
531-540. Maceio, Brazil.

Baker, R.S.J.d.; Corbett, A.T.; Koedinger, K.R.; Evenson, S.E.; Roll, I.; Wagner, A.Z.; Naim, M.;
Raspat, J.; Baker, D.J.; and Beck, J. 2006. Adapting to When Students Game an Intelligent Tutoring
System. In Proceedings of the 8th International Conference on Intelligent Tutoring Systems, 392-401.
Jhongli, Taiwan.

Baker, R.S.J.d.; Corbett, A.T.; Gowda, S.M.; Wagner, A.Z.; MacLaren, B.M.; Kauffman, L.R.;
Mitchell, A.P.; and Giguere, S. 2010. Contextual Slip and Prediction of Student Performance After Use of
an Intelligent Tutor. In Proceedings of the 18th Annual Conference on User Modeling, Adaptation, and
Personalization, 52-63. Hilo, Hawaii.

Baker, R.S.J.d.; de Carvalho, A. M. J. A. 2008. Labeling Student Behavior Faster and More Precisely
with Text Replays. In Proceedings of the 1st International Conference on Educational Data Mining, 38-
47.

Baker, R.S.J.d.; Gowda, S.M.; Wixon, M.; Kalka, J.; Wagner, A.Z.; Salvi, A.; Aleven, V.; Kusbit, G.;
Ocumpaugh, J.; and Rossi, L. 2012. Sensor-free automated detection of affect in a Cognitive Tutor for
Algebra. In Proceedings of the 5th International Conference on Educational Data Mining, 126-133.
Chania, Greece.

Baker, R.S.J.d.; and Yacef, K. 2009. The State of Educational Data Mining in 2009: A Review and
Future Visions. Journal of Educational Data Mining, 1 (1), 3-17.

Barnes, T.; and Stamper, J. 2008. Toward Automatic Hint Generation for Logic Proof Tutoring Using
Historical Student Data. In Proceedings of the 9th International Conference on Intelligent Tutoring
Systems (ITS 2008), 373-382. Berlin, Germany: Springer Verlag.

http://educationaldatamining.org/EDM2008/

 15

Beck, J. E.; and Chang, K.-m. 2007. Identifiability: A Fundamental Problem of Student Modeling. In
Proceedings of the 11th International Conference on User Modeling (UM 2007). Corfu, Greece.

Beck, J.; Woolf, B.; and Beal, C. 2000. ADVISOR: A Machine Learning Architecture for Intelligent
Tutor Construction. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 552-557.
Austin, Texas.

Bowen, W.G.; Chingos, M.M.; Lack, K.A.; and Nygren, T.I. 2012. Interactive Learning Online at
Public Universities: Evidence from Randomized Trials. Ithaka S+R, ITHAKA.Retrieved July 15, 2012
from
http://www.sr.ithaka.org/research-publications/interactive-learning-online-public-universities-evidence-
randomized-trials.

Brunskill,E.; and Russell, S. 2010. RAPID: A Reachable Anytime Planner for Imprecisely-sensed
Domains. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI). Catalina
Island, California.

Brunskill, E.; Garg, S.; Tseng, C.; Pal, J.; and Findalter, L. 2010. Evaluating an adaptive multi-user
educational tool for low-resource regions. In Proceedings of the International Conference on Information
and Communication Technologies and Development (ICTD). London, England.

Calvo, R. A.; and D’Mello, S. K. 2010. Affect Detection: An Interdisciplinary Review of Models,
Methods, and their Applications. IEEE Transactions on Affective Computing, 1(1), 18-37.

Cen, H.; Koedinger, K. R.; and Junker, B. 2006. Learning Factors Analysis: A general method for
cognitive model evaluation and improvement. In Proceedings of the 8th International Conference on
Intelligent Tutoring Systems, 164-175. Berlin: Springer-Verlag.

Cetintas, S.; Si, L.; Xin, Y.; and Hord, C. 2010. Automatic Detection of Off-Task Behaviors in
Intelligent Tutoring Systems with Machine Learning Techniques. IEEE Transactions on Learning
Technologies, 3(3), 228-236.

Chi,M.; VanLehn, K.; Litman, D.; and Jordan, P. 2011. An Evaluation of Pedagogical Tutorial
Tactics for a Natural Language Tutoring System: A Reinforcement Learning Approach. International
Journal of Artificial Intelligence in Education 21: 83-113.

Conati, C.; and Maclaren, H. 2009. Empirically building and evaluating a probabilistic model of user
affect. User Modeling and User-Adapted Interaction, 19, 267-303.

Corbett, A.T.; and Anderson, J.R. 1995. Knowledge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted interaction, 4, 253-278.

Corno, L. 1986. The metacognitive control components of self-regulated learning. Contemporary
Educational Psychology, 11(4), 333-346.

Corno, L.; and Mandinach, E. B. 1983. The role of cognitive engagement in classroom learning and
motivation. Educational Psychologist, 18(2), 88-108.

D’Mello, S. K.; Craig, S. D.; Fike, K.; and Graesser, A. C. 2009. Responding to Learners’ Cognitive-
Affective States with Supportive and Shakeup Dialogues. In Jacko, J. A. (Ed.) Human-Computer
Interaction. Ambient, Ubiquitous and Intelligent Interaction, 595-604. Berlin/Heidelberg: Springer.

D’Mello, S.K.; Craig, S.D.; Witherspoon, A. W.; McDaniel, B. T.; and Graesser, A. C. 2008.
Automatic Detection of Learner’s Affect from Conversational Cues. User Modeling and User-Adapted
Interaction, 18 (1-2), 45-80.

Forbes-Riley, K.; and Litman, D. 2011. Benefits and Challenges of Real-Time Uncertainty Detection
and Adaptation in a Spoken Dialogue Computer Tutor (with Diane Litman). Speech Communication,
53(9-10): 1115-1136.

Fossati, D.; Di Eugenio, B.; Ohlsson, S.; Brown, C.; Chen, L.; and Cosejo, D. 2009. I learn from you,
you learn from me: How to make iList learn from students. In Proceedings of 14th Intl. Conf. on Artificial
Intelligence in Education (AIED 2009), 186-195. Brighton, UK. IOS Press.

Graesser, A. C.; Chipman, P.; Haynes, B.; and Olney, A. M. 2005. AutoTutor: An intelligent tutoring
system with mixed-initiative dialogue. IEEE Transactions on Education, 48(4), 612-618.

Jin, W.; Barnes, T.; Stamper, J.; Eagle, M.; Johnson, M.; and Lehmann, L. 2012. Program
Representation for Automatic Hint Generation for a Data-Driven Novice Programming Tutor. In

http://www.sr.ithaka.org/research-publications/interactive-learning-online-public-universities-evidence-randomized-trials
http://www.sr.ithaka.org/research-publications/interactive-learning-online-public-universities-evidence-randomized-trials

 16

Proceeding of the 11th International Conference on Intelligent Tutoring Systems(ITS2012), 304-309.
Chania, Greece.

Koedinger, K.R.; Baker, R.S.J.d.; Cunningham, K.; Skogsholm, A.; Leber, B.; and Stamper, J. 2011.
A Data Repository for the EDM community: The PSLC DataShop. In Romero, C., Ventura, S.,
Pechenizkiy, M., Baker, R.S.J.d. (Eds.) Handbook of Educational Data Mining. Boca Raton, FL: CRC
Press.

Koedinger, K. R.; McLaughlin, E. A., and Stamper, J. C. 2012. Automated Student Model
Improvement. In Proceedings of the 5th International Conference on Educational Data Mining, 17-24.
Chania, Greece.

Lee, J. I.; and Brunskill, E. 2012. The Impact on Individualizing Student Models on Necessary
Practice Opportunities. In Proceedings of the 5th International Conference on Educational Data Mining,
118-125. Chania, Greece.

Li, N.; Matsuda, N.; Cohen, W.W.; and Koedinger, K.R. 2012. SimStudent: An agent architecture for
simulating student learning. Manuscript under review.

Long, P.; and Siemens, G. 2011. Penetrating the fog: Analytics in learning and education. Educause
Review, 46(5), 31-40.

Lovett, M.; Meyer, O.; and Thille, C. 2008. The Open Learning Initiative: Measuring the
effectiveness of the OLI learning course in accelerating student learning. Journal of Interactive Media in
Education. http://jime.open.ac.uk/2008/14/.

Mitrovic, A. 2003.An intelligent SQL tutor on the web. International Journal of Artificial
Intelligence in Education, 13(2-4), 197-243.

Murray, B.; Vanlehn , K.; and Mostow, J. 2004. Looking Ahead to Select Tutorial Actions: A
Decision-Theoretic Approach. International Journal of Artificial Intelligence in Education 14(3-4): 235-
278.

Pardos, Z. A.; and Heffernan, N. T. 2010. Modeling Individualization in a Bayesian Networks
Implementation of Knowledge Tracing. In Proceedings of the 18th International Conference on User
Modeling, Adaptation and Personalization, 255-266. Big Island, Hawaii.

Rafferty, A.; Brunskill, E.; Griffiths,T.; and Shafto, P. 2011. Faster teaching by POMDP planning. In
Proceedings of 15th International Conference on Artificial Intelligence in Education, Auckland, New
Zealand.

Ritter S.; Anderson, J. R.; Koedinger, K. R.; and Corbett, A. 2007. Cognitive tutor: Applied research
in mathematics education. Psychonomic Bulletin & Review, 14 (2):249-255.

Roschelle, J.; Shechtman, N.; Tatar, D.; Hegedus, S.; Hopkins, B.; Empson, S.; Knudsen, J.; and
Gallagher, L. 2010. Integration of technology, curriculum, and professional development for advancing
middle school mathematics: Three large-scale studies. American Educational Research Journal, 47(4),
833-878.

Romero, R.; and Ventura, S. 2007. Educational Data Mining: A Survey from 1995 to 2005. Expert
Systems with Applications, 33(1), 135-146.

Sabourin, J.; Mott, B.; and Lester, J. 2011. Modeling Learner Affect with Theoretically Grounded
Dynamic Bayesian Networks. In Proceedings of the 4th International Conference on Affective Computing
and Intelligent Interaction, 286-295. Memphis, TN.

San Pedro, M.O.C.; Baker, R.; and Rodrigo, M.M. 2011. Detecting Carelessness through Contextual
Estimation of Slip Probabilities among Students Using an Intelligent Tutor for Mathematics. In
Proceedings of 15th International Conference on Artificial Intelligence in Education, 304-311. Auckland,
New Zealand.

Sao Pedro, M. A.; Baker, R.S.J.d.; Montalvo, O.; Nakama, A.; and Gobert, J.D. 2010. Using Text
Replay Tagging to Produce Detectors of Systematic Experimentation Behavior Patterns. In Proceedings
of the 3rd International Conference on Educational Data Mining, 181-190. Pittsburgh, PA.

Singh, R.; Gulwani, S.; and Rajamani, S. 2012. Automatically Generating Algebra Problems. In
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. Ontario, Canada.

http://jime.open.ac.uk/2008/14/

 17

Stamper, J.; Barnes, T.; and Croy, M. 2010. Enhancing the Automatic Generation of Hints with
Expert Seeding. In Proceeding of the 10th International Conference on Intelligent Tutoring Systems
(ITS2010) vol. II, 31-40. Berlin, Germany: Springer Verlag.

Sutton, S.; and Barto, A. 1998. Reinforcement Learning: An Introduction. MIT Press, Cambridge.
Tatsuoka, K.K. 1983. Rule space: An approach for dealing with misconceptions based on item

response theory. Journal of Educational Measurement, 20, 345-354.
VanLehn, K. 2006. The behavior of tutoring systems. International Journal of Artificial Intelligence in
Education, 16, 227-265.

	New Potentials for Data-Driven Intelligent Tutoring System Development and Optimization
	Short title: Data-Driven Improvement of Intelligent Tutors
	Authors: Kenneth R. Koedinger, Emma Brunskill, Ryan S.J.d. Baker, Elizabeth A. McLaughlin, and John Stamper
	Keywords: educational data mining, learning analytics, artificial intelligence in education, machine learning for student modeling
	Abstract
	1. Introduction
	2. A Summary and Illustration of the Key Functions of Intelligent Tutoring Systems
	3.1. SimStudent: Developing Cognitive Models by Demonstration and Tutoring
	3.2. Hint Factory

	4. Machine learning and data-driven ITS optimization
	4.1. Optimizing the Cognitive Model

	Figure 5. Example of a Q matrix and P matrix mapped to problem steps and the resulting
	4.3. Modeling engagement, affect

	Acknowledgements
	Author Biographies
	Intelligent Tutoring Systems with Machine Learning Techniques. IEEE Transactions on Learning Technologies, 3(3), 228-236.
	Li, N.; Matsuda, N.; Cohen, W.W.; and Koedinger, K.R. 2012. SimStudent: An agent architecture for simulating student learning. Manuscript under review.
	Mitrovic, A. 2003.An intelligent SQL tutor on the web. International Journal of Artificial Intelligence in Education, 13(2-4), 197-243.

