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Abstract. Intelligent tutoring techniques can successfully improve student 
learning from collaborative activities, but little is known about why and under 
what contexts this support is effective. We have developed an intelligent tutor 
to improve the help that peer tutors give by encouraging them to explain tutee 
errors and provide more conceptual help. In previous work, we have shown that 
adaptive support from this “tutor” tutor improves student learning more than 
randomly selected support. In this paper, we examine this result, looking more 
closely at the feedback students received, and coding it for relevance to the 
current situation. Surprisingly, we find that the amount of relevant support 
students receive is not correlated with their learning; however, there is a 
positive correlation with learning and students noticing relevant support, and a 
negative correlation with learning and students ignoring relevant support.  
Designers of adaptive collaborative learning systems should focus not only on 
making support relevant, but also engaging. 
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1   Introduction 

Intelligent tutoring systems (ITSs) successfully improve domain learning by tracking 
problem-solving progress, providing tailored help and feedback, and selecting 
problems that target misconceptions [1]. However, many of the successful ITSs have 
been in domains that have well-defined rules such as math and physics (e.g., [2]). 
Early ITSs were criticized for over-constraining student problem-solving, 
overemphasizing shallow procedural knowledge, and thus not properly addressing 
higher-order skills like collaboration, critical thinking, and creativity. In recent years, 
several ITSs have been developed in response to these criticisms, focusing on 
metacognition [3], affective modeling and detection [4], and interpersonal interaction 
[5]. This new wave of ITSs represents an important step towards personalization at all 
levels of learning: cognitive, metacognitive, motivational, and social [6]. 

We contribute to this effort by improving the abilities of ITSs for providing 
adaptive support to collaborative learning. Students benefit from group work, but only 



when they exhibit productive behaviors [7]. In theory, adaptive collaborative learning 
support (ACLS) would be an improvement over nonadaptive forms of support for 
collaboration, which overstructure the activity for some students while providing 
insufficient support for others [8, 9]. Indeed, early empirical results suggest that 
ACLS is an improvement over fixed support and no support at all [10, 11]. However, 
it is not yet clear why and when ACLS is effective at improving learning. Our work 
takes a step towards understanding the conditions under which ACLS is effective. 

In [12], we proposed two hypotheses for why adaptive support may be effective: 1) 
Students benefit from receiving relevant support that they can apply to their 
interaction; and 2) Students who believe support is adaptive feel more accountable for 
their collaborative actions. To test these hypotheses, we developed an intelligent tutor 
that assists peer tutors in giving more correct help and higher quality help. In a 
controlled study, using pre-post measures of learning and surveys of student 
perceptions, we found evidence that it is the actual adaptivity of support that matters, 
rather than whether students perceive support as adaptive. However, our conclusions 
were limited because our analysis did not include process data.  

This paper examines why ACLS is effective by looking directly at the relevance of 
each feedback message peer tutors received from the computer, and at the way peer 
tutors reacted to each message. There have been several ACLS systems that have not 
been tested in a classroom, but have been evaluated by verifying the validity of the 
collaborative model used [13], or the applicability of the feedback given [14]. The 
construction and evaluation of these systems rest upon two hypotheses: Adaptive 
support systems increase the amount of relevant support given to collaborating 
students (H1), and the more relevant support students receive, the more they will learn 
(H2). Further, research on individual learning from ITSs suggests that it’s important 
that students pay attention to support at the right moments [4]. One reason why 
relevant support on its own may not be effective is if students fail to notice and 
engage with the support. Thus, we also examine the relationship between peer tutors’ 
noticing of feedback given by the ITS and their domain learning, by including 
opportunities in the interface for peer tutors to rate support. We hypothesize that peer 
tutors who notice more relevant support will learn more (H3; see Table 1).  

2 The Adaptive Peer Tutoring Assistant 

Our system builds on the Cognitive Tutor Algebra (CTA), a successful intelligent 
tutoring system for high school mathematics [2], and allows students to tutor each 
other using the same interface. The Adaptive Peer Tutoring Assistant (APTA) is 
modeled after traditional novice peer tutoring scripts, where one student tutors 
another student of the same ability. These scenarios have been successful in 
classroom environments [e.g., 15], primarily because students of all abilities benefit 
from giving help [16]; peer tutors engage in reflective processes, where they reflect on 
their partners’ errors and notice their own misconceptions, and elaborative processes, 

Table 1. Hypotheses investigated in this paper. 

Name Description 
H1 An adaptive system increases the relevant support collaborating students receive. 
H2 The more students receive relevant support, the more they will learn. 
H3 The more students notice relevant support, the more they will learn. 

 



where they build on their knowledge as they construct explanations [17]. APTA 
encourages peer tutors to engage in these processes, focusing on three skills: 

Skill 1: Necessary help. Peer tutors respond to tutee errors and requests for 
help. This skill leads peer tutors to reflect on the errors and requests. 
Skill 2: Targeted help. Peer tutors ask tutees to self-explain and directly 
address tutee misconceptions in dialogue. Again, this skill leads peer tutors to 
reflect on misconceptions. 
Skill 3: Conceptual help. Peer tutors give conceptual help, prompting them to 
engage in elaborative behaviors as they construct explanations.  

Because help-giving is an important component of many collaborative scenarios [7], 
we believe that testing our hypotheses within APTA will generalize to other ACLS.  

In the learning environment, students are given a problem like “Solve for y,” for an 
equation like “ay + by + m = n”. They are grouped into pairs and are seated at 
different computers at opposite sides of the same classroom. For the remainder of this 
paper, we refer to the student acting as the tutor in the learning activity as the peer 
tutor, and the student being tutored as the tutee. Tutees solve the problem using 
menus, selecting options like “Subtract from both sides” and typing in a term like m. 
For some problems, the computer performs the operation; for other, more advanced 
problems, the student must type in the result of the operation themselves. Peer tutors 

 
Figure 1.  Peer tutor’s interface in APTA. The peer tutor watches the tutee take problem-solving actions 
(E), and marks the actions right or wrong (F). Students can talk in the chat window (A), where they 
receive prompts from the computer (B), and can choose to like them, dislike them, or ignore them (C). 



can see their peer tutee’s actions, but cannot solve the problem themselves (see E in 
Figure 1). Instead, they mark the peer tutee’s actions right or wrong (F in Figure 1), 
and receive feedback from the cognitive tutor on whether their marks are correct 
(described more in [12]). Peer tutors can also interact with tutees in a chat tool, where 
they give help and feedback (A in Figure 1). We augmented the chat tool with 
sentence classifiers (D in Figure 1), asking peer tutors to label their utterances prior to 
submitting them. Encouraging students to use sentence classifiers correctly was an 
additional system goal (Skill 4: Use of Classifiers). 

APTA supports peer tutors in giving better help using reflective prompts visible to 
both students in the chat window (B in Figure 1). For example, after peer tutor 
instrumental help like “subtract x”, the computer might say “[Tutor], why do you say 
that? Can you explain more?” The reflective prompts were adaptive in terms of 
content and timing, based on knowledge tracing of the four skills described above 
(necessary help, targeted help, conceptual help, and use of classifiers). In response to 
each relevant peer tutor or tutee action, APTA followed a four-step process. First, in 
Step 1, the problem state was assessed based on the tutee problem-solving action, a 
machine classification of the peer tutor chat, and a self-classification of the tutor chat. 
Next, in Step 2, APTA used a 20-rule production model to classify the action as 
effective, somewhat effective, somewhat ineffective, or ineffective, as it related to 
each of the skills relevant to the particular action. The system assessments of each 
relevant skill were adjusted using Bayesian Knowledge Tracing. In Step 3, all skills 
whose assessments had been adjusted based on the previous action were compared to 
pre-defined thresholds related to the rules that had been fired, to determine if 
feedback should be given based on the skill. Each threshold had a priority, and the 
activated threshold with the highest priority was selected as a candidate for feedback. 
Finally, in Step 4, a feedback message was selected randomly from all possible 
messages associated with a given threshold. Table 2 displays sample positive and 
negative feedback related to each skill. We did not give positive feedback for use of 
classifiers because we considered it to be more distracting than valuable. 

Table 2. Positive and negative feedback messages for the four skills traced by APTA. Positive 
feedback was given in response to firing of effective or somewhat effective rules, while 
negative feedback was given in response to firing of ineffective or somewhat ineffective rules. 

Skill Positive Feedback Negative Feedback 
Necessary help Keep at it! When your partner asks 

for help, it's a good chance to 
explain how to solve the problem. 

[Tutor], if you don’t know how to 
help your partner ask the computer 
for a hint. 

Targeted help Good work! Remember, exploring 
what your partner is doing wrong 
can help them not make the same 
mistake on future problems. 

[Tutor], can you explain your 
partner’s mistake? 

Conceptual 
help 

Keep it up! Talking about concepts 
behind the problems can help you to 
understand them better. 

[Tutor], when you explain a step to 
your partner tell them why they 
should be doing the step. 

Use of 
classifiers 

None [Tutor], think about whether "ask 
why", "explain why wrong", "hint", 
or "explain next step" best describes 
what you last said. 

 



3   Method 

In the study discussed in this paper, described more fully in [12], we compared three 
conditions. In the real adaptive condition, students received adaptive support and 
were told it was adaptive. In the real nonadaptive condition, students received 
nonadaptive support and were told it was nonadaptive. In the told adaptive condition, 
students received nonadaptive support but were told it was adaptive. As we noticed 
from previous studies that much nonadaptive support was still plausible feedback that 
could be applied to the interaction context, the inclusion of the told adaptive condition 
was, in part, to evaluate if students who believed support was adaptive would benefit 
from nonadaptive support that they received. If students thought the system was 
adapting to their behaviors, they may be more likely to attend to the support and apply 
it to their interaction. The real adaptive condition used APTA, as described above, 
while the two nonadaptive conditions received prompts selected as follows. Every 
time students would have received a reflective prompt were they in the real adaptive 
condition, they did not receive a prompt in the nonadaptive conditions. However, they 
received a prompt within the next three turns, thus yoking the nonadpative prompt to 
the adaptive prompt. We randomly selected the content of the nonadaptive prompt, 
with one exception: we did not choose content related to the skill addressed in the 
yoked adaptive prompt. Nevertheless, there were many situations where the randomly 
selected prompt could be perceived as relevant. 

Participants were 130 high school students (49 males, 81 females) from one high 
school, currently enrolled in Algebra 1, Geometry, or Algebra 2. The study was run at 
the high school, either immediately after school or on Saturdays. Students participated 
in sessions with up to eight other students (M group size = 7.41, SD  = 1.35). Each 
session was randomly assigned to condition, and then within each pair, students were 
randomly assigned to the role of tutor or tutee. For the most part, students came with 
partners they had chosen. For ease of scheduling, we sometimes assigned an extra 
student to a given session, and 8 students worked alone. 1 dyad was excluded due to a 
logging error with the computer prompts. Thus, 120 students participated in the 
collaborative activity. Since our goal was to improve the help that peer tutors give, 
our discussion in this paper focuses on the 60 students who were assigned the role of 
peer tutor. An analysis of tutee learning is presented in [12]. 

Students first took a 20-minute domain pretest, and then spent 20 minutes working 
individually using the CTA to prepare for tutoring. They were then assigned either the 
tutor or tutee role. Students spent 60 minutes in a tutoring phase, with one student 
tutoring another student. Finally, students took a 20 minute domain posttest. Pre- and 
posttests were counterbalanced, and assessed knowledge of literal equation solving. 

We used process data from the study to measure two variables: relevance of 
computer support and peer tutor noticing of support. First, we coded each instance of 
support delivered by the computer tutor for whether it was relevant to the current 
context, as defined by the tutee-tutor interactions spanning the last instance of tutee 
dialogue, tutor dialogue, and tutee problem step. To be relevant, negative feedback 
had to meet three criteria: 

1. Not contradict the current situation. E.g., feedback that referred to an error 
contradicts the situation if tutees had not made an error.  



2. Refer to something students were not currently doing. E.g., feedback that 
prompted for more conceptual help would only be relevant if students were 
not giving conceptual help. 

3. If students were to follow the help, their interaction would be improved, based 
on the four skills. E.g., feedback that tells the tutor to give help would improve 
the interaction if the tutee had asked for help and not received it. 

For positive feedback to be relevant, students had to be doing something to merit 
positive feedback, and then the advice given by the feedback had to meet the above 
criteria #1 and #3. To calculate interrater reliability, two raters independently coded 
30% of the data, with a kappa of 0.70. Conflicts were resolved through discussion. 

The second construct, peer tutor noticing of support, came from an interface 
feature we added to allow students to give us feedback on the computer prompts. As 
each prompt was given in the chat window, students could choose to rate the feedback 
(by clicking thumbs up or thumbs down, see C in Figure 1), or ignore it completely. 
Students were told that this action would help us determine which feedback was 
useful. We coded students as noticing the feedback if they rated the feedback, 
suggesting that they had read and reflected on the feedback. Not rating the feedback 
gave us no information on their response. We further discuss the implications of this 
measure in the discussion. 

4   Results 

For the purposes of this paper we focus on an analysis of how relevant feedback and 
noticing feedback influenced peer tutor learning. As reported in [12], we conducted a 
one-way ANCOVA to examine the effects of condition on peer tutor learning, with 
posttest score as the dependent measure, condition as a between subjects variable, and 
pretest score as a covariate (see Table 3). Condition had a significant effect on 
posttest score (F[2,56] = 4.10, p = 0.022), and pretest was also significantly predictive 
of posttest score (F[1,56] = 31.49, p < 0.001). We found that providing real adaptive 
support led peer tutors to learn more. According to an ANOVA, total feedback did not 
differ between the three conditions (F[2,57] = 0.591; p = 0.557; see Table 3), 
suggesting that the nature of the feedback led to the improvement. 

We first examined H1, to verify using the process data that the implementation of 
the adaptive support condition indeed had the intended effect, in that the amount of 
relevant feedback differed between adaptive and nonadaptive conditions (see Table 3 
for means). We conducted a linear regression with relevance as the dependent 
variable. We included two dummy coded condition variables in the regression, one 
representing the told adaptive condition and one representing the real nonadaptive 
condition. We also controlled for total feedback given by the computer, adding it as a 
predictor variable, and including the two interaction terms between each dummy 
coded condition variable and total feedback. Because we included interaction terms, 
we centered the total feedback variable by subtracting the mean. We found that the 
model that included the interaction terms was a better fit for the data (F Change 
[2,54] = 20.62, p < 0.001). The results of the regression are presented in Table 4. The 
model was significant (R2 = 0.902, F[5,54] = 99.95, p < 0.001). All variables entered 



were significant in the model. When all else is held constant, the real adaptive 
condition was responsible for significantly more instances of relevant feedback (76%) 
than the told adaptive (41%) and real nonadaptive conditions (40%). The interaction 
terms show that the more total instances of feedback, the greater the difference 
between the real adaptive condition and other conditions (see Figure 2). 

We then examined H2, looking at whether total relevant feedback was related to 
learning. We conducted a linear regression, with posttest as the dependent variable, 
and told adaptive, real nonadaptive, pretest, and relevant feedback as predictor 
variables (R2 = 0.44; F(4,55) = 10.97; p < 0.001). While as before condition and 
pretest were significantly predictive of learning, the total amount of relevant feedback 
was not (ß = -0.180, t(54) = -1.65, p = 0.104). Despite the real adaptive condition 
containing more relevant help, this alone did not explain learning gains found. 

Next, we looked at H3, examining whether the amount of relevant support 
students rated affected their learning. We had divided support into two categories: 

Table 3. Mean pretest scores, posttest scores, and amounts of total feedback given by the 
computer, relevant feedback given by the computer, and attended feedback given by the 
computer. Standard deviations are in parentheses. 

Condition Pretest Postttest Total 
Feedback 

Relevant 
Feedback 

Noticed 
Feedback 

Real Adaptive 0.27 
(0.17) 

0.39 
(0.18) 

15.53 (11.28) 12.84 
(10.83) 

7.16 (6.56) 

Told Adaptive 0.24 
(0.12) 

0.27 
(0.14) 

17.50 (9.37) 7.45  
(5.50) 

4.73 (5.91) 

Real 
Nonadaptive 

0.30 
(0.15) 

0.29 
(0.18) 

14.26 (8.00) 5.68  
(4.44) 

4.21 (4.12) 

      

Table 4. Regression results comparing the 
effects of condition and total feedback on 
relevant feedback given by the computer. 

Variable ß t(55) p 
Told Adaptive  -0.402 -8.04 <0.001 
Real 
Nonadaptive  

-0.400 -7.97 <0.001 

Total 
Feedback  

1.149 17.62 <0.001 

Total 
Feedback 
*Told 
Adaptive 

-0.327 -5.66 <0.001 

Total 
Feedback* 
Real 
Nonadaptive 

-0.263 -4.98 <0.001 

 

 
Figure 2. Graph representing the interaction 
between total feedback given by the computer, 
useful feedback, and condition. 

 



support that peer tutors noticed (by pressing the like or dislike button), and support 
that peer tutors ignored. Given that we had also coded support for whether it was 
relevant or irrelevant, we then had four categories: noticed relevant support, ignored 
relevant support, noticed irrelevant support, and ignored irrelevant support (see Table 
5 for means). We conducted a linear regression, with posttest as the dependent 
variable, and several predictor variables: pretest, noticed relevant feedback, ignored 
relevant feedback, noticed irrelevant feedback, and ignored irrelevant feedback. The 
overall model was significant (R2 = 0.512, F[5,54] = 11.32, p < 0.001). Noticing 
relevant feedback was significantly positively related to learning, while ignoring 
relevant feedback was significantly negatively related to learning (see Table 6). On 
the other hand, student interactions with irrelevant feedback did not relate to learning. 

Because noticing or ignoring relevant feedback related to learning, we explored 
how those variables differed between conditions. We conducted a MANCOVA with 
noticed relevant and ignored relevant feedback as dependent variables, and condition 
and total feedback as predictor variables. Condition significantly affected the amount 
of noticed relevant feedback (F[2,56] = 7.10, p = 0.002) and ignored relevant 
feedback (F[2,56] = 3.46, p = 0.038). This relationship was strongest for the noticed 
relevant variable, where post-hoc pairwise comparisons revealed that the real adaptive 
condition was significantly different from both the real nonadaptive condition (p = 
0.009) and the told nonadaptive condition (p = 0.003). For ignored relevant feedback, 
the adaptive condition was marginally different from the told adaptive condition (p = 
0.06) and not significantly different from the real nonadaptive condition (p = 0.105). 

As noticing feedback played a role in tutor learning, we further examined whether 
students noticed different amounts of feedback across conditions. A one-way 
ANCOVA with noticed feedback as the dependent variable, condition as the 
independent variable, and controlling for total feedback, revealed that students did not 
notice different amounts of feedback across conditions (F[2,56] = 1.78, p = 0.178; 
means of noticed feedback are in Table 3). Students noticed similar numbers of 
feedback across conditions, but because there was more relevant feedback in the real 
adaptive condition, students noticed more relevant feedback in that condition. 

Table 5. Means of variables relating to attention and relevant feedback. Standard deviations 
are in parentheses. 

Condition Noticed  
Relevant 

Ignored 
Relevant 

Noticed 
Irrelevant 

Ignored 
Irrelevant 

Real Adaptive 5.63 (5.33) 7.21 (9.02) 1.53 (1.98) 1.16 (1.54) 
Told Adaptive 2.05 (3.65) 5.41 (4.53) 2.68 (3.31) 7.36 (5.18) 
Real 
Nonadaptive 

1.79 (2.10) 3.89 (4.46) 2.42 (2.48) 6.16 (5.48) 

Table 6. Regression results for the effects of relevant and attended feedback on posttest score. 

Variable ß t(55) p 
Pretest 0.550 5.66 <0.001 
# Noticed Relevant 0.324 2.81 0.007 
# Ignored Relevant -0.279 -2.64 0.011 
# Noticed Irrelevant -0.088 -0.84 0.407 
# Ignored Irrelevant -0.070 -0.61 0.543 

 



5   Discussion and Conclusions 

In this paper, we examined when adaptive collaboration support might be effective. 
We discovered that our adaptive system indeed provided students with more relevant 
support than a nonadaptive system, and this difference became more apparent the 
more feedback students received. However, relevant support alone was not related to 
student learning. Instead, students had to notice relevant support in order to benefit 
from the support. Students noticed support at similar rates across all three conditions, 
but because there was more relevant support in the adaptive condition, students 
noticed more relevant support when the system was adaptive. 

Our results depend heavily on our measure of relevance and our measure of 
noticing. The coding scheme we developed for feedback relevance took several 
iterations, and we found that many feedback messages could be interpreted as relevant 
in several different situations. The nonadaptive conditions had relatively high 
incidences of relevant help, even though we tried to select messages that were not 
relevant. It is possible that a carefully designed nonadaptive system may be able to 
mimic the performance of an adaptive support system. Our second measure tracked 
whether students liked or disliked particular feedback messages as an indication of 
whether students noticed feedback. This measure of noticing implies that students had 
read the feedback, and had potentially reflected on how it related to their interaction. 
This method has limitations; if students did not respond to a feedback message, it is 
impossible to be certain that they did not notice it. However, as a rough measure, it 
provided insight on how students reacted. Including these types of measures in other 
ITSs may provide useful online information on how students react to support. 

One interpretation of the results is causal: The adaptive system led students to 
notice more relevant support, and students who noticed relevant support learned more. 
This interpretation might explain why students in the real adaptive condition learned 
the most. However, the adaptive system also caused students to ignore more relevant 
support (albeit to a lesser degree) and students who ignored more relevant support 
learned less. It is possible that students who ignored relevant support were struggling 
the most with the learning activity, and also learning less because of their difficulties. 
While we are limited in our ability to draw causal conclusions from this analysis, we 
do know that the amount of relevant support played a factor in student learning; 
noticing relevant support related to learning, while noticing irrelevant support did not. 
Encouraging students to notice more support, while continuing to work on making 
support more relevant, may be one key to maximizing the benefits of ACLS. 

Thus, the next step in this work will be to examine why students notice support, and 
determine how to encourage more students to attend to and reflect on support. It is 
likely that individual differences affect the degree to which students notice help 
(although noticing relevant support was not correlated with pretest score). A 
promising approach might be to use data mining techniques to improve the design of 
feedback messages, improving student likelihood of noticing those messages. The 
timing of messages might have an influence: In initial exploration, we found that 
feedback messages that appeared when peer tutors were struggling and distracted 
were more likely to be ignored. Content might also have an influence: Feedback 
messages that were specific and easily implemented appeared to be more engaging.  



Our work makes a contribution to the study of ACLS by showing that producing 
more relevant support alone is not sufficient for improving learning. Students who 
benefit from relevant support must notice the support. While this finding is intuitive, 
and has been discussed in individual learning, it had not previously been 
demonstrated in learning from collaborative systems or discussed in the design of 
ACLS. ACLS systems are often designed and evaluated with the ultimate goal of 
creating more relevant support. Future designers of such systems will have to explore 
how to improve student noticing of support in order to have a significant impact. 
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