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Abstract 
Increasing widespread use of educational technologies is producing vast amounts of data. Such data can 
be used to help advance our understanding of student learning and enable more intelligent, interactive, 
engaging, and effective education. In this paper, we discuss the status and prospects of this new and 
powerful opportunity for data-driven development and optimization of educational technologies, focusing 
on Intelligent Tutoring Systems.  We provide examples of use of a variety of techniques to develop or 
optimize the select, evaluate, suggest, and update functions of intelligent tutors, including probabilistic 
grammar learning, rule induction, Markov decision process, classification, and integrations of symbolic 
search and statistical inference. 
 

1. Introduction 
Technologies to support learning and education, such as Intelligent Tutoring Systems (ITS), have a long 
history in artificial intelligence.  AI methods have advanced considerably since those early days, and so 
have intelligent tutoring systems. Today, Intelligent Tutoring Systems are in widespread use in K12 
schools and colleges and are enhancing the student learning experience (e.g., Graesser et al. 2005; 
Mitrovic 2003; Van Lehn 2006).  As a specific example, Cognitive Tutor mathematics courses are in 
regular use, about two-days a week, by 600,000 students a year in 2600 middle or high schools, and full-
year evaluation studies of Cognitive Tutor Algebra have demonstrated better student learning compared 
to traditional algebra courses (Ritter et al. 2007).   

In recent years, a range of types of interactive educational technologies have also become prominent 
and widely used, including homework support and tutoring systems, science simulations and virtual labs, 
educational games, on-line resources, massively open online courses, and highly interactive web-based 
courses. Some have experimentally established learning benefits (e.g., Bowen et al. 2012; Lovett et al. 
2008; Roschelle et al. 2010). These systems are increasingly being instrumented to collect vast amounts 
of "Big Data" and more and more of it is freely available. DataShop, an open data repository at the 
Pittsburgh Science of Learning Center1 (Koedinger et al. 2011), currently stores more than 350 datasets 
that include over 200,000 student hours of data from thousands of students at an average of 10 seconds 
per action, yielding more than 90 million stored student actions.  

Such data can be used to help advance our understanding of student learning and create better, more 
intelligent, interactive, engaging, and effective education.  To do so requires advances in artificial 
intelligence and machine learning and in our theories of human intelligence and learning, especially the 
rich, knowledge-based learning flexibility that allows humans to develop expertise in so many complex 
domains. This work is often being pursued in the new fields of educational data mining (Romero & 
Ventura 2007; Baker & Yacef 2009) and learning analytics (Long  & Siemens 2011). 

                                                      
1 http://learnlab.org/datashop 

http://learnlab.org/datashop
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In this paper, we discuss the status and prospects of this new and powerful opportunity for data-driven 
development and optimization of educational technologies, focusing on Intelligent Tutoring Systems, and 
illustrating techniques especially in the context of Cognitive Tutors.  

We begin by summarizing and illustrating the key functions of an intelligent tutoring system.  We 
then discuss techniques for using data to develop ITS functionality without extensive knowledge 
engineering efforts and, ideally, with greater fidelity to student experience and consequent pedagogical 
effectiveness.  Explicitly directed at accurate modeling of student learning, student engagement, and 
improved instruction, we next discuss techniques that optimize ITS functionality. We conclude with some 
future possibilities for data-driven ITS development and optimization. 
 
2. A Summary and Illustration of the Key Functions of Intelligent Tutoring Systems 
Intelligent Tutoring Systems both guide students through a curriculum of instructional activities in an 
outer loop, and monitor step-by-step progress on an activity within an inner loop (Van Lehn 2006). As 
shown in Figure 1, the outer loop starts with selecting and presenting an activity to the student. Such 
activities are often multi-step problems to solve, but may also include interactions in a simulation, game, 
or a dialogue. Figure 2 shows an example of a complex activity selected from an Algebra curriculum unit 
on systems of linear equations where students use table, graphical, and symbolic representations to model 
a problem scenario and answer questions about it (Ritter et al. 2007). Once an activity is selected, the 
inner loop takes over and, as shown in Figure 1, persists until the student has completed the activity.  
Within the inner loop, a tutor must decipher and evaluate each student action given the context of prior 
actions and a cognitive model of student reasoning and performance. For example, in Figure 2b, the 
student has been filling in the table and most recently entered a mathematical expression (.13t) in a 
column he/she previously labeled “Current cost” and using her choice of “t” to represent “Time”.  The 
tutor uses the cognitive model to evaluate this action (in the context of a plan) and determines it is 
incorrect (it should be .13t+14.95).  In addition to evaluating student actions (the left branch of the inner 
loop in Figure 1), an intelligent tutor can also suggest a next action when a student is stuck (the right 
branch).  This suggestion may come in the form of a series of as-needed hints that get increasingly 
specific.  In Figure 2c, the student gets stuck on question 4 of the problem and clicks on the hint button 
(2d). The tutor replies with an initial general hint to enter an equation (within the equation solving tool). 
To perform the evaluate and suggest functions, the tutor uses a cognitive model, that represents possible 
solutions to the activity, infers how a student’s input may relate to common misunderstandings, and 
predicts what feedback or hints will best help the student complete the activity. Figure 3 illustrates how a 

Figure 1.  Key functions of Intelligent 
Tutoring Systems, Select, Evaluate, 
Suggest, and Update (in rectangles) are 
supported by cognitive model and 
individual student model components 
(in rounded rectangles).  They operate 
inside an across-activity “outer loop” 
and a within-activity “inner loop”. 
Traditionally developed through 
knowledge engineering, these 
functions are increasingly being 
developed and optimized through data-
driven machine learning. 
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cognitive model can be used, through a plan recognition algorithm called model tracing (Ritter el al. 
2007), to both evaluate a student’s responses and suggest hints.  

  
The results of model tracing of student input as he or she completes the activity is used to update 

(bottom of the outer loop in Figure 1) an estimate of the student’s skills and knowledge in the target 
domain. This information is then used to aid in activity selection (top of the outer loop). While many 
representations of student knowledge are possible, a simple yet effective model involves representing the 
curriculum by a set of skills and concepts, known as Knowledge Components (KCs). Then student 
knowledge is represented by the probability that the student has mastered each KC. These probability 
estimates can be updated by using a probabilistic model of student learning, such as by Knowledge 
Tracing (Corbett & Anderson 1995), which is essentially Bayesian filtering performed on a two-state 
Hidden Markov Model.  Figure 2e shows an estimate of the student’s understanding of the five 
knowledge components used in this curriculum unit.  These estimates are used to select the next activity 
for the student.  

Figure 2. A screen shot (with blow-ups) of a problem within the Algebra Cognitive Tutor provides 
a concrete example of model tracing (a-d) and knowledge tracing (e) as implemented in an ITS.   In 
(a) the student reads the problem statement and (b) performs actions (filling in cells in table), which 
the tutor evaluates in comparison to the cognitive model and then provides feedback. (c) Later, the 
student reads question 4 and is stuck, (d) so she requests a hint.  The cognitive model is run forward 
to generate a reasonable next step given the current solution state and the tutor suggests a 
corresponding hint (to set up an equation). (e) Student model updates are made based on student 
performance and these are used to select the next problem. 
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Figure 3.  An example of the use of production rules in a cognitive model (green boxes) for model 
tracing and knowledge tracing, which are specific implementations of the inner and outer loops in 
Figure 1. In model tracing, the productions are used to evaluate student actions as correct (green 
arrows) or incorrect (red arrows) with possible “bug” feedback (bottommost purple box) and to suggest 
possible next actions with associated hints (two other purple boxes).  Knowledge tracing uses the 
evaluation of student actions in a Bayesian update of the individual student model of the chance a rule 
is known, which in turn is used to select future problems adapted to student needs. 
 

3. Machine learning and data-driven ITS development 
Historically, most intelligent tutoring systems (ITS) have been built through extensive knowledge 
engineering, and ideally cognitive task analysis, to develop models of student and expert skill and 
performance. These models are then used to generate hints and feedback (inner loop of Figure 1). In 
particular, two classes of effective tutors, cognitive tutors (e.g., Ritter et al. 2007) and constraint-based 
tutors (e.g., Mitrovic et al. 2003), rely on knowledge representations, “production rules” or “constraints”, 
that require extensive programming, expertise and often empirical research to develop. In contrast, data-
driven methods can enable more rapid development of new intelligent tutoring systems. We now present 
different data-driven symbolic and/or statistical machine learning approaches for automated or semi-
automated development of the key components and functionalities of intelligent tutoring systems as 
illustrated in Figures 1-3.  
3.1. SimStudent: Developing Cognitive Models by Demonstration and Tutoring 
SimStudent is a theory of student learning instantiated in a software tool that facilitates the development 
of cognitive models.  A primary use is to allow non-AI-programmers to “program by tutoring” to create 
the central cognitive model component of an ITS.  In this approach, authors first use Cognitive Tutor 
Authoring Tools (CTAT; Aleven et al. 2009) to create a graphical user interface which students will use 
to solve tasks (e.g., a table of rows for steps in an algebra equation solution).  The author iteratively enters 
tasks into the interface (e.g., an equation to solve) and then evokes SimStudent to solve each task. 
Initially, SimStudent has no relevant productions, so asks the author to demonstrate a step.  The 
demonstration is used to induce a candidate production rule for accomplishing the step.  On future steps, 
previously induced production rules (which may be overly general) are used to generate candidate next 
steps and the author gives yes-no feedback on the correctness of the step.  When the author states the step 
is incorrect, SimStudent relearns the production rule given the past history of demonstrations and 
feedback it has received and tries again until it either gets positive feedback or runs out of options.  In the 
latter case, it asks the author for a demonstration of that step and induces a new production rule.  

SimStudent employs multiple AI and machine learning techniques to learn a rule-based production 
system (Li et al. in prep). Example problem and solution steps (e.g., algebra equations) are used by 
probabilistic context-free grammar learning to generalize a hierarchical state representation that 
production rules manipulate.  The if-part of each production rule is acquired using a version space search 
for generalizing information retrieval paths and inductive logic programming for learning preconditions, 
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which refine correctness and search control.  The then-part of production rules is acquired by an inductive 
search of function compositions that are consistent with prior action records.  The acquired production 
system serves as the cognitive model component of an ITS that is used for all of its functions: evaluate, 
suggest, update, and select. SimStudent has been applied to learn cognitive models in many domains 
including algebra equation solving, stoichiometry, multi-column addition and subtraction, tic-tac-toe, and 
fraction addition. 
3.2. Hint Factory  
The Hint Factory is a method of automatically generating context specific hints by using previously 
collected student data (Barnes & Stamper 2008). The method is designed to be as specific as possible, 
derived on-demand, and directed to the student’s problem-solving goal, to provide the right type of help at 
the right time. In particular, the Hint Factory uses student attempt data to automatically Evaluate student 
actions and to Suggest next steps, that is, to provide hints within a problem. It achieves the inner loop of 
Figure 1. 

The Hint Factory provides direct, data-driven feedback in an environment where students can choose 
from a large space of actions to perform and many are correct. In order to deliver hints and feedback, the 
Hint Factory first constructs a graph of states and actions that represents all previous student approaches 
to a particular problem. Here the state describes what the student sees on the screen and the actions are 
what the student does. The state-action graph is transformed into a Markov decision process (MDP). A 
MDP is defined by its state set S, action set A, transition probabilities T, and a reward function R (Sutton 
& Barto 1998). A simple reward function is to provide a small negative reward for all non-solution states: 
this encourages reaching the solution as efficiently as possible. Then the MDP is used to generate hints 
with the Hint Factory. The goal of using an MDP is to determine the best policy (i.e., the best path 
through this graph) that corresponds to solving the given problem. This is achieved by calculating a 
“value”, the expected discounted sum of the rewards to be earned by following an optimal policy from 
state s, calculated recursively using value iteration. Once value iteration is complete, the optimal solution 
in the MDP corresponds to taking an expert-like approach to solving the given problem, where from each 
state the best action to take is the one that leads to the next state with the highest expected reward value 
(Barnes & Stamper 2008).  The Hint Factory uses these values when a student is in a particular state to 
choose the next “best” state from which to generate a hint. When the hint button is pressed, the hint 
provider searches for the current state in the MDP and checks that a successor state exists. If it does, the 
successor state with the highest value is used to generate a hint sequence. A hint sequence refers to hints 
that are all derived based on the same current state. For each state, four distinct hints are generated. If a 
student requests a hint, then makes an error, and requests a hint again, the next hint generated is the next 
one in the current sequence. Once a student performs a correct step, the hint sequence is reset. 

Barnes and Stamper (2008) demonstrated the feasibility of this approach on historical data, showing 
that extracted MDPs with the proposed hint-generating functions could provide correct next-step hints 
towards the problem solution over 80% of the time. In a pilot study, Barnes and Stamper augmented a 
tutor to teach propositional logic with the Hint Factory and showed that students were able to solve more 
logic proof problems when hints were included. An example of the Hint Factory implemented in the logic 
tutor can be seen in Figure 4. The figure shows a partially completed proof on the left, and a small graph 
of previous attempts in the upper right. The states are represented with the numbers in circles. The start 
state is state 0, and the current student has completed the four steps shown in the lower right (highlighted 
in the graph). Error states are highlighted in red.  

Since the Hint Factory is data-driven, the system can be bootstrapped with expert solutions (Stamper 
et al. 2010). The Hint Factory can evolve, providing at least some automatically-generated hints initially 
and improving as additional expert and student problem attempts are added to the model. 

The Hint Factory and MDP methods have also been used to augment tutors in other domains. Fossati 
and colleagues (2009) have used these MDP methods in the iList linked list tutor to deliver “proactive 
feedback” based on previous student work. Work is ongoing to build a Hint Factory to provide hints for 
novices in an open computer programming environment (Jin et al. 2011).  
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Figure 4.  On the left is a partially completed proof in the logic tutor with the Hint Factory added. The 
student started with three given premises and the conclusion (State 0) and has performed four steps 
(states 1-4), whose state descriptions are in the lower right. The upper right shows a solution graph 
aggregated from past student solutions.  The current student solution is traced against this graph, see 
the filled in circles for states 0-4. By comparing the student’s current state (4) with the goal state 
(which is state 5), the Hint Factory can give students hints toward the next best state that is on path to 
the solution. In this case the student can reach the goal state by completing one more step (MP). When 
a student presses the Hint button, a hint message is generated such as “Try using Modus Ponens(MP)”. 

3.3. Detector approach: Science inquiry tutor example  
In more ill-defined domains, it can be difficult to create an explicit cognitive model through typical 
knowledge-engineering processes, and it can be difficult even to conceptualize what an “item” or 
“practice opportunity” is. In recent years, data-driven approaches have proven useful for these domains as 
well. Machine learning has been used to develop the inner-loop evaluate functionality of an ITS in more 
ill-defined domains.  In these cases, a “detector” or classifier is trained using human labels of desired and 
undesired student actions within an open-ended simulation or performance environment. The work of Sao 
Pedro et al. (2010) on developing a tutor for scientific inquiry illustrates this approach. In this approach, 
humans hand-labeled student data from use of a set of science microworlds, using text-based replays of 
segments of student interaction logs. The labels indicated whether an appropriate or inappropriate science 
inquiry strategy was present in the replayed segment, including designing controlled experiments, testing 
the stated hypothesis, and haphazard inquiry. Hand labels were validated for inter-rater reliability across 
multiple coders, and then used as training labels for automated detectors of student science inquiry skill, 
using standard classification algorithms. The algorithm used a set of engineered features relevant to the 
timing and semantics of student actions, including features representing consistency and the number of 
times a specific action (such as changing variables or running the same experiment) occurred. The 
automated detectors were validated for effectiveness for new students and microworlds on different 
science topics, and were found to be reasonably effective under these conditions.  The detectors require 
some accumulation of data before they can respond effectively, but Sao Pedro and colleagues found the 
detectors could make accurate inferences about a specific student’s inquiry skill after that student had run 
the simulation three times (each run takes under a minute), enabling reasonably rapid intervention. These 
detectors have now been built into automated interventions administered by a pedagogical agent, which 
evaluates student actions, identifies inappropriate strategies, gives students feedback and advice on how 
to conduct more effective experimentation. 
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3.4. Other future possibilities for automated ITS construction  
Another interesting issue is automated problem generation to provide suggested activities in the outer 
loop of Figure 1. Recent work by Singh, Gulwani, and Rajamani (2012) drew upon results on generalized 
polynomial identity testing to automatically generate, from a given example Algebra proof problem, a set 
of new similar but non-trivially different Algebra proof problems.  This and related techniques for 
automatically generating interesting related problems would help decrease the time required by domain 
experts, reduce concerns of cheating, and, in principle, lead to more finely constructed examples 
specifically designed to address a student’s current misunderstanding.  

 
4. Machine learning and data-driven ITS optimization  
In addition to using data-driven methods to enable more rapid development of new intelligent tutoring 
systems, these methods can also be used to optimize the effectiveness of existing tutoring systems as we 
discuss in this section.  
4.1. Optimizing the Cognitive Model  
Recently, Koedinger et al. (2012) introduced an automated search process for optimizing cognitive model 
representations of student skill by hypothesizing alternative knowledge representations and testing them 
against data. Their approach was implemented using a version of the Learning Factors Analysis (LFA) 
algorithm (Cen, Koedinger, Junker 2006). LFA makes use of the Q matrix representation (Tatsuoka 
1983), a map of skills or “knowledge components” (KCs) to tasks (e.g., observed steps in problems).  The 
KCs in a Q matrix are a latent variable simplification of the production rules or constraints in a cognitive 
model.  LFA searches over Q matrices to find the one that best predicts student learning data, where that 
data is organized as success rate on knowledge components over time (encoded as number of 
opportunities to practice).  The statistical prediction model is logistic regression with parameters for each 
student, KC, and KC by practice opportunity.  Like a step-wise regression, LFA starts with a large set of 
candidate predictor variables (the so-called “P matrix”), which are hypothesized “learning factors” that 
may influence student performance difficulty or learning rate.  Unlike step-wise regression, LFA uses 
specific symbolic operators (split, merge, and add) to create new variables (new knowledge component 
columns) thereby generating a huge space of possible Q matrices. 

The version of LFA used in Koedinger et al. (2012) was run on eleven datasets in DataShop where 
human analysts had created alternative possible cognitive models (in the form of Q matrices) for that data.  
Instead of creating the P-matrix directly by hand (as was done in prior LFA applications), here the P 
matrix is computed as the union of previously generated Q matrices associated with a data set created by 
learning scientists or domain experts.  In this way DataShop facilitates a simple version of scientist 
crowdsourcing.  LFA was then seeded with the simplest possible Q matrix, a single skill for all problem 
steps, and the split operator was used to generate new Q matrices. Figure 5 shows a simple example of a 
Q-matrix factor (Sub) being split by a P-matrix factor (Neg-result) resulting in the generation of a new 
model (Q’) with two new KCs (Sub-Pos and Sub-Neg) replacing the old Sub KC.  The LFA algorithm 
uses the input from a P-matrix in a best first search process guided by a heuristic for model prediction 
accuracy (e.g., the Akaike Information Criterion, AIC).  It outputs a rank order of the most predictive Q-
matrices and, for each, the parameter estimates for student proficiency, KC difficulty and KC learning 
rate.  

Koedinger et al. 2012 applied the LFA algorithm to eleven datasets representing five domains and 
various technologies.  Discovered models were compared to prior models using the root mean square 
error (RMSE) of predicted versus observed student correctness from a 10-fold item-stratified cross 
validation.  In all eleven datasets the best machine-generated model outperformed both the original (in-
use) model and the best hand-generated model. Because discovered models have much overlap with 
existing models, the overall improvement in prediction, while reliable, is small. However, differences 
between discovered and existing models provide a basis for meaningful improvements in tutor behavior, 
as we describe below. 
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Figure 5. Example of a Q matrix and P matrix mapped to problem steps and the resulting 
Q’ matrix when Sub in the Q matrix is “split” by Neg-result from the P matrix. 

 
One dataset (Geometry9697) was used to illustrate how to interpret discovered models and guide 

tutor modification. Specific improvements of a discovered model over an original model were measured 
by percent reduction in cross-validated RMSE referenced to the original model’s KCs. As expected, the 
original 15 KCs were largely unchanged by experts or LFA where, in fact, the discovered models 
replicate the base model. A substantial prediction error reduction was found in the three remaining KCs 
(5.5 to 11.1%). The improvement found in two of these was mostly captured in the hand-generated model 
and only slightly refined by LFA.  However, the one remaining KC, circle-radius, realized a sizeable 
reduction from both the original to best-hand model (6%) and from the best-hand to best-machine model 
(4%).  This discovery of LFA represents a genuine machine-based discovery not directly anticipated by 
human analysts.  

A close look at the problem steps associated with the splits made to the original model revealed a 
distinction between forward vs. backward application of a formula (e.g., finding A in A=1/2bh vs. finding 
b) that was unique to the circle area formula (i.e., A = πr2).  The performance rate difference (80% 
forward vs. 54% backward), parameter estimate differences (higher slopes and intercepts) and learning 
curve shape (smoother and declining) led LFA to discover that backward application of circle area (given 
the area find the radius) is a separate skill from forward application.  It is not only harder, but there is 
evidence that forward application practice does not transfer to backward application (or vice versa).  
However, for other area formulas, backward application is not a distinguishable skill.  For these formulas, 
backward application is no harder than forward and practice in one direction does transfer to better 
performance in the other.  The unique feature of circle-area backwards is the need to evoke a square root 
operation. LFA thus produces practical recommendations for tutor optimization, in this example, 1) to 
change the update and selection functions to require separate mastery of forward and backward 
application of circle area but collapse this distinction for other area formulas and 2) to change the evaluate 
and suggest functions to specialize feedback and hint messages to the discovered challenge of seeing the 
relevance of square root. More generally, LFA has implications for theories of human learning providing 
an empirical methodology that demonstrates that student transfer of learning is often more narrow or 
broad than expected.  

 
4.2. Better statistical student models  
The previous section described a method to automatically optimize the cognitive model, that is, the 
representation of the underlying curriculum content. Given such a representation, we can use statistical 
models to estimate and track student learning over the curriculum, as in the outer loop in Figure 1. Some 
early, but still very successful, models of student learning, such as Knowledge Tracing (Corbett & 
Anderson 1995), used identical model parameters for all students. In such generic models the estimate of 
an individual’s student progress still adapts to the individual’s responses, but the parameters used to 
compute this estimate are the same for all students.  

Other statistical models explicitly include a student variable with one parameter estimated per 
student. The Additive Factor, Performance Factor, and Instructional Factors Analysis models (Chi et al. 
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2011) are all logistic regression models that include a single student parameter, which serves as a fixed 
offset in performance prediction. Similarly, Pardos and Heffernan (2010) extended the Knowledge 
Tracing model to allow for different, student-specific initial probabilities of knowing the material. 
However, up to recently, almost no models attempt to account for wider possible variations among 
students, such as learning rates. Corbett and Anderson (1995) did describe fitting individual weights to 
each of the Knowledge Tracing parameters, but this was done as a correction to the population 
parameters, rather than a direct parameter optimization for each student’s data. In contrast, recent work by 
Lee and Brunskill (2012) allowed all parameters of a two-state, two-observation Hidden Markov Model 
(the KT student model) to vary by student and fit models for individual students directly. The authors 
were interested in whether significant variation in the different student model parameters existed amongst 
students, and if such differences existed, if they had significant implications for instruction.   

In this work, Lee and Brunskill fit a separate Knowledge Tracing model to each student’s data. This 
involved fitting four parameters: initial probability of mastery, probability of transitioning from 
unmastered to mastered, probability of giving an incorrect answer if the student has mastered the skill, 
and probability of giving a correct answer if the student has not mastered the skill. Each student’s model 
is fit using a combination of Expectation Maximization (EM) combined with a brute force search. It is 
well known that fitting an HMM suffers from an identifiability problem (e.g. Beck & Chang 2007) and 
that the resulting parameters may be implausible, such as if the probability of guessing correctly is higher 
than giving the right answer if the skill is mastered (Beck & Chang 2007). In addition, EM is only 
guaranteed to find a local optimum. To address identifiability, Baker et al. (2010) proposed performing a 
brute force search over a discretized set of parameters, which is computationally feasible in this model as 
there are only four parameters. Brute force search can also be used to enforce parameter plausibility, by 
constraining the search to a range of values considered plausible. This is the approach taken by Lee and 
Brunskill who used brute force search over the observation parameters to ensure plausibility, and used 
EM to compute the initial probability and learning probability. Lee and Brunskill also fit a single generic 
model to the combined set of all students’ data. 

Typically the quality of a student model is measured by a model’s fit of the observed data, or its 
ability to predict student performance on a held out dataset. Common methods include Bayesian 
Information Criterion (BIC) and cross-validated Root Mean Square Error (RMSE).  However, a key use 
of student models is to inform a tutor’s instructional decisions: deciding the next activity to give to a 
student. Motivated by this, Lee and Brunskill proposed to evaluate modeling parameters on an individual 
level by whether this resulted in a significant change in the instructional decisions that would be made. 
Typically KT models are used in a mastery learning setting, where a tutor provides additional practice 
opportunities for a skill until the student’s probability of mastering that skill (as tracked using the KT 
model) reaches a pre-specified threshold (e.g. Corbett & Anderson 1995). Given the same number of 
practice opportunities and a fixed trajectory of a student’s responses, different model parameters will 
result in different probabilities of mastery. Therefore different model parameters could vary the amount of 
practice opportunities given to a student.  

Lee and Brunskill evaluated whether the expected number of needed practice opportunities for a 
student to reach the mastery threshold varied significantly depending on whether a generic set of model 
parameters was used to evaluate mastery, or if model parameters fit to that individual’s data were used. 
Computing this number can be viewed as policy evaluation in a continuous-state Markov Decision 
Process, where the state is the current probability of mastery, and the policy is to provide another practice 
opportunity if the state is below a threshold, or otherwise to halt teaching that skill. Lee and Brunskill 
performed this policy evaluation using a forward search algorithm. Note that in both cases the model 
parameters used to generate a student’s responses was the individual model, since in real situations the 
student would be generating his responses based on his own internal knowledge and progression. The 
difference is in whether those observed responses are assumed (by the tutor) to have been generated using 
the set of generic model parameters or the individual’s own parameters (see Figure 6).  

This approach was used to analyze data from over 200 students using the ASSISTments system 
(Pardos & Heffernan 2011). Lee and Brunskill found that the fit individual parameters had a wide spread, 
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and that the resulting parameters provided a significantly better fit of the observed data compared to a 
generic model (likelihood ratio test, p< 0.0001). Their results also showed that over 20% of students 
would be expected to be given at least twice as many expected practice opportunities if the generic model 
was used compared to if their individual parameters were used, and 17% of students would be at <= 60% 
probability of mastery (compared to the threshold of 95%) when the generic model would declare the 
students as having mastered the material. This suggests that a significant number of students might be 
advanced before they have fully understood the material, or prevented from learning new material when 
ready, if a generic model of learning rate is used. 

An implication of Lee and Brunskill’s work is that model parameters that are fit to individual learning 
rates should yield better estimates of student learning and enable improved instruction. However, an 
interesting open question is how to perform this analysis in an online fashion. Lee and Brunskill’s work 
was performed as a retrospective analysis. When tutors interact with real students, the tutors must perform 
this model fitting during tutoring. Indeed, this is a 
challenge for any model with student parameters. When 
only fitting a single parameter per student to specify the 
offset, prior researchers (Corbett & Anderson 1995; 
Pardos & Heffernan 2011) have proposed using the 
student’s response on the first practice opportunity to fit a 
model. However, this approach will not suffice for fitting 
parameters that depend on the student’s learning rate 
across skills. If prior diagnostic information exists about 
the student, or if these parameters are similar across many 
skills, then this model fitting could be performed in early 
stages, while using a generic model to inform instruction. 
More interesting is to consider how hierarchical models 
of student parameters might be trained and shared across 
multiple students, and used to inform instruction. Such 
approaches could also be applicable beyond mastery 
learning approaches to teaching.  
 
4.3. Modeling engagement, affect  
Beyond the relatively well-defined construct of student knowledge, data-driven methods can also be used 
to model and adapt to constructs that have been historically difficult to define and model. One such area is 
individual differences in student engagement and affect (emotion in context – Corno, 1986). Engagement 
has long been seen as a critical factor in learning (cf. Corno & Mandinach 1983), but in past decades has 
been seen as very difficult to operationalize in real time (Corno & Mandinach 1983), being a fairly ill-
defined construct, that can be seen as encompassing several constructs (e.g. several forms of 
engagement). However, automated detectors of engagement and affect have recently become an effective 
way to infer these constructs as a student is using online educational software such as intelligent tutoring 
systems. 

One of the key challenges to making automated detectors of engagement and affect feasible for 
widespread use in intelligent tutoring systems has been the development of models that can infer these 
types of constructs solely from the types of interaction data readily available in the contexts where the 
software is used. Although reasonably effective models can be constructed using physical sensors such as 
cameras and posture sensors (see Calvo & D’Mello, 2010 for review) these sensors can be challenging to 
deploy at scale in schools, due to issues of cost and breakage in these settings. However, multi-year 
efforts to understand and engineer the types of features associated with engagement and affect in 
interaction data have begun to produce automated detectors that are reliable and effective for these 
situations. 

Figure 6. Standard tutors use generic model 
parameters when selecting activities (left). On 
the right, the tutor knows the current student’s 
specific parameters. 
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One of the first automated detectors of engagement was Baker et al.’s (2004) automated detectors of 
gaming the system, a disengaged behavior where students attempt to succeed in an educational task by 
systematically taking advantage of the intelligent tutor’s feedback and help rather than by thinking 
through the material. In intelligent tutors, gaming the system can include misuse of hints to obtain 
answers, or systematic guessing. Ground-truth training labels for this behavior can be obtained through 
systematic field observations (Baker et al. 2004) or text replays (pretty-printed representations of student 
logs, designed to be easy to read; Baker & de Carvalho 2008), checked across observers for inter-rater 
reliability. Then classification algorithms such as J48 decision trees are used to infer what actions the 
student was engaging in during the period of time labeled as gaming the system. Features such as repeated 
fast errors on poorly known skills were found to be indicative of gaming. The automated detectors were 
validated for effectiveness for new students and tutor lessons on different topics (within the same year-
long mathematics curriculum), and were found to be reasonably effective (A’/AUC over 0.8) under these 
conditions.  The automated detectors were first developed in the context of tutors for middle school 
mathematics, but detectors of gaming have now also been developed for other curricula by the same and 
other research groups.   

A second disengaged behavior modeled in this fashion is off-task behavior, when the student 
completely disengages from the learning task, for instance by talking to another student about an 
unrelated topic. Though this behavior manifests in usage logs as inactivity, it can be inferred from the 
actions that occur immediately before and after. The first detector of this behavior, by Baker (2007), 
achieved a correlation of 0.55 between each student’s predicted frequency of off-task behavior and the 
behavior’s frequency as noted by field observers, with cross-validation conducted at the student level. 
Baker’s detector relied solely upon semantic actions within the interface, and timing data. Cetintas and 
colleagues (2010) found that detection could be made more effective by also considering data from mouse 
movements.   

A third disengaged behavior modeled in this fashion is careless errors, where a student knows the 
relevant skills to answer a question but produces an incorrect answer nonetheless. We infer training labels 
for detectors of this behavior by using the probability that a student knew the skill at a specific time 
computed from both student knowledge models (as discussed earlier) and data from future actions. For 
example, an error produced when a student had a 90% chance of knowing a skill, followed by two correct 
actions, is much more likely to represent a careless error, than errors produced under different conditions. 
Once the training labels are obtained, detectors are developed to predict this behavior without using data 
from the future. Detectors developed in this fashion have been validated to transfer not only to new 
students, but to students from different countries (San Pedro et al. 2011). Detectors of this type have been 
developed for intelligent tutors for both mathematics and science inquiry skill.  

In addition to disengaged behaviors, a range of affective states have been modeled in intelligent 
tutoring systems (cf. Calvo & D’Mello, 2010), in recent years solely  from student interaction with 
intelligent tutoring systems. The first such example is D’Mello et al. (2008), which modeled student affect 
in the AutoTutor intelligent tutoring system in a laboratory study. D’Mello and colleagues achieved better 
than chance agreement to ground-truth labels provided by human video coders, distinguishing students’ 
frustration, boredom, confusion, and flow from each other. Conati and Maclaren (2009) and Sabourin et 
al. (2011) used a combination of interaction data and questionnaire data to infer a range of affective 
states. More recent work by Baker and colleagues (2012) found that better agreement to ground-truth 
labels could be achieved by explicitly using data from automated detectors of student disengaged 
behaviors when predicting affect. In specific, guessing was indicative of boredom and confusion, and 
failing to read hints was a negative predictor of engaged concentration. 

In recent years, these detectors have been embedded into automated interventions that respond in 
various fashion to attempt to re-engage students and mitigate the effects of negative affect. For example, 
an automated agent that addresses gaming behavior has been developed, based on an automated detector 
of gaming (Baker et al. 2006). This agent gave students supplementary exercises on material bypassed 
through gaming, and displayed displeasure when the student games. In a classroom study in the USA, this 
agent reduced gaming by half and improved gaming students’ learning relative to the control condition 
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(Baker et al. 2006). Recent work has also leveraged automated assessments of uncertainty (e.g. Forbes-
Riley & Litman 2011), and affective states (cf. D’Mello, Craig, Fike, & Graesser 2009; Arroyo et al. 
2011), with promising results. For instance, D’Mello and colleagues (2009) found that supportive 
messages, given when negative affect occurred, improved affect for struggling students, while “shake-up” 
messages improved affect for more successful students.  
 
4.4. Optimizing instruction  
A key aspect of the tutoring process is selecting the next activity to give to a student. This process can be 
considered as an optimization problem: what activity should be selected next, based on an estimate of 
what the student understands, in order to maximize some aspect of student learning, such as learning 
gains or engagement. This view allows the activity selection problem to draw on advances in sequential 
decision making under uncertainty. Early work by Beck, Woolf and Beal (2000) and Murray, VanLehn 
and Mostow (2004) used reinforcement learning and myopic decision utility maximization to inform 
instruction.  

More recently, Chi et al. (2011) modeled physics tutoring as a Markov Decision Process (MDP) to 
inform which type of activity to provide at certain junctures: whether to elicit student performance of a 
step (to practice the underlying skill) or tell the student how to perform the step (as an example to learn 
from), and whether to ask a student to justify a particular step of reasoning or to skip the request for 
justification. Chi et al. considered a rich set of features to model the student’s state, and performed 
automatic feature selection by identifying features associated with policies leading to high learning gains 
in a training set.  Chi et al. found that an MDP policy that used these features and optimized to maximize 
expected learning gains resulted in higher empirical learning gains in a new lab student experiment 
compared to an MDP policy designed to minimize learning gains. The focus of Chi et al.’s work was on 
seeing if the tutorial policy used during micro-step tutoring could influence learning gains, so this control 
policy was a reasonable comparison. However, the authors call for future work and, in particular, there is 
a need to see whether MDPs provide a significant benefit over other stronger control methods for making 
instructional decisions. 

Recently several researchers (e.g. Brunskill & Russell, 2010; Brunskill et al. 2010; Rafferty et al. 
2011) have taken an alternate approach of modeling the student state as being partially observable, 
making instructional decisions an instance of Partially Observable MDP (POMDP) planning. Many 
current tutoring systems do model student state as being partially observable, but such approaches often 
take (quite successfully) a myopic approach to planning. When there are multiple different activities, and 
there exists prerequisite structure about the skills in the curriculum, a myopic approach is not optimal. 
Performing POMDP planning in such domains is generally computationally challenging, since a 
curriculum may consist of many skills, each of which may be known or not known, and the skills are not 
independent. However, Brunskill and Russell (2010) provided an efficient algorithm for planning in such 
domains that have prerequisite structure, and showed in simulations that the resulting solutions could be 
substantially better than myopic approaches. Brunskill et al. (2010) also used POMDP planning to inform 
problem selection for students sharing a very simple groupware mathematical game. Their classroom pilot 
found that tailoring activities to individual students led to less instances of a single student consistently 
winning, suggesting potential benefits for engagement.  

Though these initial findings are encouraging, there remains significant work to be done on 
optimizing instructional design. More comparisons need to be made to existing state of the art 
approaches. There also exists more machine learning and artificial intelligence research to be done, to 
handle the huge state, action and observation (or feature) spaces involved, and close the loop of informing 
model design by instructional policies. To accomplish this work, partnerships between learning science 
and machine learning researchers are likely to be particularly effective. Learning sciences researchers 
bring new and existing methods from psychology or education that can be built upon or used as strong 
comparisons to new approaches that may be developed in tandem with machine learning researchers 
expert in algorithms for analyzing and optimizing policies for large, many-featured domains (such as 
education). 
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5. Conclusions  

In recent years, there has been increasing work to leverage data to optimize and redesign intelligent 
tutoring systems. Within this paper, we discuss a range of recent work illustrating this potential in a range 
of areas. Many of the examples are drawn from work with Cognitive Tutors, a mature platform used by 
large numbers of students, but as discussed throughout the paper, there are relevant examples in a number 
of other research groups and platforms as well. The kinds of data-driven development and optimization 
techniques we have illustrated are relevant for both inner and outer loop functions of intelligent tutoring 
systems. Some of this work enhances existing functionality. For example, when Learning Factors 
Analysis is given student learning data from use of an ITS, it generates an improved cognitive model that 
better matches student performance.  The improved cognitive model can be used to optimize the suggest, 
update, and select functions of the tutor. Similarly, Lee and Brunskill (2012) used student ITS data to 
build a better student model that improves the update function, which in turn could improve the 
effectiveness of the select function.  

Beyond this, entirely new functionality can be supported through data-driven approaches. When 
automated detectors of student engagement and affect are developed, it then becomes possible to evaluate 
these aspects of the student in real-time, information that can be used to select different activities for the 
student -- for example, through selecting alternate exercises designed to re-engage students and/or 
mitigate the negative impacts on learning that disengagement and negative affect can cause. When the 
Hint Factory is given data on a dense set of alternative solution paths for a problem, it can perform the 
suggest function of generating next step hints.  When SimStudent is given data on problem solution 
demonstrations and feedback on its solution attempts, it learns new knowledge representation structures, 
particularly domain representations and production rules.  These produce the cognitive model component 
of an ITS that is used for all of its functions: evaluate, suggest, update, and select.   

As a whole, then, there are several ways that data can enhance the functionality of intelligent tutoring 
systems, leading to more personalized instruction. This work remains in early stages; every year, new 
approaches and uses for tutor data emerge, and new applications for enhancing intelligent tutors become 
possible. We have framed a set of challenges and some preliminary solutions toward the vision of fully 
optimized and personalized learning. The recent excitement and growth in online learning has the 
potential to produce the data needed to pursue this vision. The effectiveness of online courses can be 
vastly improved, but it will require going beyond compelling lecture videos and short follow-up questions 
to address learning by doing. Missing from today’s most popular online courses and learning resources 
are complex problem solving tasks, more open-ended interfaces, and AI back-ends that can interpret 
students' step-by-step progress on these complex tasks.  These changes will enrich the data and the 
opportunities for data-driven improvement.  In general, meeting the challenges inherent in the vision of 
personalized learning will require richer data sources and advances in AI.  Doing so could revolutionize 
educational practice. 
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