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Abstract. Collaborative activities, like peer tutoring, can be beneficial for 
student learning, but only when students are supported in interacting 
effectively. Constructing intelligent tutors for collaborating students may be an 
improvement over fixed forms of support that do not adapt to student behaviors. 
We have developed an intelligent tutor to improve the help that peer tutors give 
to peer tutees by encouraging them to explain tutee errors and to provide more 
conceptual help. The intelligent tutor must be able to classify the type of peer 
tutor utterance (is it next step help, error feedback, both, or neither?) and the 
quality (does it contain conceptual content?). We use two techniques to improve 
automated classification of student utterances: incorporating domain context, 
and incorporating students’ self-classifications of their chat actions. The domain 
context and self-classifications together significantly improve classification of 
student dialogue over a baseline classifier for help type. Using domain features 
alone significantly improves classification over baseline for conceptual content. 
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1   Introduction 

Student participation in online collaborative classroom activities can increase both 
group performance and individual learning outcomes. However, these positive effects 
are not always found [1], in part because when left to their own devices students may 
not interact in ways that lead them to benefit from collaboration. One common 
technique for improving computer-mediated collaborative interaction is scripting, 
where the collaboration is structured so that students take on particular roles and go 
through designated phases in order to increase the effectiveness of their collaboration 
[see 2 for review]. Although scripts have been shown to be effective, they have been 
criticized for over-structuring the collaboration for some students, decreasing these 
students’ motivation, while under-structuring the collaboration for others, failing to 
provide them with sufficient support [3]. It has been theorized that an intelligent tutor 
for collaboration that is responsive to student needs and to the current interaction state 
might be more effective [4], and, in fact, adaptive support for collaboration has been 
demonstrated to be an improvement over no support and fixed support at increasing 



learning [5, 6]. Despite these potential advantages, intelligent tutoring for 
collaborative learning is still at an early phase, and few classroom-ready systems have 
been developed and evaluated. 

A key component of improving collaborative interactions is supporting students in 
conducting productive dialogues. Thus, developing mechanisms for assessing student 
dialogues has been a focus of research in this area. One way of assessing student 
dialogue is through self-classification, where students are asked to indicate the type of 
statement that they are making before or after they compose it. For example, students 
may select a sentence starter like “We need to work together on this…” to begin their 
utterance. Based on the starters that students select, the system can make inferences 
about what students are saying, and use these inferences to provide feedback [e.g., 7]. 
However, students do not consistently select sentence starters or classifiers that match 
the content of their utterances, and therefore the inferences that the system makes 
based on those labels can be inaccurate [8]. Consequently, researchers have been 
moving towards using machine classification to assess student dialogue as it occurs in 
order to provide students with assistance. So far this technology has been used in 
limited ways in intelligent tutoring for collaborative learning; for instance, for 
classifying the topic of conversation [6], or for assessing student accuracy when they 
use sentence starters [8]. As the quality of student dialogue contributes to how 
students benefit from collaboration, improving our ability to automatically classify 
student utterances would increase our ability to target support to those utterances. 

We have developed an intelligent tutor for collaborative learning by extending the 
Cognitive Tutor Algebra, an existing successful intelligent tutoring system, to support 
two students of similar abilities in tutoring each other in algebra. Within the context 
of providing intelligent support for peer tutoring, we explore two different approaches 
for improving the accuracy of dialogue classification: incorporating information about 
the domain context, and incorporating student self-classifications. Firstly, we use 
information about the domain context of the interaction as additional features for a 
machine learning classifier. This context includes information directly taken from the 
students’ problem-solving behavior (e.g., a student has just taken a incorrect step in 
the problem), information about how student dialogue relates to the problem-solving 
context (e.g., a student has referred to another student’s incorrect step), and 
information about the history of the interaction (e.g., a student has referred to another 
student’s incorrect steps 10 times over the course of the whole interaction). There is a 
precedent for this approach: The few adaptive collaborative learning systems that 
have used domain information have shown gains both in the variety of support that 
those systems provide and in the effects of support [e.g., 9], but they have not applied 
these models to the classification of collaborative dialogue. However, this approach 
has been applied successfully in asynchronous collaborative contexts [10], and 
domain features have been successfully used to enhance the ability of automatic 
classifiers in other fields [e.g., 11]. Secondly, we use student self-classifications of 
their own chat dialogue as a potential feature for improving the accuracy of the 
machine classifier. As described above, it is common in adaptive collaborative 
learning systems to ask students to classify their own utterances. While these 
classifications are not always accurate, they may still be relevant for assisting the 
machine classifier in labeling the utterance.  



In this paper, we explore how incorporating information on the domain context and 
self-classification features might improve the classification of peer tutor dialogue. We 
describe the details of our collaborative learning system, the model of peer tutoring 
that we are trying to support, and our data collection procedure. We then describe the 
classification approaches we compare: baseline classification of student dialogue 
based solely on text features (B), baseline classification with additional domain 
features (B+D), baseline classification with additional self-classification features 
(B+SC), and baseline with problem-solving and self-classification features 
(B+D+SC). We discuss the results of comparing the classifiers and their implications. 

2   Context 

We attempt to automatically classify student dialogue within the context of an 
intelligent tutoring system for reciprocal peer tutoring, called APTA (the Adaptive 
Peer Tutoring Assistant). APTA provides an interface for one student to tutor another 
student on algebra problems, and then provides the peer tutor with assistance on how 
to be a better tutor. To do so, APTA maintains a model of good peer tutoring and 
compares student actions to the model. Accurately assessing the quality of student 
chat actions enables this comparison to be made and effective assistance to be given. 
In the following section, we describe the functionality of APTA in more detail, to 
make it clear which aspects of student dialogue we are trying to assess and why. 

2.1 APTA: Adaptive Peer Tutoring Assistant 

Reciprocal peer tutoring is a collaborative learning activity where two students of 
similar abilities take turns tutoring each other. It has been shown to improve student 
learning over unscripted collaboration and individual learning [12], and is an effective 
intervention even for low-ability students [13]. We have constructed a peer tutoring 
addition to the Cognitive Tutor Algebra (CTA), a successful intelligent tutoring 
system for high school mathematics [14]. In our peer tutoring script, students are 
given a task like “Solve for x,” for an equation like “ax + by = c.” Students go 
through two phases: a preparation phase and a collaboration phase. In the preparation 
phase, peer tutors solve problems using the CTA, receiving hints and error feedback 
when necessary. During the collaboration phase, students are grouped into pairs and 
collaborate at different computers, taking turns being peer tutors and peer tutees. Peer 
tutees solve the same problems as their tutor solved in the preparation phase, using the 
same equation solver interface. Peer tutors can see their peer tutee’s actions, but 
cannot solve the problem themselves. Instead, they can mark the peer tutee’s actions 
right or wrong, and interact with the tutee in a chat tool, where they can give help and 
feedback. We augmented the chat tool with sentence classifiers, asking peer tutors to 
label their utterances as a prompt (“asks for explanation”), error feedback (“explains 
why wrong”), a hint (“gives hint”), or an explanation (“explains next step”). Peer 
tutors had to select a classifier before they typed in an utterance, but they could also 
choose to click a neutral classifier (“comments”).  



As most students are novice tutors and need support to collaborate effectively, they 
receive two different types of assistance from the system as part of the script (see 
Figure 1). First, we have augmented the script with adaptive domain support for the 
peer tutor. If the peer tutor marks a correct tutee action wrong in the interface, or an 
incorrect action right, the cognitive tutor will intervene by indicating that the step was 
marked incorrectly, and providing feedback on what to do next. The peer tutor can 
also request a domain hint from the cognitive tutor at any time.  Second, we 
augmented the script with adaptive interaction support for the peer tutor. This support 
primarily takes the form of reflective prompts delivered to both students in the chat 
window such as, “Tutor, you might want to explain that further”, and “Tutee, did you 
understand what the tutor just said?” For these prompts to be effective, they must 
contain relevant information and be presented at moments when the peer tutor can 
apply them to the interaction. Therefore, we maintain both a model of good peer 
tutoring and a running assessment of the actual quality of the students’ tutoring. 

 
Figure 1. Two forms of assistance in the Adaptive Peer Tutoring Assistant (APTA). Peer tutors 
are provided with domain support and interaction support. 

2.2 Modeling Reciprocal Peer Tutoring 

To provide support for the peer tutor role in reciprocal peer tutoring, we have 
constructed a production-rule model for peer tutor help-giving. Our production rule 
model focuses on three help-giving skills, derived from the following research. Tutors 
have been found to benefit from the tutoring activity by reflecting on their existing 
knowledge as they observe tutee problem-solving steps and errors, and then 
constructing new knowledge as they compose explanations [15]. In order for tutees to 
benefit from the activity, peer tutor help should be given at impasses, should target 
tutee level of understanding, should explain errors, should provide assistance for the 
next-step, and should be conceptual & elaborated [16]. The first skill in our model 
prescribes that the peer tutor should give help when needed, which we operationalize 
as giving help after tutee help requests and errors, but not after correct steps (S1: Help 
When Needed). The second skill prescribes that the peer tutor should give relevant 



help for the tutee’s specific needs. For example, after a tutee error, the peer tutor 
should respond by prompting tutees to self-explain and then, if necessary, explaining 
the tutee mistake (S2: Appropriate Help). Finally, the peer tutor should explain the 
rationale behind problem-solving steps, rather than simply saying what to do. In 
particular, when peer tutors give help on the next step, they are expected to use hints 
and explanations that reference relevant domain concepts (S3: Conceptual Help).  

We assess these collaboration skills using Bayesian knowledge tracing, and 
provide feedback based on the assessment [17]. In order to determine whether peer 
tutors are displaying the above three skills, we need to classify two aspects of the help 
peer tutors give in their dialogue with tutees:   

1. Help type. Are peer tutors giving next-step help, error feedback, both, or no help 
at all? Using the classified help type in conjunction with the problem-solving 
context (e.g., knowing whether the tutee has just made a correct step, incorrect 
step, or help request) can help us decide whether tutors are giving the appropriate 
kind of help (S2) when it is needed (S1). 

2. Conceptual content. Are peer tutors giving help that explains concepts rather 
than simply stating what to do next? Being able to identify this aspect lets us 
know whether tutors are providing enough conceptual help (S3).  

By accurately classifying these aspects of student dialogue, we can develop intelligent 
support for peer tutoring that enables us to improve peer tutor performance on the 
above three help-giving skills. 

2.3 Corpus & Data Coding 

We used a corpus drawn from a classroom study we conducted comparing adaptive 
support for peer tutoring to fixed support for peer tutoring. As part of the study, 
students participated in two supported peer tutoring sessions; one in which they acted 
as the tutor, and one in which they acted as the tutee. We have a total of 84 tutoring 
sessions from both conditions, consisting of an average of 21.77 tutor lines of 
dialogue per session (SD = 10.25). Two raters coded tutor utterances for help type and 
conceptual content. We computed interrater reliability on 20% of the data, and the 
remainder of the data was coded by one rater and checked by the second. All 
disagreements were resolved through discussion. We segmented the dialog by chat 
messages, creating a new segment every time students hit enter. First, each help 
segment was coded for help type by determining whether it consisted of previous-step 
help relating to an action tutees had already taken (e.g., “no need to factor because 
there is only one g”; kappa = 0.83), and whether it consisted of next-step help relating 
to a future action in the problem (e.g., “how would you get rid of 2h?”; kappa = 0.83). 
If the help segment contained both categories, its help type was labeled “both”, and if 
it contained neither category (e.g., “on to the next problem”), its help type was labeled 
“none”. Second, each help segment was coded for whether it contained a concept 
(e.g., “add ax” was purely instrumental help, while “add ax to cancel out the –ax” was 
conceptual). Kappa for conceptual help was 0.72. In our dataset, 935 tutor instances 
were coded as “none”, 764 were coded as “next-step help”, 83 were coded as 
“previous-step help”, and 47 were coded as “both”; 1654 instances were coded as 
non-conceptual help, and 165 were coded as conceptual help. 



3   Method 

3.1 Baseline Classification 

We generated baseline machine classifiers for help type and conceptual content using 
Taghelper Tools, state of the art text-classification technology designed for coding 
collaborative dialogue [18]. Taghelper automatically extracts several dialogue 
features for use in machine classification, including unigrams, bigrams, line length, 
and punctuation. In our dataset, Taghelper generated 641 features. We used a chi-
squared feature selection algorithm to rank the most predictive features, and selected 
150 features for help type and 125 features for conceptual content. We used 10-fold 
cross validation to train a support vector machine classifier for each dimension. 

3.2 Incorporating Domain Features 

We augmented the dialogue features generated by Taghelper with domain context 
features. After assembling the problem-solving context, text substitution, and history 
features described below, we again used a chi-squared feature selection algorithm to 
rank the most predictive features. We used 10-fold cross validation to train a support 
vector machine classifier for help type and conceptual content. 
 
Problem-Solving Context. In general, features describing the tutee’s problem-
solving progress may provide information about the type and quality of the help peer 
tutors tend to give (e.g., peer tutors may be more likely to give error feedback after 
the tutee has made an error). Thus, we added a total of 10 features for the classifier, 
created using information from the CTA models of student problem-solving. This 
information included whether the last step taken on the problem was correct or 
incorrect, the student’s progress in the problem (i.e. the number of correct, incorrect, 
and total steps taken), and the student’s problem-solving momentum (e.g. the number 
of incorrect steps the student had made in a row). 

 
Text Substitutions. We then added features representing whether peer tutors referred 
to problem-solving elements in their utterances (e.g., “subtract x” refers to a specific 
problem-solving action). By treating different references to the problem as members 
of a higher-level category, we can compensate for a lack of training data and enable 
the classifier to transfer between different units of the problem. More specifically, we 
extracted a list of problem-related actions from the CTA menu options that tutees 
were able to select in the unit (e.g., {factor, distribute, add, subtract}), and a list of 
problem-related variables from the problem-statement (e.g., x = a + b would return 
{x,a,b}). We then substituted specific occurrences of a problem-related action or term 
in the text with general terms (see the “Substituted Text” column in Table 1), and 
used the new text as input into Taghelper. We also added a feature that indicated that 
a substitution had been made (“Action Present” and “Term Present” in Table 1). 

Further, by tracking which specific aspects of the problem tutee utterances referred 
to, we hoped to be able to better identify the target of the help given by the peer tutor. 



Thus, we added a feature representing whether the substituted terms referred to the 
tutee’s last correct step or last incorrect step (e.g., in the second row of Table 1, “add 
x to the left side” sets the Term Present feature to “last-correct”, indicating that there 
is a term in the problem which refers to the last correct step). We also made 
substitutions based on whether peer tutors referenced terms that appeared in the 
problem-solving hints generated by the cognitive tutor. We created a list of verbs and 
nouns found in the hints, and then substituted a generic “concept” word for these 
words (as in the third row of Table 1). We added an additional feature representing 
whether a concept term had been substituted. Finally, we created substitution features 
to indicate whether multiple substitutions of the different types had occurred. The 
presence of multiple substitutions in an utterance makes it more likely that a reference 
to the problem actually occurred. This approach emphasized those utterances where 
multiple substitutions were done, while deemphasizing utterances where only a single 
substitution took place. Overall, we added 7 text substitution features. 
 
Table 1. Selected features created from particular tutor utterances. If the tutee's last action was 
“factor x”, and this action was correct, the following are the substitutions that would be made. 

Chat Text Substituted 
Text 

Action 
Present 

Term 
Present 

Term-
Concept 
Present 

Action-
Term 

Present 
now factor now action last-correct no no no 
add x to the 
left side 

action term to 
the left side 

yes last-correct no yes 

isolate the p concept the term no yes yes no 
 

 
Substitution History. Finally, we added 6 history features in an attempt to provide 
holistic information about the overall quality of the interaction. The history features 
were based on the numbers of each type of substitution made; features were created 
for what percent of the peer tutor's total number of utterances referred to a concept, 
what percent referred to a correct or incorrect action, and what percent referred to a 
correct or incorrect term. We also included a simple yes/no feature as to whether or 
not a substitution of a specific type was made at any point, under the rationale that 
somebody who has given a certain kind of help in the past would be more likely to 
give that kind of help in the future. All history features were updated with each tutor 
utterance; that is, history features were only computed based on all utterances that had 
occurred prior to the current utterance, so that the algorithm could be applied to a 
learning situation as it unfolds. We based the history features on the substitutions 
rather than on the machine classifications to avoid being stuck in a state where, for 
example, because the machine has not yet classified an utterance as conceptual help, it 
is likely to never classify an utterance as conceptual help. 

3.4 Adding Self-Classification 

In addition to creating domain features, we also added two features that involved 
students’ self-classification of their actions. As described in Section 2, before 
composing an utterance peer tutors were asked to label their utterance as a prompt, 



error feedback, a hint, an explanation, or a comment. The label selected by the peer 
tutor, as well as their overall use of sentence classifiers, may be predictive of the type 
of help the peer tutor gave in a particular utterance. We added the self-classification 
specified by the tutor and the number of non-comment sentence classifiers used by the 
tutor in total as features in the machine classification.   

4   Results 

We hypothesized that both the domain features (B+D) and the self-classification 
(B+SC) would lead to an improvement over the baseline classification (B), with a 
classifier containing all three sets of features being the most effective (B+D+SC). We 
compared Cohen’s kappa for all classifiers in the Weka Experimenter using 10 
repetitions of 10-fold cross-validation (see Table 2) [19]. We use kappa instead of 
percent accuracy due to the imbalanced frequency distribution between categories (for 
example, there was over 10 times more non-conceptual help utterances than 
conceptual help utterances). Weka uses paired t-tests corrected for dependence 
between samples to compare classifiers. For help type, B+D+SC was significantly 
better than the B classifiers (p < .05). For conceptual help, only B+D was 
significantly better than baseline (p < .05). It is encouraging that the help type kappa 
for BS+D+SC approached the kappa we achieved for human interrater reliability, and 
that the conceptual help kappa improved substantially between the B and B+D. 
 
Table 2. Kappas for the baseline (B), baseline plus self-classification (B+SC), baseline plus 
domain (B+D), and baseline plus self-classification plus domain feature sets (B+D+SC). 
Kappas are reported for both the help type and conceptual help classifications. 

  Help Type Kappa  Conceptual Help Kappa 
Classifier  M SD  M SD 
B  .78*  .04  .59* .10 
B + SC  .78* .04  .60* .10 
B + D  .80* .04  .66* .10 
B + D + SC  .81* .04  .65* .11 

 
Examining which features were ranked highly by the chi-squared feature selection 
algorithm for the B+D+SC feature set, we can see that our domain context features 
consisted of 7 of the top 10 features for the help type classification, and 7 of the top 
10 features for the conceptual help classification (see Table 3). In addition, one highly 
ranked feature for help type was the sentence classifier used, part of the SC feature 
set. Overall, for the help type classifier, only 3 of the domain context features created 
were not selected to be part of the machine classifier, and 2 of these features related to 
the number of correct steps that had recently been taken by the tutee. It is interesting 
that while incorrect problem-solving actions appeared somewhat predictive of the 
type of help given, correct problem-solving actions did not. This result makes sense, 
as it is more likely that tutors would refer to a previous incorrect step than to a 
previous correct step. For the conceptual help classifier, 14 of the 25 conceptual help 
features were not selected, suggesting that conceptual help classification is less 
dependent on domain context. 



 
Table 3. The top ten ranked features in chi-squared feature selection for help type and 
conceptual help for the baseline plus problem-solving plus self-classification feature set. 

Rank  Help Type Kappa  Conceptual Help Kappa 
1  action present  concept present 
2  “action”  “concept” 
3  term present  concept & term present 
4  “term”  “concept_term” 
5  “BOL_action”  line length 
6  action & term present  “you_concept” 
7  classifier used  percent concepts used 
8  “term_EOL”  “how_do” 
9  “BOL_undo”  “you” 
10  “undo”  “term_by” 

5   Conclusion 

The focus of this paper was to increase the accuracy of automated classification of 
peer tutor utterances in order to improve the ability of an intelligent tutoring system 
for peer tutoring to provide appropriate support. To do so, we explored the use of 
domain context features, extracted from individual domain models found in the 
Cognitive Tutor Algebra, as input into dialogue classifiers to augment automatically 
extracted text features. We also examined whether student self-classifications of their 
own utterances might improve the machine classification. We found that domain 
context features in combination with self-classifications significantly improved the 
accuracy of an automated classifier with respect to help type, but only domain context 
improved the accuracy of conceptual content classification.  

We incorporated three different types of domain context features into the machine 
classifier: problem-solving context, text substitutions, and substitution history. Of 
those features, relevant text substitution and substitution history features were highly 
related to the machine classification for each dimension; for example, substitutions of 
references to tutee actions were highly predictive of help type, while substitutions of 
references to concepts were highly predictive of conceptual help. In contrast, self-
classifications were less effective; they appeared to augment the results of the help-
type classifications, but inhibit the results of the conceptual help classification. This 
result is not unexpected, as the self-classifications that students made were far more 
relevant to the help type dimension than to the conceptual help dimension. Perhaps 
student self-classifications that were more related to whether the utterance included 
conceptual help would have a positive effect on a conceptual help classifier. 

These results make the argument for an emphasis on designing adaptive support for 
collaboration that is rooted in problem-solving context. If domain context information 
can improve the accuracy of automated collaborative dialogue classification, it would 
make sense for intelligent tutoring systems for collaborative learning to incorporate 
domain models. While domain models are difficult to build from scratch, integrating 
adaptive collaborative learning systems with existing individual intelligent tutoring 



systems may be a way to leverage sophisticated domain information in order to 
improve the effectiveness of intelligent tutoring for collaborative learning. 
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