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Abstract. Intelligent tutors have the potential to be used in supporting learning 
from collaboration, but there are few results demonstrating their positive effects 
in this domain. One of the main challenges in automated support for 
collaboration is the machine classification of dialogue, giving the system an 
ability to know when and how to intervene. We have developed an automated 
detector of conceptual content that is used as a basis for providing adaptive 
prompts to peer tutors in high-school algebra. We conducted an after-school 
study with 61 participants where we compared this adaptive support to two 
nonadaptive support conditions, and found that adaptive prompts significantly 
increased conceptual help and peer tutor domain learning. The amount of 
conceptual help students gave, as determined by either human coding or 
machine classification, was predictive of learning. Thus, machine classification 
was effective both as a basis for feedback and predictor of success. 
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1   Introduction 

Computer-mediated collaborative learning activities have been demonstrated to 
improve student domain learning [1]. When students articulate their reasoning as part 
of interacting with others, they can engage in beneficial cognitive processes; they may 
reflect on misconceptions, elaborate on existing knowledge, and generate new 
knowledge [2]. However, without guidance, students may not collaborate in ways that 
lead them to benefit. One potential remediation is to add intelligent tutoring 
technologies that can assess the quality of collaboration as it occurs and provide 
targeted support. This support might lead students to engage in more beneficial 
cognitive processes as they try to collaborate better, causing an improvement in 
domain learning [3]. In a small number of studies, adaptive support for collaboration 
quality has indeed shown to be better than no support and nonadaptive support at 
increasing domain learning [e.g., 4]; in another small set, adaptive support has been 
shown to improve collaboration quality directly [e.g., 5]. However, there are no 
studies that have demonstrated an effect on both collaboration and learning. Thus, a 
causal link between adaptive support, improved collaboration, and learning has yet to 
be established. We explore that link by investigating three hypotheses (Figure 1): 
Adaptive support improves student learning (H1a), improves collaboration quality 
(H1b), and better collaboration quality relates to improved domain learning (H1c). 



One reason these hypotheses have not been fully explored might be that tutoring 
systems for collaborative learning are hard to construct. Collaboration quality is 
linked to properties of student dialogue, and to adaptively support this dialogue its 
properties need to be classified in real-time. In many existing systems, dialogue is 
assessed by having students self-classify their utterances [6]. For example, students 
may select a sentence starter like “I disagree, because…” in order to signal an 
instance of constructive conflict. However, students do not consistently select 
sentence starters that match the content of their statements, and therefore the 
inferences that the system makes can be inaccurate [7]. Consequently, researchers are 
starting to use machine classification to label student dialogue as it occurs, with goals 
ranging from determining the conversation topic to labeling a student’s argument [8, 
9]. As the quality of dialogue relates to whether students benefit from collaboration 
[10], improving our ability to automatically classify properties of student utterances 
would have two potential benefits: a) It would increase our ability to target support to 
those utterances, b) Given a relationship between collaboration and domain learning, 
it would enable us to predict learning based on the machine classification. Thus, this 
paper also investigates two technical hypotheses (Figure 1): Machine classification 
can identify collaboration quality (H2a) and predict domain learning (H2b). 

We investigated these hypotheses in the context of an intelligent tutoring system 
for reciprocal peer tutoring in algebra, called the Adaptive Peer Tutoring Assistant 
(APTA). Reciprocal peer tutoring is a type of collaborative learning activity where 
two students of similar abilities take turns tutoring each other [11]. The goal of APTA 
is to improve peer tutors’ domain learning by providing adaptive support for their 
help. In giving help, peer tutors benefit from reflecting and elaborating on their 
knowledge [2]. These beneficial cognitive processes can be triggered when peer tutors 
construct high quality help [10], but peer tutors tend to need support to do so. One 
type of high-quality help is conceptual help, in that it references domain concepts as 
part of a hint or explanation. For example, the phrase “You need to subtract the ax to 
get the two x’s on the same side” would be considered conceptual. Fuchs and 
colleagues trained peer tutors to give conceptual help, and found that tutors that 
received this training learned more than tutors that did not [12].  In APTA, we follow 
up on these results by using a machine classification of conceptual help to support 

 
Figure 1. Hypotheses investigated. We explore the link between support, collaboration, and 
learning, and test how well our system classifies collaboration quality and learning. 

 



peer tutors in giving more conceptual help. We discuss a study where we assessed 
whether APTA improved the conceptual content of peer tutor help and peer tutor 
domain learning. We then examine the effectiveness of APTA for classifying peer 
tutor conceptual help and serving as a basis for feedback. Although there are other 
aspects of student dialogue that are supported by our system and may relate to 
learning, given the length of this paper we focus here on conceptual help. 

2   The Adaptive Peer Tutoring Assistant (APTA) 

APTA is a peer tutoring addition to the Cognitive Tutor Algebra, a successful 
individual intelligent tutoring system for high school algebra [13]. In APTA, one 
student tutors another on literal equation solving problems where they are given an 
equation like “ax + by = cx + dy” and a prompt like, “Solve for x”. Students are seated 
at different computers. Using menus, the tutee can select operations like “subtract 
from both sides” and then type in the term they would like to subtract. Peer tutors can 
see the tutee’s actions, but are not able to perform actions in the problem themselves 
(C in Figure 2). Instead, they mark the tutee’s actions right or wrong (D in Figure 2). 
Students discuss the problem in a chat window (A in Figure 2).  

APTA provides peer tutors with prompts in the chat in order to encourage them to 
reflect and elaborate on their domain knowledge while providing more conceptual 
help. The computer prompts the peer tutor to reflect in the chat window (e.g., “Owl, 
think about the last help you gave. Why did you say that? Can you explain more?”), 
where “owl” is the peer tutor). These prompts are visible to both students (B in Figure 
2), and might include positive reinforcement (“Good work! Hinting or explaining the 
reason for a step can help your partner learn how to do the step”), or tips for giving 

 
Figure 2. Peer tutor's interface in APTA. The peer tutor watches the tutee take problem-solving 
steps, and marks them correct or incorrect. The peer tutor helps the tutee in the chat window. 

 



better help (“Owl, when helping, use examples or facts your partner already 
understands”). APTA incorporates prompts related to four different skills, namely (1) 
giving help when needed, (2) giving help targeting errors, (3) giving conceptual help, 
and (4) using the interface appropriately. Here, we focus on conceptual help. 

Our assessment of whether students were giving conceptual elaborated help was 
based on an automated classification of student dialogue, described in [14]. We 
generated a baseline machine classifier for conceptual content using Taghelper Tools, 
state of the art text-classification technology designed for coding collaborative 
dialogue [9]. We then improved the accuracy of the classifier by adding three 
different types of domain features: problem-solving context (e.g., whether the tutee 
has just made an error), text substitutions (e.g., whether the peer tutor uses a domain-
related word, like “add” or “isolate”), and substitution history (e.g., how many times 
in the past a given peer tutor has used a domain-related word). Training our automatic 
classification on previous study data, we achieved a kappa of 0.72 when compared to 
human raters. We expected accuracy to be lower when we deployed the system in the 
current study, given the change of population. Nevertheless, we used the machine 
classification of each dialogue utterance as part of a knowledge tracing model that 
assessed whether peer tutors knew how to give conceptual help, and, if not, triggered 
reflective prompts at relevant moments. 

3   Method 

As described in the introduction, we were interested in evaluating effects of adaptive 
support on the conceptual content of peer tutor help (H1a) and domain learning 
(H1b), with the hypothesis that conceptual help relates to learning (H1c). In a 
controlled study, we compared an adaptive support condition to two nonadaptive 
conditions. In the real adaptive condition, students received relevant prompts based 
on the automated assessment (using APTA). They were told that the prompts they 
received were adaptive (“The computer will watch you tutor and give you targeted 
advice when you need it based on how well you tutor”). In the told adaptive 
condition, we still told students that support was adaptive, using the above 
instructions. However, students were actually given nonadaptive support, where they 
received randomly selected prompts at moments when they would not have received 
the adaptive prompts. We ensured that the adaptive and random prompts appeared 
with the same frequency. In the real nonadaptive condition, students received the 
nonadaptive support and were told the support was not adaptive (“From time to time, 
the computer will give you a general tip chosen randomly from advice on good 
collaboration”). Including these two control conditions was an attempt at separating 
the cognitive effects of receiving support tailored to one’s collaborative actions from 
the motivational effects of believing support is adaptive. If receiving adaptive support 
is indeed beneficial for improving help given by tutors, the real adaptive condition 
would have a better effect than the told adaptive and real nonadaptive conditions.  

Participants were 130 high-school students (49 males, 81 females) from one high 
school, currently enrolled in Algebra 1, Geometry, or Algebra 2. While the literal 
equation solving unit was one that all students had (in theory) received instruction on 



in Algebra 1, the teacher we were working with nevertheless identified it as a 
challenging unit for the students. The study was run at the high school, either 
immediately after school or on Saturdays. All students were paid 30 dollars for their 
participation, and as a result, appeared to be highly motivated during the study 
activities. Students participated in sessions of up to 9 students at a time. Each session 
was randomly assigned to one of the three conditions. Students came with partners 
that they had chosen, except for 4 students to whom the researchers then assigned 
partners. Within each pair students were randomly assigned to the role of tutee or 
tutor. Eight students worked alone and were not included in the analysis, leaving 122 
students. For the purposes of this paper, we focus on peer tutor interaction and 
learning, and thus analyze data from 61 peer tutors. 

Students first took a 20-minute domain pretest, and then spent 20 minutes working 
individually using the CTA to prepare for tutoring. They were then assigned either the 
tutor or tutee role. Students spent a total of 60 minutes in a tutoring phase, with one 
student tutoring another student. Finally, students took a 20-minute domain posttest. 
The pretests and posttests were counterbalanced, and contained conceptual and 
procedural items relating directly to the literal equation solving domain. To assess 
help quality and the accuracy of the automated classification, we human coded peer 
tutor help during tutoring for conceptual content by scoring whether each peer tutor 
utterance contained a reference to one or more domain concept. For example, “add ax 
to cancel out the -ax” and “cancel out the –ax” were conceptual, while “add ax” and 
“add ax so you can factor” were not. A total of 3105 utterances were made by peer 
tutors, and coded. To compute interrator reliability two independent raters coded 647 
utterances separately, and achieved a kappa of 0.79.  

4   Effects of Adaptive Support 

To investigate the effects of condition on peer tutor learning (H1a), we conducted a 
one-way ANCOVA, with posttest score as the dependent measure, condition as a 
between subjects variable and pretest score as a covariate (see Table 1). Condition 
had a significant effect on posttest score (F[2,57] = 4.47, p = 0.016), and pretest was 
also significantly predictive of posttest score (F[1, 57] = 33.24, p < 0.001). Post-hoc 
contrasts revealed that students in the real adaptive condition learned significantly 
more than students in the real nonadaptive condition (p = 0.019) and marginally more 
than students in the told adaptive condition (p = 0.077), controlling for pretest. 
Overall, providing adaptive support led peer tutors to learn more, suggesting that the 
adaptive support triggered beneficial cognitive processes related to domain learning. 

Next, we tested H1b, examining whether condition had an effect on conceptual 
content of tutor help. Here, we used negative binomial regression, because the 
outcome variable, conceptual content, was a count variable that was not normally 
distributed. We included two dummy coded condition variables in the regression, one 
representing the told adaptive condition and one representing the real nonadaptive 
condition, so that both could be compared to the real adaptive condition. We 
controlled for total help given by the peer tutor (all utterances that contained any 
domain information), which, using an ANOVA, was not significantly different 



between conditions (F[1,58] = 1.82, p = 0.17). The told adaptive condition was 
negatively related to the amount of conceptual help compared to the real adaptive 
condition (β = -0.922, χ2(1, N = 61) = 3.976, p = 0.046), and the real fixed condition 
was not significantly different from the real adaptive condition (β = -0.310, χ2(1, N = 
61) = 0.565, p = 0.452). Essentially, when all else is held constant, the real adaptive 
condition is responsible for roughly 2.51 more instances of conceptual help per 
student than the told adaptive condition, and 1.36 more instances of conceptual help 
per student than the real nonadaptive condition. The total help was also related to the 
amount of conceptual help (β = 0.039, χ2(1, N = 61) = 5.841, p = 0.016). 

Finally, we wanted to determine whether the conceptual help peer tutors gave was 
related to their domain learning (H1c). We conducted a linear regression with posttest 
score as the dependent measure, and conceptual content and pretest score as predictor 
variables. We also included the dummy coded condition variables to separate the 
overall effects of condition from the effects of conceptual content. We found that the 
conceptual content of help was marginally predictive of learning (β = 0.199, t(60) = 
1.95, p = 0.071). As in our test of H1a, taking part in the actually adaptive condition 
significantly influenced learning compared to the real nonadaptive condition (β = 
0.308, t(60) = 2.64, p = 0.011), and marginally influenced learning compared to the 
told adaptive condition (β = 0.227, t(60) = 1.92, p = 0.060). In sum, increased 
conceptual help partially mediated the effect of condition and learning, but there are 
likely other (yet unknown) interaction factors that had positive effects on learning. 

5 Effectiveness of Machine Classification 

We then examined how accurately our system assessed conceptual help. First, we 
compared the machine classification to the human codes on an utterance level (H2a). 
Table 2 displays the confusion matrix for the conceptual help codes. While the 
percent accuracy of the codes is 94%, with the vast majority of non-conceptual help 
correctly classified, Cohen’s kappa is 0.53, as only 50% of the conceptual help 
instances were correctly classified. On the surface, this result would indicate that our 
classifier was less successful than we might have hoped. However, we can also 
explore the relationship between the human and computer coding on a student level, 
rather than on an utterance level, in order to assess more generally whether a given 
student has developed the ability to give conceptual help. The correlation between the 
human and machine count of instances of conceptual help per student was significant 
(r[59] = 0.855, p < 0.001), suggesting that the computer classification is overall 
accurate at determining whether students know how to give conceptual help. Thus, 
two goals of our classifier were met: a) It could identify instances of nonconceptual 
help in order to provide relevant support, and b) it could determine if a given student 
had the ability to give conceptual help by looking at the overall machine classifier 
count for that student. Further, H2b asked whether the machine classification of 
conceptual help could predict domain learning. Running the same regression as in 
Section 4, with posttest score as the dependent measure, and computer coded 

Table 1. Domain learning scores and amount of conceptual help. 
 Pretest Score Posttest Score Conceptual Help Total Help 

Real Adaptive 0.27 (0.15) 0.39 (0.17) 4.16 (5.89) 26.00 (12.10) 
Told Adaptive 0.24 (0.12) 0.27 (0.14) 1.77 (2.76) 32.55 (12.51) 

Real Nonadaptive 0.29 (0.16) 0.28 (0.18) 3.15 (4.58) 29.85 (7.56) 

 



conceptual content, pretest score, and condition as predictor variables, we found that 
the computer classification was as predictive of student learning as the human 
classification (β = 0.225, t(60) = 2.15, p = 0.036). Using the machine classification of 
conceptual help, we can predict whether peer tutors will learn from the activity.  

6   Discussion 

In this paper, we described APTA, a system for adaptively supporting peer tutors in 
high school algebra. We discussed the component of APTA that detects peer tutor use 
of conceptual help and provides relevant prompts. We found that the prompts 
significantly increased peer tutor learning and the conceptual help peer tutors gave 
their partners. The amount of conceptual help given was marginally predictive of peer 
tutor learning, suggesting that there was indeed a causal link between the adaptive 
support provided, the increase in peer tutor conceptual help, and the increase in peer 
tutor learning. However, the relative weakness of the relationship between conceptual 
help and learning, and the differing pattern of results between the control conditions 
(the real nonadaptive condition learned the least but the told adaptive condition gave 
the least amount of conceptual help) suggested that there were other mediating factors 
at play. In fact, some of these factors may be relatively undetectable; the adaptive 
support, by prompting peer tutors to reflect at relevant moments, might increase their 
beneficial cognitive processes without having a tangible effect on the help they give. 
Further, it is likely that certain aspects of the peer tutor and tutee interaction (such as 
how much the tutee builds on peer tutor ideas) might have a positive effect on peer 
tutor learning. Nevertheless, this paper takes a step towards identifying the 
mechanisms by which adaptive support might lead to greater learning. 

The second contribution of this paper is a technical one, examining the 
effectiveness of our machine classifier for conceptual help in this domain. On an 
utterance level the classifier was not as accurate as we might have hoped at positively 
identifying instances of conceptual help. However, on a practical level, the classifier 
was successful, and the support based on the classifier proved to be effective at 
improving conceptual help and domain learning. Indeed, accurate detection of non-
conceptual help instances may be more valuable than accurate detection of conceptual 
help instances. Interestingly the classifier was accurate at assessing whether a given 
student was overall able to give conceptual help, and successfully predicted learning 
based on these classifications. This result suggests that these machine classifiers can 
function effectively as broader assessments of collaborative skill and domain learning. 

This paper has focused on supporting conceptual help in a peer tutoring activity. 
However, we believe our results generalize to other collaborative learning activities, 
as conceptual elaboration and help exchange are key elements of collaboration in 

Table 2. Confusion matrix for machine and human classification of conceptual content. 
  Computer Codes 
  not conceptual conceptual 

not conceptual 2793 117 Human  
Codes conceptual 66 116 

 



general. One might also extend this technology to support a student in interacting with 
teachable agents or companion agents. By developing an understanding of how 
adaptive support can assess student collaboration, influence collaboration quality, and 
improve student domain learning, we can build powerful intelligent support systems 
for human-human and human-agent collaborative learning activities. 
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