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Abstract 
 
An emerging field of educational data mining (EDM) is building on and contributing to a wide variety of 
disciplines through analysis of data coming from many kinds of educational technologies. EDM 
researchers are addressing questions of cognition, metacognition, motivation, affect, language, social 
discourse, etc. using data from intelligent tutoring systems, massive open online courses, educational 
games and simulations, and discussion forums.  The data include detailed action and timing logs of student 
interactions in user interfaces such as graded responses to questions or essays, steps in rich problem solving 
environments, games or simulations, discussion forum posts, or chat dialogs. They might also include 
external sensors such as eye tracking, facial expression, body movement, etc. We review how EDM has 
addressed the research questions that surround the psychology of learning with an emphasis on assessment, 
transfer of learning and model discovery, the role of affect, motivation and metacognition on learning, and 
analysis of language data and collaborative learning. For example, we discuss 1) how different statistical 
assessment methods were used in a data mining competition to improve prediction of student responses to 
intelligent tutor tasks, 2) how better cognitive models can be discovered from data and used to improve 
instruction, 3) how data-driven models of student affect can be used to focus discussion in a dialog-based 
tutoring system, and 4) how machine learning techniques applied to discussion data can be used to produce 
automated agents that support student learning as they collaborate in a chat room or discussion board. 

 

1. Introduction 
 
Educational data mining (EDM) is an exciting and rapidly growing new area that combines multiple 
disciplines toward understanding how students learn and toward creating better support for such learning. 
Participating disciplines (and subdisciplines) include cognitive science, computer science (human-computer 
interaction, machine learning, artificial intelligence), cognitive psychology, education (psychometrics, 
educational psychology, learning sciences), and statistics.  The data that makes educational data mining 
possible is coming from an increasing variety of sources and is being used to address a variety of questions 
about both the psychology of human learning and how best to evaluate and improve student learning (see 
Figure 1). 

  



 

 

 
 

Figure 1. The data that makes educational data mining possible is produced from educational technologies that 
produce a wide variety of data types (the vertical axis) and is being used to explore a wide variety of psychological 
constructs relevant to learning (the horizontal axis).  Different research paradigms and projects have emerged, 
exemplified in the content of the figure, and are discussed in the paper. 

 
The vertical axis of Figure 1 illustrates the variety of educational data types that come from different 

sources.  Starting at the bottom are simpler data types including menu- based choices with their timing 
coming from mouse clicks, such as multiple choice questions in MOOCs and other online courses, 
educational games and simulations, and simple tutoring systems.  Moving up the vertical axis, more 
complex problem -solving environments and intelligent tutoring systems produce data types that include 
short text inputs and symbolic expressions. Researchers are also building affect sensors and doing 
classroom observations of student engagement and emotional states.  At the top of Figure 1 are more 
complex forms for student writing or sometimes speaking,1-2 including student answers to essay questions3 
or their dialogues within chat rooms or discussion boards. 

The horizontal axis of Figure 1 illustrates the spectrum of psychological constructs that educational data 
miners have been exploring with these kinds of data. These constructs include tacit cognitive skills, explicit 
concepts and principles, metacognitive skills and self-regulatory learning strategies, student affect and 
motivations, skills for social discourse and argument, and socio-emotional dispositions and strategies. 

Within Figure 1, we illustrate a sampling of research projects/paradigms that have used different types of 
data to advance understanding of different psychological constructs. Cognitive skills and principles have 
been explored using many different types of data. Data on student correctness of their click choices or 
their text or symbolic input over opportunities to practice has been explored in models of learning, 
especially Bayesian Knowledge Tracing (e.g.,4-6). That same kind of data has been used to evaluate 
cognitive models and aid discovery of data-driven cognitive model improvements (e.g.,7,8). Complex 
symbolic problem solutions (e.g., computer programs) are being analyzed to understand changes in 
students’ skills and strategies over time (e.g.,9,10). Peer grading of open-ended writing (e.g.,11) and interface 
design (e.g.,12) provides the basis for mining both the quality of student responses and the quality of their 
ability to evaluate them.  Data corpora of written essays and answers, from students and experts, have been 
used to create automated methods for essay grading (e.g.,13) and dialogue-based intelligent tutors1,14-15 or 
dialogue support for collaborative learning .16 



 

Moving to the right in Figure 1, student metacognition and self-regulatory learning has been explored 
using student data from intelligent tutor interaction17,18  and from multimedia interaction.19  Such data has 
been also used along with formal classroom observation data to drive machine-learned detectors of forms of 
student disengagement.20,21  This data has been further augmented with real-time surveys22 and with affect 
sensors.23  Addressing issues of social interaction, researchers have analyzed student collaboration data 
(e.g.,24) including student entries in MOOC discussion boards.25-28 

Another dimension of relevance, not shown in Figure 1, is the time course of observations reflected in 
the data. Click choice and timing data observations tend to occur in the range of 100s of milliseconds to 
10s of seconds. Text fields and symbolic expression data tend to take longer 10s to 100s of seconds. Essay 
and discourse data points may take many minutes to produce.  As discussed elsewhere,29,30  the complexity of 
psychological constructs (roughly, left to right in Figure 1) tend to occur at a correspondingly increasing time 
scale, with the exception of affective physiological data, which can operate in the millisecond range. 

Educational Data Mining is defined by Baker and Yacef31 as “an emerging discipline, concerned with 
developing methods for exploring the unique types of data that come from educational settings, and using 
those methods to better understand students, and the settings which they learn in.”  Other empirical methods, 
besides EDM, for driving discoveries relevant to education include experimentation, surveys, and design 
research. EDM is set apart primarily by the fact that wide use of educational technology is producing 
volumes of ecologically valid data on student learning in a context in which experiments and surveys can be 
embedded.  It is similar to design research with a focus on data from natural settings, but rather than being 
qualitative, it is different (complementary) in its focus on quantitative analysis using machine learning and 
statistical methods. It is similar to experimentation and survey methods in that those methods can be 
employed in the context of educational technologies, but is broader in that it also includes analysis of 
naturally-occurring student interaction data either without or in conjunction with experimental manipulation 
or embedded surveys.  

Research fields are grounded in the community of engaged researchers and in the conferences and 
journals in which they communicate.  EDM is no exception. The primary conferences are Educational Data 
Mining (EDM), which began in 2008, and Learning Analytics and Knowledge (LAK), which began in 2011.  
Each has peer reviewed, published proceedings. The International Journal of Educational Data Mining began 
in 2009 and the Journal of Learning Analytics began in 2014.  Elements of EDM research have a longer 
history as revealed by deep analyses of learner data in publications in the proceedings of the Intelligent 
Tutoring Systems conference (established in 1988), the Artificial Intelligence in Education conference 
(established 1997), and the Cognitive Science conference (established 1979).  More recently, an expansion of 
interest in EDM has been revealed through workshops and papers in other conferences, both pre-existing 
(Neural Information Processing Systems, and Knowledge, Discovery, and Data Mining) and new (Learning 
at Scale).    

This article is organized around different kinds of research questions regarding the psychology of 
learning that educational data mining research has been addressing.  Section 2 discusses the status of current 
EDM research especially on questions of assessment, transfer, motivation, and language.  Section 3 provides 
related challenges and future research opportunities. 

 

2. Educational Data Mining Addresses Research Questions About the Psychology 
of Learning 

 
Educational Data Mining has addressed a variety of research questions regarding the psychology of learning.  
The following five sections discuss assessment of cognition, learning, and achievement (Section 2.1), 
transfer of learning and discovery of cognitive models (2.2), affect, motivation, and metacognition (2.3), 
language and discourse analytics (2.4), and other applications of educational data mining (2.5). In each 
section, we summarize both technical and empirical research that is sometimes descriptive, yielding new 



 

insights about the nature of learning, and sometimes prescriptive, indicating methods for yielding better 
student learning outcomes. In particular, we illustrate connections from efforts to use data to build models 
that reflect insights on learning to efforts to “close-the-loop” by translating those models or insights into 
systems and testing whether they produce better learning outcomes. A desirable sequence in a program of 
research (which often involves multiple projects/papers and may involve different teams) starts with data 
mining yielding new statistical models of that data.  Next an adaptive system is built using the resulting 
statistical models.  Sometimes that model is used directly, for example, as in a detector of student 
disengagement behavior that prompts students to re-engage32 or a language interpretation system that 
provides students feedback in response to their typed entries33-37 or provides recommendations for how to 
engage more productively.38  In other cases, the model resulting from data mining may be interpreted for 
insights that can be employed to an adaptive system design (e.g.,39,40). In both cases, a desirable final step is 
to “close-the-loop” by running an experiment (an “A/B test”) comparing the original adaptive system to one 
with the data-driven adaptive features. 

 
2.1 Assessment, growth modeling of learning, and prediction of achievement 
Educational technologies provide rich data for understanding and developing assessment of students’ skills, 
concepts, mental models, beliefs, and learning trajectories. Collectively, these aspects of human intelligence 
can be referred to as a "knowledge base" with elements of this knowledge base referred to as "knowledge 
components" or KCs. Koedinger, Corbett and Perfetti41 define a KC as “an acquired unit of cognitive 
function or structure that can be inferred from performance on a set of related tasks.”  

Two aspects of assessing these knowledge components have defined themselves in educational data 
mining research. The first being the statistical model, a mathematical abstraction of student behavior 
measurements, and the second, the cognitive model, which involves the mapping of knowledge components 
to items or tasks. This knowledge-to-task mapping provides a way to convert a symbolic cognitive model, 
which a cognitive scientist might produce, into a form that can be used, along with the statistical model, to 
make predictions about student performance. This specialized form of a cognitive model is referred to as a 
knowledge component model (in educational data mining), a Q matrix (in Psychometrics), or a student 
model (in AI in Education). The statistical model and the cognitive model are inexorably linked, 
conceptually, when referring to a predictive model of student learning.  However, the mathematics for 
quantifying learning (the form of the statistical model) has been an active research area in and of itself, 
separable from the question of identifying an empirically justified cognitive model, which has been in equal 
measure represented in the literature. 
 
2.1.1 Student performance prediction showcase 

An Educational Data Mining competition in 20101  provided a forum to compare statistical models of 
student performance and learning from EDM to models from the broader machine learning community. The 
competition scored the models on their ability to forecast the correctness of student responses to multi-step 
problems within Intelligent Tutoring Systems for junior high mathematics. Table 1 depicts a simplified 
example of the student event log dataset that was provided by the competition. Each row in the dataset 
represented a student action or a “step”  toward solving a math problem given by a Cognitive Tutor, which 
was the source of the competition’s data. The modeling task was to use past information, such as a students’ 
responses related to a particular skill or knowledge component (KC), in order to predict the probability of 
correct responses on future problem steps. There were 24 million rows worth of past information and 8 
million rows to be predicted. Selected meta-information about the row being predicted was omitted, such as 
time to response and number of attempts, but information such as the student, problem, and knowledge 
component associated with the problem step remained. Participants were scored on the average error 
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between their predictions of correctness and the actual correctness.  
 

Table 1. Simplified sample of data used in the KDD Cup competition. 
 

Sequence ID Student ID Problem ID Step ID Answer  KC 

1 S01 WATERING 
VEGGIES 

WATERED 
AREA-1 

Incorrect Circle-Area 

2 S01 WATERING 
VEGGIES 

WATERED 
AREA-2 

Correct Circle-Area 

3 S01 WATERING 
VEGGIES 

TOTAL AREA Correct Rectangle-Area 

4 S01 MAKING CANS POG AREA Q3 Correct Circle-Area 

 
The most successful approach to the prediction task featured a combination of Hidden Markov Models, 
random decision trees, and logistic regression on millions of machine generated features of student 
interaction.42 The second best overall prediction was achieved with a collaborative filtering approach43 much 
like the methods used in Netflix movie rating predictions. In this method orthogonal matrices of latent 
factors of students and questions are machine learned and multiplied together to recover a matrix of 
predicted student responses to steps. Standard matrix factorization methods do not take into account time 
(and thus ignore learning); however, expanding the dimensions to include time, using tensors, has resulted in 
significant predictive gains in subsequent work.44 Finally, the fourth place finisher (3rd place did not disclose 
their methods) featured random decision trees and a student individualized Bayesian Network model,45 a 
computational form of cognitive diagnostic models that leverages inference techniques and optimizations 
from the broader family of probabilistic graphical models.46 All top participants combined their featured 
statistical model with other methods in an ensemble in order to maximize predictive performance. Using 
ensembles of methods instead of a single best method produced a 10% gain in prediction accuracy when 
applied to a different 8th grade math tutoring platform.6 

While the 2010 competition demonstrates how Educational Data Mining research explores the 
boundaries of predictive models, the field has focused even greater attention on the science of learning, 
seeking explanation for knowledge gain and performance through the careful and deliberate investigation 
of learning data. 

 
2.1.1 Bayesian Knowledge Tracing based models of learning 

Bayesian Networks provide a computational approach to modeling student learning by elegantly 
capturing the dynamic of knowledge probabilistically. The base Bayesian Networks model of reference, 
called Knowledge Tracing,4 has roots in Cognitive Science. Atkinson and Paulson47 laid the foundation for 
the model of instruction and Anderson48 formalized a continuous increase in the activation level of 
procedural knowledge with practice, which is mapped to a probability in Knowledge Tracing. The standard 
Bayesian Knowledge Tracing (BKT) model, shown in Figure 2, can be described as a Hidden Markov 
Model (HMM) with such a model being defined for each KC. The acquisition of knowledge is defined in 
the binary latent nodes while the correctness of responses to questions is defined in the observables. 



 

 
Figure 2. Representation of the Standard BKT model with parameter and node descriptions. 
 
Research on and expansion of the BKT model has been fueled by advances in statistical parameter 

learning and by the use of the model in practice inside the popular Cognitive Tutor(c) suite of ITSs49 where 
BKT is used to determine when a student has mastered a particular KC and is thus no longer asked to 
answer steps consisting only of mastered KCs. The standard BKT model has four parameters per 
knowledge component: 1) a single point estimate for prior knowledge, 2) a learning probability between 
opportunities to practice, 3) a guessing probability for when a student is correct without knowing, and 4) a 
slip probability for when a student is incorrect despite knowing. Pardos and Heffernan5 introduced student 
individualization to the BKT model through modifying the conditional graph structure of the model. 
Specifically, they found that by using a bimodal prior, bootstrapped on the student’s first response, 
prediction improved on 30 of 42 datasets (avg. correlation increase from .17 to .30). This particularly 
individualized prior approach allowed for students to be in one of two priors, adding only a single 
parameter per KC over the standard four parameter per KC model. Performance prediction is often used as 
a proxy for assessment quality in EDM models with error and accuracy metrics signifying the goodness of a 
model. While these metrics are a convenient way to quantitatively compare models, they can be 
unsatisfying in explaining the real world impact of prediction improvement on an individual student. 
Addressing this, Lee and Brunskill50 evaluated the impact of model individualization on the average 
number of under and over practice attempts compared to a non-individualized model. They concluded that 
individualized BKT can better ensure that struggling students get the practice they need and that better 
students are not wasting time with extensive busy work (i.e., about 20% of students would be given twice 
the practice opportunities if standard BKT is used than they would be if individualized BKT is used).  
Individualization in student modeling is further explored by Yudelson, Koedinger, and Gordon51 and in 
section 3.1. 

 
2.1.2 Logistic regression based models of growth 
Logistic regression models are another family of statistical models, which can be compared with the BKT 
family of models (see Table 1). Logistic regression models extend a history of elaborations on Item Response 
Theory including the addition of a knowledge component model (or “Q- matrix”) in the Linear Logistic Test 
Model (LLTM).52 Further additions were made to model learning across tests53 and within an intelligent 
tutor.54  These learning models introduced a growth term that models learning by including an estimated 
increment in predicted success on a KC for each time a student gets practice on an item (or problem step) that 
needs that KC, as indicated by the Q matrix. This model, later called the Additive Factors Model (AFM), was 
picked up in efforts to evaluate and search for alternative cognitive models.55  Other efforts have explored 



 

logistic regression variations including modeling learning with a separate count of correct versus incorrect 
practice attempts of a knowledge component (PFA),56 modeling student variations in learning rate (e.g.,57), 
modeling different learning rates depending on the nature of instruction such as feedback practice versus 
seeing an example (IFM).58 

 
2.1.3 Comparison of model approaches 

As a way of summarizing, Table 2 indicates features of an incomplete, but representative set of 
statistical models that have used been used to assess student proficiency and, in most cases, student 
learning. It illustrates features of two families of statistical models, logistic regression and Bayesian 
Knowledge Tracing, by indicating the way the models parameterize student and task domain attributes. 
As indicated in the Student parameter column, most of the models have a parameter value for each 
student that indicates that student’s overall general proficiency. Notably Bayesian Knowledge Tracing 
(row 7) does not. However, approaches, such as iBKT, have extended BKT to include a student 
proficiency parameter (row 8). 

 In the terms used by Wilson and De Boeck,52 the models that separately represent difficulty of each 
task are “descriptive” whereas the models that represent fewer latent knowledge components across 
multiple tasks are “explanatory” in that they provide an account for task performance correlations (same 
KCs) and performance differences (different KCs). In the Task parameters column, we see that most of 
these models include knowledge components as latent variables for assessing task difficulty. Some models, 
in contrast, have a parameter for each unique task or item, particularly IRT (row 1) and PFA (row 4). 

Older psychometric models, such as IRT 3PL (row 1) and LLTM (row 2) do not model learning (see the 
Learning parameters column) but have useful features (e.g., a guess parameter) that could be incorporated 
into a learning model.  All the BKT models and the newer logistic regression models model learning by 
including estimates of learning for each knowledge component. These models use knowledge components as 
the basis for explaining learning, though it is possible to have a descriptive model of learning (not shown in 
Table 1) that would have a single learning parameter across all tasks, as in a faculty theory of transfer (cf.,59). 

 
Table 2. Various statistical models and parameters that have been used to assess student proficiency. 



 

 
 

 The Performance parameters column shows how the BKT models distinguish themselves from logistic   
regression models by including explicit parameters to estimate the amount of student guessing or slipping. 
Logistic regression models of learning have not included performance parameters, but as illustrated by IRT 

  3PL (row 1), it is possible to incorporate such parameters into a logistic regression model. 
The final Prior Success/Failure parameters column illustrates the difference in models that have explicit 

differentiation of past student task success or task failure. These models are more dynamic in their ability to 
adjust to student and knowledge specific variations in performance. The success of these models over 
alternative models that do not make this distinction52,53,60,61 suggests there are student by knowledge 
component interactions in learning rate. 

 
2.2 Transfer of learning and discovery of cognitive models from data 
Most of the statistical models in the prior section assume a cognitive model of student knowledge or skill. 
But how are these cognitive models created and how can they be evaluated for their empirical validity? Data 
mining provides an answer. Further, data-driven cognitive model improvements can be used to design novel 
instruction that yields better student learning and transfer. 

The general version of this question of how cognitive models are discovered is addressed by 
techniques for cognitive task analysis (CTA),62,63 particularly qualitative methods such as interviews of 
experts or think alouds of expert or student problem solving.  CTA is a proven and relevant method for 
improving student performance and learning through instructional redesign (e.g., medical64; military65; 



 

mathematics66; aviation industry67). However, CTA methods are costly both in time and effort, generally 
involve a small number of experts or cases, and are mainly powered by human action. 

Thus, new quantitative approaches to cognitive task analysis that use educational data and promise 
improved efficiency have emerged. The key idea is that a good cognitive model of student knowledge 
should be able to predict differences in task difficulty and/or in how learning transfers from task to task 
better than an inferior cognitive model. 

One such method, called difficulty factors assessment (DFA), goes beyond experts’ intuitions by 
employing a knowledge decomposition process that uses real student log data to identify the most 
problematic elements of a given task. The basic idea in DFA is that when one task is much harder than a 
closely related task, the difference implies a knowledge demand (at least one “knowledge component”) of 
the harder task that is not present in the easier one.  In other words, one way to empirically evaluate the 
quality of a cognitive model is to test whether it can be used to accurately predict task difficulty (cf.,68-72). 
Cognitive models have been developed using this technique in domains including algebraic 
symbolization,73,74 geometry,75 scatterplots76 and story problem solving.77,78 

To further accelerate and scale the process of improving cognitive models, automated techniques have 
been developed that make analysis more efficient (i.e., search a much larger space in a reasonable amount of 
time) and more effective (i.e., by reducing the probability of human error). Furthermore, these directed 
search techniques maintain skill labels from the student model unlike many of the prominent machine 
learning techniques that have been applied to educational data that result in unlabeled, difficult or impossible 
to interpret models. The models created by an automated process (e.g., Learning Factors Analysis, LFA) are 
interpretable and have led to real instructional improvements.79,41 

Early automated efforts in model discovery involved human generation of model improvements followed 
by machine testing (i.e., model comparison) using a variety of established data mining metrics (e.g., Akaike 
information criterion (AIC), Bayesian information criterion (BIC), and cross validation (CV).79 More 
sophisticated automated techniques have been developed such as Learning Factors Analysis  (LFA),55 Rule 
Space,80 Knowledge Spaces,81 and matrix factorization.82,83 

 
Table 3. Example Q matrix, P matrix and the resulting Q’ matrix from a split on Negative Result. 

 
 

In LFA, a search algorithm automatically searches through a space of knowledge component (KC) 
models represented as Q-matrices80,84 to uncover a new model that (best) predicts student-learning data. 
The input to LFA includes human-coded candidate factors (called the P-matrix) that may (or may not) 
affect student performance and learning. Table 3 shows a simple illustration of  the mapping of problem 
steps to Q and P matrices and how a new Q-matrix is created (see Q’) by applying a split operator to a 
factor in the Q-matrix (e.g., Subtract) using a factor from the P-matrix (e.g., Negative Result). Additional 
new factors are created as a consequence of the split (e.g., Sub-Positive and Sub-Negative) that make 
different (and better) predictions about task performance and transfer. 

Koedinger, McLaughlin and Stamper,7 applied a form of the LFA algorithm to 11 datasets from different 
technologies (e.g., intelligent tutors, games) in different domains (e.g., mathematics, language). In all the 
datasets, a machine generated cognitive model was more predictive (according to AIC, BIC and CV) of 



 

student learning than the models that had been created by human analysts. Having a general empirical 
method for discovering and evaluating alternative cognitive models of student learning is an important 
contribution of EDM to cognitive science.  One specific example of an LFA discovery comes from its 
application to data from student learning in cognitive tutor geometry unit on finding area.  The original 
cognitive model in that tutor distinguished (had separate knowledge components), for each area formula, 
whether the formula is applied in the usual “forward” direction (to find the area given linear measures) or 
“backward” (given the area, find a missing linear measure).  LFA revealed that this distinction was mostly 
unnecessary – backward application was no harder and there is no lack of transfer from practice on forward 
applications. However, the distinction is critical for the circle area formula. Finding the radius given the area 
of a circle is much harder than finding the area given the radius and there is, at best, only partial transfer 
from forward application practice to backward application performance. 

This empirical method for comparing alternative cognitive model proposals has also been used to 
demonstrate that automatically generated cognitive models, produced by a computational model of human 
learning called SimStudent, are often better than models built by hand.85 For example, when trained on 
algebra equations, SimStudent learned separate knowledge components (production rules) for removing the 
coefficient in problems such as “5x = 10”, where the coefficient is a number, from problems such as “-x = 
10”, where the coefficient is implicit.  The hand built model did not make this distinction, but the learning 
curve data support it as a real difference in cognitive processing and transfer.  Students make twice as many 
errors when the coefficient is implicit rather than explicit and practice on the explicit problem type does not 
transfer to performance on the implicit problem type. 

Making better predictions about student learning is a first step toward both improving understanding of 
student cognition underlying learning transfer and improving learning outcomes. A second step is 
interpretation of data mining results in terms of underlying cognitive mechanisms. For example, consider the 
data mining discovery, mentioned above, that backward applications of area formulas are harder than 
forward applications for circle and square area but not for other figures. A cognitive interpretation is that 
students have trouble learning when to use the square root operation (i.e., to find s in A=s^2 or r in A=pi*r^2 
given A). Such cognitive interpretation not only suggests a scope of generalization and transfer that can be 
tested (cf.,86), it also critical to translating a data mining result into a prescription for instructional design.  In 
this case, it suggests practice tasks, examples, and verbal instruction that precisely target good decision 
making about when to use the square root. 

A final step toward both better understanding of transfer and better student learning is to run  a “close-
the-loop” experiment that compares student learning from instruction that is redesigned based on the data 
mining insight with learning from the original instruction. For example, Koedinger, Stamper, McLaughlin 
and Nixon40 showed how a data mining discovery revealing hidden planning skills could be translated into a 
redesign of an intelligent math tutor that produced more efficient and effective student learning. 

 
2.3 Affect, motivation, and metacognition 
It is widely acknowledged that affect, motivation, and metacognition indirectly influence learning by 
modulating cognition in striking ways.87-89 In line with this, EDM researchers have been studying these 
processes as they unfold over the course of learning with technology.90 For example, researchers are 
interested in analyzing log traces to uncover events in a learning session that precede affective states like 
confusion, frustration, and boredom. They might also analyze physiological data to develop models that can 
automatically detect these states from machine-readable signals, such as facial features, body movements, and 
electrodermal activity. Similarly, researchers might be interested in real-time modeling of log traces in order 
to make inferences about students’ motivational orientations (e.g., approach vs. avoidance) or their meta-
cognitive states, evidenced via the use of self-regulated learning strategies (e.g., re-reading vs. self-
explanation). In general, EDM approaches to model affect, motivation, and metacognition follow two main 
trajectories: (a) use of EDM methods to computationally model affect, motivation, and metacognition and (b) 



 

embedding these models into learning environments to afford dynamic intervention (e.g., re-engaging bored 
students). 

EDM researchers typically use supervised learning to model the multi-componential, multi-temporal, 
and dynamic nature of affect, motivation, and metacognition during learning. Supervised learning attempts to 
solve the following problem. Given some features (e.g., facial features, eye blinks, interaction patterns) with 
corresponding labels (e.g., confused or frustrated) initially provided by humans, can we learn to model the 
relationship between the features and the labels so as to automatically provide the correct labels on future 
unseen data (i.e., features from new students without corresponding labels)? In other words,after a training 
period, the computer now automatically provides assessments of the students’ mental states. Supervised 
learning methods have been used for modeling of students’ affective, motivational, and metacognitive states 
as elaborated in the examples below.  

Affect modeling aims to study and computationally model affective states that are known to occur during 
learning and that indirectly influence learning by modulating cognitive processes. For example, Pardos, 
Baker, San Pedro, and Gowda91 developed an automated affect model for the ASSISTments mathematics 
ITS.92 Their model discriminated among various affective states (confusion, boredom, etc.) based on the 
digital trace of students’ interactions stored in log files (e.g., use of hints, performance on problems). Their 
model successfully predicted performance on a state standardized test91 as well as college enrollment several 
years later,93 thereby demonstrating the utility of EDM-based affect models to predict important academic 
outcomes. In addition to an offline analysis of existing data, researchers have also explored real-time models 
of affect. One example is Affective AutoTutor, a dialog-based ITS for computer literacy that automatically 
models students’ confusion, frustration, and boredom in real-time by monitoring facial expressions, body 
movements, and contextual cues.35 The model is then used to dynamically adapt the tutorial dialog in a 
manner that is responsive to the sensed states (e.g., empathetic and motivational dialog moves when 
frustration is detected). A randomized controlled trial revealed learning benefits for students who interacted 
with the Affective AutoTutor compared to a non-affective version, but only for low-domain knowledge 
students.94  Other EDM systems for affective modeling and dynamic intervention have been developed in the 
domains of Physics,95 microbiology,96 mathematics,97,98 and many others – see review by D'Mello, 
Blanchard, Baker, Ocumpaugh, and Brawner.99 

Meaningful learning requires motivation or the intention to learn. Demotivated students will likely 
disengage from a learning task entirely or engage in shallow levels of processing like skimming or 
re-reading. On the other hand, motivated students are expected to engage at deeper levels of processing, such 
as inference generation and effortful deliberation. Of course, contemporary theories of motivation go beyond 
simply differentiating between motivated and demotivated students by considering different aspects of 
student motivation orientations (e.g., mastery vs. performance and approach vs. avoidance).88,100 However, 
these theories largely conceptualize motivation as stable traits rather than as dynamic processes that unfold 
over a learning session.101 Taking a somewhat different approach, researchers have been applying EDM 
techniques to model the dynamic nature of motivational processes and have also developed interventions to 
re-engage demotivated students.102 For example, M-Ecolab or Motivation Ecolab is a motivational version of 
Ecolab-II, a system that teaches concepts pertaining to food chains and food webs to 5th grade students.103 
M-Ecolab models students’ motivation based on how they interact with the system (e.g., use of help 
resources, answer correctness) and intervenes by providing motivational feedback and cognitive scaffolding. 
A preliminary comparison of M-Ecolab to its non-motivationally supportive counterpart yielded increased 
motivation but no measured learning improvements.104 Other pertinent studies have utilized EDM techniques 
to model motivation-related constructs, such as self-efficacy105 and disengagement.106 However, when 
compared to modeling of affect, motivation modeling is still in its infancy, so there are likely to be more 
advances in the next few years. 

Both affect and cognition are under the watchful eye of metacognitive processes (thinking about 



 

thinking).87 According to Dunlosy, Serra and Baker107 monitoring-control framework, students continually 
monitor multiple aspects of the learning process (e.g., ease-of-learning, feelings-of-knowing, quality of 
information-sources) and use this information to adjust or control their learning activities (e.g., deciding 
what to study, when to study, how long to study). These self-regulatory behaviors provide critical insight 
into the metacognitive processes that underlie learning. Students might engage in productive strategies like 
self-explaining108 or self-correcting errors.109 They might also use less beneficial activities like failing to 
utilize help utilities despite making repeated errors or abusing these utilities to get quick answers.110 In line 
with this, researchers have been applying EDM techniques to model self-regulatory behaviors in order to 
encourage more productive strategies while simultaneously discouraging less productive ones.111 For 
example, Baker et al.112 applied supervised classification methods to detect and respond to instances of 
“gaming the system” – succeeding by attempting to exploit systematic properties of the system (abusing 
hints and other help resources). Roll, Aleven, McLaren and Koedinger18 applied EDM techniques to 
analyze “help seeking skills” and to leverage these insights to develop adaptive tutorial interventions to 
help students improve these skills. Finally, MetaTutor113 is an ITS specifically designed to model and 
scaffold students’ use of effective self-regulated learning strategies and relies heavily on EDM methods to 
achieve this goal. An important research question emerging from this overall line of research concerns the 
extent to which machine- and student- estimates of self-regulatory strategies align and if this information 
can be used to correct misconceptions and biases in students’ perceptions of self-regulatory strategy use.114 

EDM projects in this area contribute to cognitive science by producing insights into the interplay 
between student affect and cognitive states.  For example, the use of sequential data mining techniques to 
study how affective states arise and influence student behaviors while solving analytically reasoning 
problems  (e.g.,115) adds an affective perspective to theories of problem solving. Similarly, EDM 
approaches to studying self-regulation (motivation and metacognitive) are guided in contemporary learning 
theories, so patterns discovered can be used to systematically test these theories and revise them as needed. 

Another set of insights comes from work on the interplay between student affect and cognitive states.  
Educational data mining techniques have revealed how affective states arise and influence student 
behaviors during complex problem solving. For example, confusion, which is often perceived as being a 
negative affective state, can positively impact learning if accompanied by effortful cognitive activities 
directed towards confusion resolution.116 

To summarize, EDM techniques have had a profound influence on computationally modeling the 
complex, elusive, and evasive constructs of affect, motivation, and metacognition. They allow the 
researcher to go beyond the norm of simply capturing a few static snapshots of these processes with 
self-report questionnaires. Instead, they afford the construction and use of rich behavior-informed dynamic 
models that are inherently coupled within the learning context. The diversity and richness of research can 
be appreciated by consulting recent reviews and edited compilations in this area.87,99,117-119 

 
2.4 Language data and collaborative learning support 
Language technologies and machine learning have been applied to analysis of verbal data in education 
relevant fields for nearly half a century.  Major successes in this area enable educational applications such 
as automated essay scoring,13 tutorial dialogue,3,120,121 computer supported collaborative learning 
environments with context sensitive dynamic support,33,122,123, and, most recently, prediction of student 
likelihood to drop out in Massive Open Online Courses (MOOCs).27,28  Across all of these application 
areas, a key consideration is the manner in which raw text or speech is transformed into a set of features 
that can be processed using machine learning.  Researchers have explored a wide range of approaches. 
The most simplistic are “bag of word” approaches that represent texts as the set of words that appear at 
least once in the text.124  The most complex approaches extract features from full linguistic structural 
analyses.3  A consistent finding is that representations motivated by theoretical frameworks from 
linguistics and psychology show particular.125,28,126,3  The impact on student learning is achieved through 



 

the ability to detect and adapt to individual student.127,122, 33 

One of the earliest applications was automated essay scoring,128 which has recently experienced a 
resurgence of interest.13  The earliest approaches used simple models, like regression, and simple features, 
such as counting average sentence length, number of long words, and length of essay. These approaches 
were highly successful in terms of reliability of assignment of numeric scores (e.g.,129), however they were 
criticized for lack of validity in their usage of evidence for assessment.  Later approaches used techniques 
akin to factor analysis such as latent semantic analysis130 or Latent Dirichlet Allocation131 to incorporate 
approximations of content based assessments.  Other keyword based language analysis approaches such as 
CohMetrix132 have been used for assessment of student writing along multiple dimensions, including such 
factors as cognitive complexity, narrativity, and cohesion.  In highly causal domains, approaches that build 
in some level of syntactic structural analysis have shown benefits.3  In science education, success with 
assessment of open ended responses has been achieved with LightSIDE,133,36 a freely available suite of 
software tools supporting use of text mining technology by non-experts.  Applications such as 
Why2-Atlas121 and Summary Street37 use these automated assessments to offer detailed feedback to students 
on their writing.  An in depth discussion of reliability and validity trade-offs between alternative approaches 
to automated text analysis has been published in prior work.24 

      In the past decade, applications of machine learning have been applied to the problem of assessment of 
learning processes in discussion. This problem is referred to as automatic collaborative learning process 
analysis.24 Automatic analysis of collaborative processes has value for real time assessment during 
collaborative learning, for dynamically triggering supportive interventions in the midst of collaborative 
learning sessions, and for facilitating efficient analysis of collaborative learning processes at a grand scale. 
This dynamic approach has been demonstrated to be more effective than an otherwise equivalent static 
approach to support.122  Early work in automated collaborative learning process analysis focused on text-
based interactions and click stream data.24,134-137 Early work towards analysis of collaborative processes from 
speech has begun to emerge as.126,138 

One aspect of collaborative discussion processes that has been a focus in this area of research is 
Transactivity.139  This research is a good example of how insights about the relevant processes from a 
psychological perspective informs computational work.  The concept of Transactivity originally grows out of 
a Piagetian theory of learning where this conversational behavior is said to reflect a balance of perceived 
power within an interaction.140  Transactive contributions make reasoning public and relate expressions of 
reasoning to previously contributed instances of reasoning in the conversation.  It is argued to reflect 
engagement in interactions that may provide opportunities for cognitive conflict.  Research in the area of 
sociolinguistics suggests that the underlying power relations might be detectable through analysis of shifts in 
speech style within a conversation, where the speakers shift to speaking more similarly to one another over 
time.  This convergence phenomenon is known as speech style accommodation. It could be expected, then, 
that linguistic accommodation would predict the occurrence of Transactivity, and therefore a representation 
for language that represents evidence of such language usage shifts should be useful for predicting occurrence 
of Transactivity.  This hypothesis has been confirmed through empirical investigation.126  Consistent with this 
work, it has also been demonstrated that in a variety of efforts to automatically identify Transactive 
conversational contributions in conversational data, the more successful ones were those in which one or 
more features were include that represents similarity (in terms of word usage or topic coverage) between the 
language contributed by different speakers within a.24,141 

EDM projects in this area contribute to cognitive science models of student learning by providing 
insights into how social processes can impact cognitive processes, in part by manipulating how safe or 
attractive opportunities for cognitive engagement appear to students.  For example, Howley, Mayfield and 
Rosé142 found in a secondary analysis of an earlier study143  that expressed aggression within collaborative 
groups resulted in students who were the targets of aggression engaging in less functional help seeking 
patterns. This less functional help seeking pattern was associated with significantly less learning. 



 

Most recently, machine learning has been used in a MOOC context to detect properties of student 
participation that might signal likelihood of dropping out of the course.  The goal is to identify students who 
are in particular need of support so that the limited instructor time can be invested where it is most needed. 
This form of automated assessment has been used to detect expressed motivation and cognitive 
engagement,28 student attitudes towards course affordances and tools,27 relationship formation and 
relationship loss.26  It has also been used to detect emergent subcommunities in discussion forums that differ 
with respect to content focus.144,145  In each case, the validity of these measures has been assessed by 
measuring the extent to which differential measurements predict attrition over time in the associated courses.  
Simplistic applications of sentiment analysis make significant predictions about dropout in some MOOCs,27 
however the pattern is not consistent across MOOCs.  A careful qualitative analysis demonstrates that coarse 
grained approaches to sentiment analysis pick up on different kinds of signals depending on the content focus 
of the course, and thus interpretation of such patterns must be treated with care. 

With respect to student motivation and cognitive engagement, approximations have been made either 
using unsupervised probabilistic graphical modeling techniques144 or using supervised learning over carefully 
hand labeled data rated on a likert scale from highly motivated to highly unmotivated, and using linguistically 
inspired features related to cognitive engagement.28 In both cases, the story is the same, namely, dips in 
detected motivation predict higher likelihood of dropout at the next time point. However, a more accurate 
prediction results from the supervised method using linguistically motivated features. 

 
2.5 Other areas of educational data mining 
Many other questions have been explored with educational data mining.  We give brief examples of some 
of these areas. Some researchers have demonstrated promise for using learning data to identify 
instructional policies or pedagogical tactics predicted to optimize learning.  One ideal source for such 
analysis is from data where some instructional choice is randomized.  For example, Chi, VanLehn, Litman, 
and Jordan146 had students use a Physics intelligent tutoring system where for each solution step in a 
problem given to a student, the system would randomly either show the student an example of how to 
solve that step or ask the student to perform the step on his or her own. They used this data to train 
Markov Decision Process (MDP) policies and in a follow-up experiment, they showed that students 
learned more from an MDP policy trained to maximize student learning gains than from one trained to 
minimize student learning gains.  Other researchers have begun to extend these efforts using Partially 
Observable MDP (POMDP) planning (e.g.,147-149). 

Some researchers have demonstrated how models trained on educational technology interaction data 
can predict long-term standardized test results (e.g.,150) or college enrollment (e.g.,93).  Others have built 
models to predict when students will get stuck in a course151 or drop out (e.g.,152).  Other areas of interest 
include employing recommender systems in education (e.g.,153), social network analysis (e.g.,154), and  peer 
grading.9,12,11 

 

3. Current challenges & future opportunities 
 
3.1 Future work: assessment, growth modeling of learning, and prediction of achievement  
Table 2 provides a jumping off point for suggestions for future research in educational data mining. 
While some work has approached the question of how best to model student performance when multiple 
skills or strategies (KCs) are needed or possible (rows 6 and 9), more work is needed in this area.  In 
particular, researchers should explore consequences of adding learning parameters to multi-skill 
assessment approaches (cf.,155). 

Missing combinations of features in Table 2 suggests new research. For example, the only logistic 
regression family model that has performance parameters is IRT 3PL, however that model does not have 



 

learning parameters. Creating a logistic regression model that has both learning and performance 
parameters is quite feasible but, to our knowledge, has not been done.  It is also an open issue whether 
other kinds of parameters are potentially productive in modeling. For example, combining multiple 
parameters per student, as in multidimensional IRT, along with learning parameters has not been 
sufficiently explored. 

Models based on Bayesian Networks take advantage of strong statistical inference techniques and 
abundant computational resources in order to maximize fit to the data while striving to converge to 
pedagogically informative parameters maximize fit to the data. However, the error gradients of these 
models, which guide the learned parameter values towards convergence, can be complex and non-convex 
leading to local optima that may describe the data with high accuracy but have an explanation that is not 
educationally plausible.156 This problem of model identifiability is especially pronounced in canonical 
model forms, such as the Hidden Markov Model that Bayesian Knowledge Tracing is based on. This 
necessitates parameter constraining heuristics such as bounding to plausible regions or biasing the starting 
parameter values. More complex models that take into account information outside of KC and response 
sequence have demonstrated improved predictive accuracy157,158 as have models accounting for individual 
learning differences57,5,51,159 and difference in learning by type of help seen in an ITS160,161 and in a 
MOOC.162 Still, some argue for parsimony opting to instead simplify models down to a form where they 
may be analytically solved.163 Striking a balance between complexity, interpretability, and validity remains 
a challenge in mainstreaming model-based discovery and formative assessment.  

 
3.2 Future work: Transfer and cognitive model discovery 
Perhaps the most important need for future work in the area of cognitive model discovery is for further 
examples of close-the-loop experiments that demonstrate how cognitive models with greater predictive 
accuracy can be used to improve student learning (cf.,7,40). 

Empirical comparison of cognitive models of transfer of learning has been done mostly using the 
Additive Factors Model (AFM) as the statistical model.  It is unknown whether the results of such 
comparisons would change if other statistical models were used (e.g., Bayesian Knowledge Tracing). 
While substantial differences (e.g., cognitive model A is much better than B with AFM but B is much 
better than A for BKT) seem unlikely, the issue deserves attention especially given that BKT is more 
widely used in fielded intelligent tutoring systems. 

Given that most of the datasets that have been used for cognitive model discovery in particular, and 
EDM in general, are naturally occurring data sets, there are related open questions of interest and 
importance.  For example, estimations of learning and item difficulty can be confounded by sampling 
issues. A lack of randomization of items in a curriculum might be responsible for performance variance 
due to learning being attributed to item parameters (cf.,59). For example, an item that is consistently 
completed at the end of a unit is more likely to benefit from transfer of learning from earlier items than an 
item that is randomly distributed throughout the unit.  Here the future research issue may be less about the 
statistical modeling framework and more about identifying or creating data sets that include more random 
variation of task ordering. 

 
3.3 Future Work: Scope and scale of models of affect, motivation, and metacognition 
We discussed how EDM techniques have become essential tools for researchers interested in modeling 
affect, motivation, and metacognition in digital learning contexts. The field has made much progress relative 
to its infancy, yet there is much more to be done. One open area pertains to the constructs themselves. 
Researchers have focused on individual components of each construct, despite the constructs being 
multi-componential in nature. For example, engagement is a complex meta-construct with affective, 
cognitive, and behavioral components,164 yet researchers mainly model its individual sub-components. At a 
broader level, complex learning inherently involves an interplay between cognition, affect, motivation, and 



 

metacognition, so it is important to consider unified models that capture the interdependencies and unfolding 
dynamics of these processes. For example, a learner with performance-avoidance orientations (motivation) 
might experience anxiety (affect) due to fear of failure, which leads to rumination on the consequences of 
failure (metacognition), thereby consuming working memory resources (cognition), ultimately resulting in 
failure. Models capable of capturing multiple links in this chain of events, without being overly diffuse, 
would represent significant progress. Another research goal involves devising models that scale. While, 
cognitive models have enjoyed widespread implementation in intelligent tutoring systems used by tens of 
thousands of students each day, the same cannot be said for models of affect, motivation, and metacognition. 
The challenge of scaling up has been difficult due to the use of supervised machine learning techniques, 
which require labeled data to infer relationships between observable behaviors and latent mental states. 
Labeled data can be collected in small-scale research studies, where log-files, videos, and other artifacts can 
be meticulously annotated, but this approach does not scale to the hundreds of thousands of students who 
learn from Massive Open Online Courses (MOOCs) and other online resources each day. Alternate 
modeling techniques, such as semi-supervised or unsupervised approaches might be needed to resolve the 
scalability issue. Thus, expanding the scope and scale of the models reflect two of the several potential 
avenues for research. 

 
3.4 Future Work: Language data and collaborative learning support 
As more and more emphasis is placed on scaling up work on computer supported instruction, we turn to 
application of the frameworks and technologies developed so far in contexts such as Massive Open Online 
Courses. In this context, social interaction occurs within online environments such as threaded discussion, 
twitter, blog sites, Facebook study groups, and small group breakout discussions, sometimes in chat, and 
sometimes in computer mediated video.  Some work has already successfully produced automated analyses 
of discussion forum data in MOOCs.165,145,26-29 This recent work has interesting similarities and differences 
with past research on student dialogues.  For example, discussions in the threaded forums in MOOCs is 
much less focused and task oriented than the typical chat logs from computer supported collaborative 
learning activities.  While some work applying automated collaborative learning process analysis to audio 
data has been done,126 this is still largely an open problem, and even less work has been done so far on 
automated analysis of video.  While some work on threaded discussion data has been done,166,167 much 
more work in the computer supported collaborative learning literature has focused on analysis of chat.168,169 
The language phenomena that have been studied in a chat context will look different in other modes of 
communication, and therefore work must be done to adapt approaches and frameworks developed for one 
mode of communication to others.  MOOCs also bring with them the opportunity to apply the analysis to 
different problems.  For example, addressing the problem of attrition was not a major focus of work in 
computer supported collaborative learning because it was not an issue in those environments, but is an 
extremely central concern in the context of MOOCs.  Thus, the shift in contexts opens new opportunities 
for impact going forward. 

 

4. Conclusion 
 
We set out to describe the exciting and rapidly growing area of educational data mining.   It is an area of 
interest as it touches upon basic research questions of how students learn and how learning can be 
modeled in a manner that is relevant to multiple disciplines within and beyond cognitive science.  It is 
important as it contributes to the development of better human and technical support for more effective, 
efficient, and rewarding student learning.  Educational data mining will play a central role in the anticipated 
“two revolutions in learning”,170 the boom in affordable and accessible online courses and the increased 
attention on learning science. 
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